
A HIGH-PERFORMANCE BROWNIAN BRIDGE FOR GPUS:

LESSONS FOR BANDWIDTH BOUND APPLICATIONS

JACQUES DU TOIT

Abstract. We present a very flexible Brownian bridge generator together with a GPU
implementation which achieves close to peak performance on an NVIDIA C2050. The
performance is compared with an OpenMP implementation run on several high per-
formance x86-64 systems. The GPU shows a performance gain of at least 10x. Full
comparative results are given in Section 8: in particular, we observe that the Brownian
bridge algorithm does not scale well on multicore CPUs since it is memory bandwidth
bound. The evolution of the GPU algorithm is discussed. Achieving peak performance
required challenging the “conventional wisdom” regarding GPU programming, in par-
ticular the importance of occupancy, the speed of shared memory and the impact of
branching.

Contents

1. Introduction and Software Requirements 1
2. Algorithm Design 3
3. First GPU Strategy 5
4. Second GPU Strategy 6
5. Third GPU Strategy 7
6. Fourth GPU Strategy 7
7. Fifth GPU Strategy 8
8. Summary of Results and Conclusions 9
References 11

1. Introduction and Software Requirements

The Brownian bridge algorithm (see e.g. [2]) is a popular method for constructing
sample paths of a Brownian motion. The procedure may be summarised as follows. Fix
two times t0 < T and let X = (Xt)t0≤t≤T denote a Brownian motion on the interval
[t0, T ] . Let (ti)1≤i≤N be any set of time points satisfying t0 < t1 < . . . < tN < T for
some N ≥ 1 . Our aim is to simulate values for {Xti}1≤i≤N and XT by using a set of
standard Normal random numbers Z0, Z1, . . . , ZN . We assume that the value Xt0 = x
is always known (often x = 0 ), and we always set XT = x+

√
T − t0Z0 . The Brownian

bridge algorithm then uses interpolation to fill in the remaining values {Xti}1≤i≤N . Given
any two points Xti and Xtk which are known, a third point Xtj for ti < tj < tk can
be computed as

(1) Xtj =
Xti(tk − tj) +Xtk(tj − ti)

tk − ti
+ Zj

√
(tk − tj)(tj − ti)

tk − ti
.

The algorithm is therefore iterative. Given the known starting value Xt0 = x and the
final value XT = x+

√
T − t0Z0 , a third point Xti for any 1 ≤ i ≤ N can be computed.

Given the three points Xt0 , XT , Xti a fourth point Xtj for any j 6= i can be computed
1



2 JACQUES DU TOIT

by interpolating between its nearest neighbours. The process continues until all the points
have been generated.

If the Brownian motion is multidimensional, the algorithm can still be used with minor
changes. Each Xti and Zi becomes a vector and correlation is introduced by setting

(2) Xtj =
Xti(tk − tj) +Xtk(tj − ti)

tk − ti
+ CZj

√
(tk − tj)(tj − ti)

tk − ti
.

where C is a matrix such that CC ′ gives the desired covariance structure of the Brownian
motion. When the Brownian bridge is used to solve stochastic differential equations, it is
more appropriate to produce scaled increments of the form (Xti+1 −Xti)/(ti+1 − ti) . It
turns out that this is somewhat easier than producing the Brownian sample path points
Xti . We will not discuss scaled increments further, however timings for the increments
generators are giving in Section 8.

1.1. Bridge Construction Orders. The Brownian bridge algorithm is not fully specified
until we state which points Xtj are interpolated from which points Xti and Xtk . For
example, with N = 12 and a set of time points {ti}1≤i≤12 we could construct a bridge
in the order

T t6 t3 t9 t1 t4 t7 t11 t2 t5 t8 t10 t12(3)

meaning that Xt6 is interpolated between Xt0 and XT ; Xt3 is interpolated between
Xt0 and Xt6 ; Xt9 is interpolated between Xt6 and XT ; Xt1 is interpolated between
Xt0 and Xt3 ; Xt4 is interpolated between Xt3 and Xt6 ; and so on. However we could
equally construct the bridge in the order

T t2 t4 t3 t9 t1 t7 t12 t5 t10 t6 t11 t8(4)

where now Xt2 is interpolated between Xt0 and XT ; Xt4 is interpolated between Xt2

and XT ; Xt3 is interpolated between Xt2 and Xt4 ; Xt9 is interpolated between Xt4

and XT ; Xt1 is interpolated between Xt0 and Xt2 ; and so on. Both construction
orders are equally valid. Indeed, any permutation of the times {ti}1≤i≤N will specify
a valid bridge construction order. If Θ ≡ {θi}1≤i≤N denotes a permutation of the set
{ti}1≤i≤N , then for any θi ∈ Θ we will have

(5) Xθi =
X`(r − θi) +Xr(θi − `)

r − `
+ Zi

√
(r − θi)(θi − `)

r − `
where ` = max{t0, θj | 1 ≤ j < i, θj < θi} is the greatest “known” point smaller than θi
and r = min{T, θj | 1 ≤ j < i, θj > θi} is the smallest “known” point greater than θi .
Here we mean that a time point s is “known” if the corresponding value Xs has already
been computed (and is therefore known) by the time we come to computing Xθi . We are
simply ensuring that when we interpolate Xθi , we interpolate between its nearest known
neighbours. For example in (4) above, we interpolate Xt4 between Xt2 and XT and
not between Xt0 and XT .

1.2. Quasi-Random Numbers. When the Zi s are drawn from a pseudorandom gen-
erator, there is no theoretical reason to prefer one bridge construction order over another
since each Zi is independent from, and identical to, every other Zi . However the Brow-
nian bridge algorithm is frequently used with quasi-random numbers generated from low
discrepancy sequences (such as Sobol sequences), and in this case the situation is very
different. We refer to [2] for a more detailed discussion about why one would use quasi-
random points with a Brownian bridge algorithm, but essentially the idea is that one



A HIGH-PERFORMANCE BROWNIAN BRIDGE FOR GPUS 3

“covers” the space of Brownian sample paths more evenly than one would with pseudo-
random points. The advantages are exactly analogous to using quasi-random points in a
Monte Carlo integration of an N + 1 dimensional function.

A single N + 1 dimensional quasi-random point (Z0, Z1, . . . , ZN ) is used to construct
an entire sample path. The problem is that, for most quasi-random generators, the lower
dimensions (Z0, Z1, . . .) typically display much better uniformity properties than the
higher dimensions (. . . , ZN−1, ZN ) . The lower dimensions are therefore more “valuable”
and should be used to construct the most important parts of the Brownian motion. For
example, if we consider a model which is particularly sensitive to the behaviour of the
Brownian motion at time η , then we would ensure that

• time η was one of the interpolation points,
• Xη was constructed using a Zi from the lower dimensions,
• Xη was interpolated between points which were themselves constructed using Zi s

from the lower dimensions.

This idea maps quite naturally to the bridge construction orders as depicted in (3) and (4)
above. If we specify a bridge construction order through a permutation Θ ≡ {θi}1≤i≤N
of the times {ti}1≤i≤N , and we ensure that the most important time points are given by
θ1, θ2, . . . , then we can use Z0 to construct XT , use Z1 to construct Xθ1 , use Z2 to
construct Xθ2 , and so on. The construction order Θ maps directly onto the dimensions
of the quasi-random point so that it is clear which dimension will be used to construct
each point Xθi . For ease of notation we will set θ0 ≡ T so that Zi is used to construct
Xθi for each 0 ≤ i ≤ N .

1.3. Memory Bandwidth Bound Algorithm. The multipliers (tk − tj)/(tk − ti) ,

(tj−ti)/(tk−ti) and
√

(tk − tj)(tj − ti)/(tk − ti) in (1) above can be precomputed: there
are only N of them, and they do not change once the construction order is fixed. These
values can be taken as known when considering (1), they simply have to be fetched from
memory. The Brownian bridge is therefore a memory bandwidth bound application: there
is very little computation relative to the amount of data transferred. Our aim therefore
was to achieve peak memory bandwidth (or as near to it as possible) as measured when
considering only the movement of Zi s from main memory and the movement of Xti s
to main memory. Additional data movement (if any) would not be taken into account so
that the metric would reflect the ideal world (from a user’s point of view) where any extra
data traffic could somehow be made to disappear. Users were to have complete freedom
to specify any bridge construction order. Helper routines would be provided so that a
user wouldn’t have to manufacture a full construction order themselves. The algorithms
would be implemented on traditional x86-64 architectures and on NVIDIA GPUs using
CUDA. Our discussion will focus on the GPU implementation: comparative results with
the x86-64 multicore implementations are given in Section 8.

2. Algorithm Design

The fact that a user can specify any bridge construction order means that it is essential
to abstract this away, thereby reducing all construction orders to a common format. To
achieve this, a two step design was adopted. In the first (called initialisation), the user
passes in the bridge construction order. This order is then processed and reduced to
an execution strategy which is copied to the GPU. As long as the bridge construction
order and the time points remain unchanged, the execution strategy remains valid. In the
second step (called generation), the Brownian sample paths are generated from a set of
input Normal random numbers (either pseudorandom or quasi-random). The generation
step can be executed several times to generate successive sets of Brownian sample paths.



4 JACQUES DU TOIT

2.1. Local Stack. An efficient implementation of a Brownian bridge algorithm typically
requires a local workspace array, which we call the local stack. Since previously computed
Brownian points Xθi are used to interpolate new points, it is clear that computed points
should be kept as close to the processing units as possible, preferably in hardware cache.
Since the hardware cache is too small to hold all the Brownian points, at each time step
the algorithm must decide which points to keep and these are stored in the local stack.
The algorithm must also determine when a point in the local stack is no longer required,
so that it can be replaced by a new point. The idea is that, if the local stack does not
grow too large, there is a good chance it will fit in L1 or L2 cache.

A key requirement of the bridge algorithm therefore is that it ensures that the local
stack stays small.

2.2. Initialisation and the Execution Strategy. It turns out that it is possible to
permute a given bridge construction order without changing the actual Brownian points
that are computed. To illustrate, consider (3) above. This construction order is equivalent
to the following construction order

T t6 t9 t3 t11 t7 t4 t1 t12 t10 t8 t5 t2(6)

since Xt6 is interpolated between Xt0 and XT ; Xt9 is interpolated between Xt6 and
XT ; Xt3 is interpolated between Xt0 and X6 ; Xt11 is interpolated between Xt9 and
XT ; and so on. The output from this construction order will be identical to the output
from (3) as long as the same Zi s are used to create each bridge point. Therefore in (6)
we would use Z0 to generate XT ; Z1 to generate Xt6 ; Z3 to generate Xt9 ; Z2 to
generate Xt3 ; Z7 to generate Xt11 ; and so on.

It is easy for an arbitrary bridge construction order to use a lot of local stack. The task
of the initialisation step is therefore to take the user’s construction order and to find an
equivalent construction order (along with a permutation of the Zi s) which uses a minimal
amount of stack. This procedure is rather technical and won’t be discussed further, but
the output is an execution strategy which is passed to the generate step. The execution
strategy consists of a new bridge construction order and a permutation of the Zi s.

2.3. Conventional Wisdom: Occupancy, Shared Memory and Branching. The
conventional wisdom regarding GPU programming is that occupancy is important for
memory bandwidth bound applications, that shared memory is fast, and that branching
should be avoided. By branching here we do not mean warp divergence: we mean tradi-
tional serial branching. On a GPU this is equivalent to an if-then-else statement where all
the threads in a warp take the same branch. Avoiding branches, especially in inner loops,
is a standard optimisation strategy for CPU code.

To increase occupancy, a kernel should use as few registers as possible and the kernel
should be launched with as many threads per streaming multiprocessor (SM) as possible.
The idea is that the memory requests from all these threads will saturate the memory
bus, and while data is being fetched for some threads (and they can therefore do nothing
while waiting for the data to arrive), other threads whose data has arrived can continue
executing.

In order to interpolate any Brownian point Xθi , the following steps have to be carried
out:

(a) Determine the left and right neighbours of Xθi and find their locations in the
local stack. These are the points X` and Xr in (5) above between which Xθi is
interpolated.

(b) Read the left and right neighbours off the local stack.
(c) Determine which random point Zi to use.



A HIGH-PERFORMANCE BROWNIAN BRIDGE FOR GPUS 5

(d) Read the Zi point from global memory.
(e) Compute Xθi using (5).
(f) Determine where to store Xθi in main memory. Clearly points should be stored

in the correct order, namely Xt1 , Xt2 , . . . , XT .
(g) Store Xθi to main memory.
(h) Determine where to store Xθi in the local stack.
(i) Store Xθi in the local stack.

Steps (a), (c), (f) and (h) are all done during the initialisation step and together constitute
the execution strategy. Physically the execution strategy consists of an array of integers
which are copied to the GPU and read off by each CUDA thread as it generates a sample
path. At each time step a thread would need to read 5 integers in order to compute a new
Brownian point: indexes of left and right neighbours in the local stack; index of point Zi ;
storage index of Xθi in global memory; storage index of Xθi in the local stack. Given
this information, the generate step then simply consists of

(a) Read the left and right neighbours off the local stack.
(b) Read the Zi point from global memory.
(c) Compute Xθi using (5).
(d) Store Xθi to main memory.
(e) Store Xθi in the local stack.

This is a branchless process and therefore should be very efficient. In addition, the local
stack can be stored in shared memory which is very fast. There is no warp divergence
(each thread generates a separate Brownian sample path – threads in a warp are doing
the same thing at the same time), all accesses to global memory are aligned and fully
coalesced, and there are no bank conflicts when accessing shared memory. All in all, the
algorithm seems ideally suited the GPU and should perform very well.

2.4. Test System and Test Problem. The test system consists of an Intel Core i7 860
running at 2.8GHz with 8GB RAM and a Tesla C2050 with Error Checking and Correction
(ECC) on. The system runs 64 bit Linux with CUDA Toolkit v4.0. The basic test problem
consists of generating 1,439,744 one dimensional Brownian sample paths each with 64 time
steps, and the construction order is a standard bisection order such as that given by (3).
All computations are carried out in single precision: it is harder to saturate the memory
bus with 4 byte transfers than with 8 byte transfers. In total then the test problem consists
of moving 351MB of data (the Zi s) onto the compute cores, and then moving 351MB of
data (the Xti s) back out to global memory. All performance measurements were obtained
through NVIDIA’s Compute Visual Profiler with all performance counters enabled. If an
algorithm introduced local memory bus traffic (values in L1 cache spilling to L2 cache or
to global memory), this was noted. Only the generate step was timed - the initialisation
step was ignored.

The peak memory bandwidth of the C2050 is given as 144GB/s. However this is the
figure with ECC turned off. When ECC is turned on, the peak bandwidth of the card is
reduced to slightly less than 120GB/s (see [1]). The target is therefore to achieve as close
to 120GB/s overall transfer rate as possible.

All performance figures quoted below are for the optimal launch configuration that
was found, as measured by kernel execution time. Occupancy figures are for that launch
configuration.

3. First GPU Strategy

Recall that the execution strategy consists of an array of integers which contain indexes
into the local stack, the array of Zi s and the bridge storage (output) array. Since these



6 JACQUES DU TOIT

integers are fixed for the duration of the generate step, and each thread in a warp will
access the same element at the same time (broadcast access), it seems obvious to store
them in constant memory. The first GPU implementation was therefore as follows.

To conserve space, the execution strategy used 8 bit unsigned integers to store the read
and write indexes into the local stack and 16 bit unsigned integers to store the Zi read
index and the Xθi write index. The total size of the execution strategy for each bridge
point was therefore 2× 16 bit + 3× 8 bit for a total cost of 7 bytes. These values were
read from constant memory through 16 bit and 8 bit broadcasts.

The stack was held in local memory and L1 caching was turned off, so that the stack
physically resided in the L1 cache. Since the same physical hardware is used for both
L1 cache and shared memory, this should be equivalent to placing the stack in shared
memory.

3.1. Parallelisation and Multidimensional Brownian Motions. When the Brown-
ian motion is one dimensional, it is clear that each CUDA thread can create a Brownian
sample path independently of every other CUDA thread. In this case one would have
each thread create several Brownian paths, so that each thread block does a reasonable
amount of work. However if the Brownian motion is multidimensional we must compute
the matrix-vector product CZi . The way this was implemented was to put C in con-
stant memory and have threads read the values of each Zi vector into shared memory.
Threads would then synchronise and each thread would compute its row of the matrix-
vector product CZi . Accesses to C followed a broadcast access pattern. The bridge
point Xθi could then be computed as before, independently of all other CUDA threads.
This approach meant that two syncthreads() calls had to be issued at each time step.

3.2. Performance. The kernel used 20 registers, had an occupancy of 100% and a per-
formance of 29GB/s.

4. Second GPU Strategy

Frequently heard advice for bandwidth bound applications is to use vector data types
so that each thread transfers and processes more data. We adjusted the algorithm from
Section 3 to allow each thread to read the Zi s and write the Xθi s as either float2,

float3 or float4. Now each thread would process 2, 3 or 4 Brownian sample paths at
once, so that the amount of local stack required would increase by a factor of 2, 3 or
4. Apart from that, the algorithm was unchanged: the execution strategy was read from
constant memory, there were two synchronisations per time step, and the matrix C was
held in constant memory.

4.1. Performance. The kernels used between 20 and 34 registers, had occupancy ranging
between 100% and 54%, and generally gave poor performance. Although global memory
traffic increased, this was due to the much larger local stacks which spilled to L2 cache.
The stacks were held in local memory, and thus resided in L1 cache. To increase occupancy,
each thread block was launched with many threads. However as there were no restrictions
on registers or shared memory which would force the runtime to only place one or two
blocks per SM, the runtime placed several blocks on each SM, exhausting the L1 cache
and causing the stacks to spill to L2 and global memory. Running the kernel with fewer
blocks and fewer threads alleviated the spilling, but lead to worse performance since there
were now fewer transactions to global memory for Zi s and Xθi s.

In all, each kernel ran slower than the kernel from Section 3, meaning the effective
performance was less than 29GB/s.



A HIGH-PERFORMANCE BROWNIAN BRIDGE FOR GPUS 7

5. Third GPU Strategy

Since the normal running of the algorithm could not generate enough memory instruc-
tions to saturate the memory bus, we introduced explicit data prefetching. This idea
exploits the fact that the GPU compute cores do not stall on a data load instruction:
they only stall once the register used for the load (i.e. the register into which the data
from global memory is loaded) becomes the argument of an operation. Therefore if one
thread issues several load operations on several different registers, and a programmer
takes care not to use those registers until later in the program, then the loads will happen
asynchronously while that thread carries on executing.

We changed the algorithm from Section 3 so that each thread prefetched P Normal
random numbers before starting a path calculation. Then when each point Xθi in the
path is calculated, the corresponding Normal number is used and a new Normal random
number corresponding to Xθi+P

is loaded to the same register. This way, P Normal
fetches are always in flight. With this strategy it is also necessary to unroll the main
compute loop P times to ensure that registers are handled correctly.

5.1. Performance. After some experiments, we found that the optimal value was P = 8 .
This gave a kernel using 34 registers with an occupancy of 58% and a performance of
58GB/s.

6. Fourth GPU Strategy

At this point it was clear that a comprehensive re-thinking of the algorithm was needed.
The fundamental problem seemed to be the level of indirection that is placed between the
threads and all the memory operations. Before any memory is accessed, each thread first
has to fetch the index at which the access is to occur, and must then use the index to
access the data. Each memory operation therefore requires two trips to memory: one to
fetch the index, and another to access the data using the index. This was slowing the
whole process down. Constant memory is simply not fast enough to deliver the indexes at
a rate which saturates the global memory bus. Synthetic experiments where each thread
“computed” the indexes on-the-fly during execution came close to saturating the bus. The
bottleneck therefore appeared to be fetching the indexes.

Indeed, moving the indexes from constant memory into shared memory showed no
improvement. Shared memory, just as constant memory, is too slow to provide the indexes
at a rate which saturates the global memory bus. Since it is impossible to compute the
indexes on-the-fly, a way around the bottleneck had to be found.

Prefetching data seemed to provide some hope. However if we wish to prefetch Normal
random numbers, then we should also be prefetching their indexes (since the index is
needed to effect the load). And if we are prefetching those indexes, perhaps it makes sense
to prefetch all the indexes.

Therefore we changed the algorithm as follows:

(a) Threads no longer cooperated to generate a multidimensional Brownian sample
path. Each thread would compute all the dimensions of each sample path. The
matrix C was moved to registers so that the matrix-vector product CZi could be
performed on data held in registers. All the synchronisation barriers were removed.

(b) Since Zi values were no longer read into shared memory, the local stack was moved
from local memory into shared memory.

(c) The execution strategy was moved from constant memory to shared memory. How-
ever since shared memory is much too small to hold it, the execution strategy would
have to reside in global memory and sections of it would be copied into shared
memory as needed.



8 JACQUES DU TOIT

(d) The indexes defining the execution strategy were prefetched. At each step, 5 in-
dexes are required, and two full steps worth of indexes were prefetched, meaning
that 10 indexes were prefetched before the first Brownian point XT was computed.

(e) In addition to prefetching the indexes, P Normal random numbers were also
prefetched from global memory.

(f) The rest of the algorithm remained the same: left and right neighbours were read
off the stack, a new Brownian point was computed, and it in turn was stored to
the stack and to global memory.

6.1. Performance. The changes above led to an explosion in the complexity of the code.
Although the ideas are relatively simple, when written down the code takes some time to
understand. Not only must the prefetch registers be treated properly, but exceptional care
must be taken with the corner cases and cleanup code which results from copying sections
of the execution strategy into shared memory. This is compounded by the prefetching,
since careful book keeping must be done to know which sections to copy. In summary,
turning the idea into a robust implementation is not simple. The resulting kernel used 42
registers per thread, had an occupancy of 45% and ran at 85GB/s.

GPU Strategy Registers Occupancy Performance % of Peak

First 20 100% 29GB/s 24.1%
Second 20 to 34 100% to 54% <29GB/s <24%
Third 34 58% 58GB/s 48.3%
Fourth 42 45% 85GB/s 70.8%

Fifth without
prefeching

24 43% 79GB/s 65.8%

Fifth with
prefeching

33 58% 102GB/s 85%

Table 1. Comparison of the different GPU strategies.

7. Fifth GPU Strategy

The performance of the previous GPU kernel is only 70% of theoretical peak, and there
is not much more scope for prefetching. The most likely bottleneck in the algorithm is the
traffic into and out of the local stack, and the associated fetching of indexes. At each time
step we read two values from the stack and write one value to it, which means fetching
three indexes. The indexes also reside in shared memory, which means at each time step
we load three values from shared memory, then use those values to load two more values
and finally to store a value to shared memory. This traffic is too much for the shared
memory bus to handle: it becomes the bottleneck in the program.

Returning to the initialisation step, we considered whether it was possible to reduce
the amount of local stack traffic. The answer turns out to be yes, but only by introducing
some branches in the innermost loop of the generate function. Consider the situation in
(5) where X` and Xr are the left and right neighbours respectively of the Brownian
point Xθi . By carefully tuning the execution strategy, it is possible to ensure that the set
{X`, Xr, Xθi} contains both the left and right neighbours of the Brownian point Xθi+1

.
This cannot be done for every point Xθi+1

, but it can be done for many of them, and
so it is necessary to introduce some flags to identify when it holds. Correspondingly, the
main compute loop of the generate step must contain some branches. The branches when
computing the point Xθi+1

look roughly as follows:
Are the left and right neighbours of Xθi+1

in the set {X`, Xr, Xθi} ?



A HIGH-PERFORMANCE BROWNIAN BRIDGE FOR GPUS 9

X Yes.
• Identify which of the points X` , Xr and Xθi are the neighbours and use

them to compute Xθi+1
.

× No.
• Read the left and right neighbours from the local stack and use them to

compute Xθi+1
.

Usually programmers would avoid branches such as this, especially in inner loops, but
in this case it proves highly effective.

7.1. Performance. Without adding any prefetching, the kernel outlined above uses 24
registers, has an occupancy of 43% and runs at 79GB/s. Once the prefetching in Section
6 is added in, the kernel uses 33 registers, has an occupancy of 58% and runs at 102GB/s.
The same code in double precision uses 38 registers, has an occupancy of 33% and runs
at 115.66GB/s.

8. Summary of Results and Conclusions

In summary, we state the performance results for both the Brownian sample path gen-
erator and the scaled Brownian increments generator as measured on the system detailed
in Section 2.4:

• Brownian sample paths generator
– Single Precision: runtime is 10.01ms at 102GB/s achieved global memory

throughput. This is 1.9x faster than the time taken to generate the Normal
random numbers.1

– Double Precision: runtime is 17.12ms at 115.6GB/s achieved global memory
throughput. This is 2.2x faster than the time taken to generate the Normal
random numbers.2

• Scaled Brownian increments generator
– Single Precision: runtime is 9.09ms at 109GB/s achieved global memory

throughput. This is 2.09x faster than the time taken to generate the Normal
random numbers. 1

– Double Precision: runtime is 17.01ms at 116.3GB/s achieved global memory
throughput. This is 2.2x faster than the time taken to generate the Normal
random numbers. 2

The algorithm from Section 7 (without prefetching) was coded up in C, parallelised with
OpenMP and run on a number of different x86-64 systems. The results are given in Table
2.

The three CPU systems represent a range in performance, from the popular Intel Core
i7 desktop processor to the top end Intel Xeon X5680 aimed at the server market. The
AMD machine is a dual socket system featuring two Magny Cours chips, and is similar
to the Phase 2 nodes in the UK HECToR supercomputer. The Xeon machine is also a
dual socket system with two Westmere chips. Observe the scaling of the CPU code. The
Core i7 shows limited scaling past 2 threads. In addition, with more than 2 threads the
performance becomes highly variable (the values shown here are averages). The Xeon
shows virtually no scaling past 8 threads. The AMD is the only system that shows scaling
up to full hardware capacity. That said, the performance of the AMD system is not
particularly exciting, being around 70% slower than the Xeon.

1Using the NAG GPU MRG32k3a generator, single precision
2Using the NAG GPU MRG32k3a generator, double precision



10 JACQUES DU TOIT

Generators
Intel Core i7 860, 4 cores @ 2.8GHz

(with hyperthreading)
GPU

speedup
1 Thread 2 Threads 3 Threads 4 Threads 8 Threads

Bridge
float 1212.5ms 1142.6ms 1189.3ms 787.2ms 720.3ms 72.0x

double 1771.1ms 930.5ms 704.4ms 803.6ms 593.4ms 34.7x

Bridge Incs
float 1170.5ms 613.2ms 857.1ms 639.1ms 605.0ms 67.1x

double 1452.8ms 782.6ms 742.1ms 653.5ms 549.7ms 32.3x

Generators
AMD Opteron 6174, 24 cores @ 2.2GHz
(dual socket Magny Cours, 2× 12 cores)

GPU
speedup

1 Thread 8 Threads 12 Threads 16 Threads 24 Threads

Bridge
float 2402.6ms 1019.6ms 676.1ms 452.4ms 355.4ms 35.5x

double 2948.8ms 900.3ms 576.4ms 454.2ms 328.4ms 19.2x

Bridge Incs
float 2173.6ms 637.2ms 434.4ms 321.1ms 257.0ms 28.6x

double 2694.1ms 804.9ms 555.3ms 418.4ms 298.8ms 17.6x

Generators
Intel Xeon X5680, 12 cores @ 3.33GHz

(dual socket Westmere, 2× 6 cores with hyperthreading)
GPU

speedup
1 Thread 8 Threads 12 Threads 16 Threads 24 Threads

Bridge
float 1392.1ms 192.4ms 195.6ms 171.2ms 171.9ms 17.2x

double 1463.8ms 205.7ms 222.7ms 193.6ms 227.6ms 11.4x

Bridge Incs
float 1207.4ms 172.6ms 168.8ms 146.0ms 207.6ms 16.2x

double 1308.1ms 183.2ms 184.9ms 166.2ms 211.8ms 9.8x

Table 2. Benchmark figures for Tesla C2050 vs. several high performance CPUs.

The behaviour in Table 2 is typical for memory bandwidth bound applications. Throw-
ing additional compute cores at the problem does not improve performance: the speed of
the actual memory hardware must be increased. Here GPUs have a distinct advantage
due to the fast GDDR5 graphics memory.

8.1. Conclusions. In the process of producing the Brownian bridge generators, we have
learned a number of lessons regarding the “conventional wisdom” of programming GPUs:

• Higher occupancy does not necessarily mean higher performance for memory band-
width bound applications.
• Explicit prefetching of data into registers can boost performance significantly.
• Shared memory is not as fast as one might think. In particular, inserting a layer of

indirection whereby an index is fetched from shared memory, and then that index
is used to fetch another value from shared memory, can slow things down a lot.
• Aggressive use of registers is a good way to boost performance, even for bandwidth

bound applications, since registers are the fastest memory on the GPU.
• Judicious use of branching can increase performance, even when the branch is in

the innermost compute loop.
• GPUs can be very effective at accelerating memory bandwidth bound applications,

which often do not scale well on traditional multicore platforms.

8.2. Acknowledgments. The Numerical Algorithms Group wishes to thank Professor
Mike Giles, whose work on a GPU Brownian bridge routine was invaluable in making the
present implementation. NAG would also like to acknowledge the advice and feedback
from two senior quantitative analysts who gave valuable insights into how a Brownian
bridge algorithm is used in production.

8.3. Access to Software. Users who wish to obtain the Brownian bridge routines should
contact NAG either through the website www.nag.co.uk, or via email at infodesk@nag.co.uk.



A HIGH-PERFORMANCE BROWNIAN BRIDGE FOR GPUS 11

Both GPU and CPU (single threaded) implementations are available in the NAG Numeri-
cal Routines for GPUs 3. The routine documentation is available at [3]. Example programs
(including documentation) showing how to use a GPU Sobol generator together with a
GPU Brownian bridge in order to create a GPU Monte Carlo pricing application is avail-
able at [4].

As well as featuring in the NAG Numerical Routines for GPUs, both serial and multi-
threaded implementations of this very flexible Brownian bridge algorithm will also feature
in future releases of NAGs CPU Libraries and the NAG Toolbox for MATLAB. Early
releases may be made available upon request.

References

[1] CUDA Optimization : Memory Bandwidth Limited Kernels + Live Q&A by Tim Schroeder. NVIDIA
GPU Computing Webinar Series.

http://developer.download.nvidia.com/CUDA/training/Optimizing Mem limited kernels.mp4
[2] Glasserman, P. (2004). Monte Carlo Methods in Financial Engineering. Springer.
[3] NAG Numerical Routines for GPUs routine documentation.

http://www.nag.co.uk/numeric/GPUs/doc.asp.
[4] Demos using NAG Numerical Routines for GPUs.

http://www.nag.co.uk/numeric/GPUs/gpu demo applications.

Numerical Algorithms Group Ltd
E-mail address: jacques@nag.co.uk

3http://www.nag.co.uk/numeric/gpus/index.asp


