dco/c++: Derivative Code by Overloading in C++

Klaus Leppkes, Johannes Lotz!, Uwe Naumann!?*

I Computer Science, RWTH Aachen University, Germany
2 Numerical Algorithms Group Ltd., Oxford, UK

August 10, 2020

Abstract

Boosted by advanced type genericity and support for template metapro-
gramming techniques, the role of C++ as the preferred language for large-
scale numerical simulation in Computational Science, Engineering and
Finance has been strengthened over recent years. Algorithmic Differenti-
ation of numerical simulations and algorithmic adjoint methods, in partic-
ular, have seen substantial growth in interest due to increased requirement
for gradient-based techniques in high dimensions in the context of param-
eter sensitivity analysis and calibration, uncertainty quantification, and
nonlinear optimization. Modern software tools for (adjoint) Algorithmic
Differentiation in C++ make heavy use of modern C++ features aiming
for increased computational efficiency and decreased memory requirement.
The dco/c++ tool presented in this paper aims to take Algorithmic Differ-
entiation in C++ one step further by focussing on derivatives of arbitrary
order, support for shared-memory parallelism, and powerful and intuitive
user interfaces in addition to competitive computational performance. Its
algorithmic and software quality has made dco/c++ the tool of choice in
many industrial and academic projects.

1 Yet Another AD Tool?

Driven by the growing complexity of nonlinear optimization [52], data anal-
ysis/machine learning [2] and general inverse problems [42] in Computational
Science, Engineering and Finance Algorithmic Differentiation (AD) [18, 34] and
its adjoint mode, in particular, has seen a substantial increase in popularity over
recent years. Software tools for AD can be classified into source code transfor-
mation (e.g., OpenAD [48], TAF/TAC++ [51], Tapenade [23]) and overloading
(e.g., Adept [24], ADOL-C [16], CppAD [3]) tools. The former typically re-
sult in better performing derivative code while the latter turns out to be easier

*corresponding author: naumann@stce.rwth-aachen.de



to develop and maintain in the context of the ongoing evolution of program-
ming languages and computer architectures. Hybrid approaches have been in-
vestigated including the NAG AD Compiler for Fortran [38] which combines
elements of source transformation at the level of the compiler’s internal repre-
sentation with overloading techniques provided by a runtime support library.
Approaches that are independent of the programming language have also been
explored including AD transformations on universal intermediate formats such
as XATF [25] used by OpenAD and AD applied to assembly code [11]. A large
collection of AD software tools can be found on the AD community’s web portal
www.autodiff.org in addition to an extensive bibliography and links to related
workshops/conferences.

As of today, there is no source transformation tool offering full support for
the C++ programming language. This gap is mostly due to the outstanding
complexity and (type) genericity of C++. It is filled by overloading solutions.
The dco/c++ AD tool falls into the same category.

Most modern AD tools for C++ make extensive use of template metapro-
gramming techniques to defer certain semantic transformations to compile time
(e.g., the preaccumulation of local gradients of right-hand sides of scalar as-
signments using expression templates [41]) yielding a hybrid source transfor-
mation/overloading approach. The gap in terms of performance between pure
source transformation and this hybrid method for C++ is decreasing. Further
progress in the development of the C++ programming language and correspond-
ing compiler technology can be expected to enforce this tendency. Hence we con-
sider a combination of overloading and template metaprogramming supported
by multithreading and powerful application programming interfaces (API) as
the method of choice for AD tool support in C++.

dco/c++ has been applied successfully to a number of relevant numerical sim-
ulation codes including applications from computational fluid dynamics [45, 46],
chemical engineering [19, 20], atmospheric science [47, 31], and computational
finance® [36]. A proper introduction of the tool has been missing so far. This
paper aims to fill this gap. Its focus is on giving an overview of the functionality
offered by dco/c++ in Sec. 2 and a more detailed discussion of selected unique
features that turned out extremely useful in actual applications in Sec. 3.

The development of dco/c++ has been driven by requirements due to the
previously outlined target codes. Financial applications, in particular, pose
several challenges shaping the set of functionalities and the design of the user
interface. Most features provided by modern C++ can be dealt with. Experience
with other AD overloading tools suggests that this is not generally the case.
Indeed we are not aware of any modern C++ construct that dco/c++ cannot
handle. However, as of today, we cannot claim full coverage of all features by
our regression test suite either.

A distinguishing feature of dco/c++ is the transparency of its internal rep-
resentation (also referred to as the tape) for computation of adjoints. Through

ldco/c++ is used by several tier-one investment banks under strict non-disclosure agree-
ments.



a well-designed API, users have the opportunity to modify arbitrary details
(data dependencies, local partial derivatives, modes of differentiation). This
level of flexibility has proven crucial for the design of robust and efficient ad-
joint solutions in a real-world setting. It facilitates building up libraries of
user-defined /domain-specific intrinsics, the inclusion of manually derived ad-
joint code and of approximations of derivatives of black boxes, the handling
of non-differentiability /discontinuity through smoothing, and integration of ad-
vanced preaccumulation and checkpointing techniques. References on the use
of individual features can be found in most of the previously cited articles on
applications of dco/c++.

2 Basics

AD tools in general and dco/c++ in particular target implementations of multi-
variate vector functions

y=F(x), xeR", y e R™ (1)

as computer programs. The mathematical formulation of F' in Eqn (1) does
not account for aliasing and overwriting of program variables. A more realistic
formulation of the targeted numerical simulation programs is

= F(x,%,2,2),

i d NN

where x e R™ x e R* ze R% zc R% y ¢ R%, y € RY, and n = dy + d,
m = d, + dy. Equality (=) is replaced by assignment (:=) in the sense of an
imperative programming language such as C++. In addition to pure inputs
(x,%) and pure outputs (y,y) there are program variables serving as both (z, z)
with their input values potentially overwritten by the given implementation of F.
We distinguish between active (x,z,y) and passive (X,z,y) variables. Standard
AD terminology refers to variables with structurally non-zero derivatives as
active. Variables are referred to as passive otherwise. See [22] for details from
a static program analysis perspective.

Obviously, signatures of real-world numerical simulations in C++ can become
arbitrarily complicated involving, for example, pointers, references to instances
of complex class hierarchies, and type-generic arguments. However, most con-
ceptual challenges in AD (and in adjoint AD in particular) can be attributed to
aliasing and overwriting. In the following, we write y := F(x) when referring
to given implementations of Eqn (1). We call them primal numerical simulation
programs or simply primals. Parts of x and y can be aliased (yielding z) unless
stated otherwise. The numerical programs under consideration are assumed to
be k times continuously differentiable whenever derivative models of up to order
k are discussed. Note that mere differentiability of the underlying function F



does not imply differentiability of the given implementation. For example, the
primal

float F(float x) { if (x==0) return 0; return x; }

implements the continuously differentiable function y = F(x) = x with unit
derivative everywhere. An algorithmically differentiated version yields a van-
ishing derivative at z = 0.

We use notation from [34] for the description of first and higher derivative
models. Let J = ‘fl—i(x’ ) for a given x’ € R". A matrix-free projection of
J € R™*™ in direction v € R" is denoted as (J,v) = J - v. Such directional
derivatives (tangents for short) are implemented by first-order tangent versions
of y := F(x). The latter can be generated by tangent (also: forward) mode AD.

A matrix-free projection of J in direction u € R™ is denoted as (u,J) =
JT - u. Such adjoint derivatives (adjoints for short) are implemented by first-
order adjoint versions of y := F'(x), which can be generated by adjoint (also:
reverse) mode AD.

The projection notation generalizes naturally to second- and higher-order
tangents and adjoints of sufficiently often continuously differentiable numerical
fj;E (x') for a given x’ € R". The 3-tensor H €
is an m-vector of symmetric (n X n)-matrices. Its first-order matrix-
free projection in direction u € R™ is denoted as (u, H) and yields a symmetric
(n x n)-matrix as a linear combination of the m vector elements. Multiplication
of the latter with a vector v € R" yields a second-order matrix-free projection
of H in directions u € R™ and v € R" as (u, H,v) = ((u, H),v).

Alternatively, the 3-tensor H can be regarded as an n-vector of (m x n)-
matrix. Consequently, its first-order matrix-free projection in direction v € R"”
is denoted as (H,v) and yields an (m x n)-matrix as a linear combination of
the m vector elements. Multiplication of the latter with a vector w € R"
yields a second-order matrix-free projection of H in directions v,w € R" as
(H,v,w) = ((H,v),w). Symmetry within H implies (H,v,w) = (H,w,V)
(commutativity of tangent projection) ((u, H),v) = (u, (H,v)) (associativity
of tangent and adjoint projections) ((u, H),v) = (v,(u, H)) (equivalence of
second-order tangent and adjoint projections).

Matrix-free projections of third and higher derivative tensors follow natu-
rally. dco/c++ supports tangents and adjoints of first and higher order through
recursive template instantiation. Arbitrary combinations of matrix-free tangent
and adjoint projections can be computed, which makes dco/c++ well suited for
illustration of the mathematical concepts behind AD in a classroom environ-
ment.

simulations. Let therefore H =
RanXn

2.1 Sample Numerical Programs

Our choice of sample applications is driven by three requirements.

1. Examples should be representative for real-world applications featuring



practically relevant code and data flow patterns exhibited by many nu-
merical simulations.

2. The implementation should be simple enough to make a detailed discussion
of the source code feasible.

3. The simulations should be scalable in terms of computational cost to allow
for runtime comparison of various scenarios.

Development and maintenance of dco/c++ as well as of further AD software so-
lutions (see Sec. 4) is driven by the Numerical Algorithms Group Ltd. (NAG)?,
Oxford, UK in collaboration with the Software and Tools for Computational
Engineering (STCE) group® at RWTH Aachen University, Aachen, Germany.
A user guide with details on the full range of functionalities of dco/c++ can be
found on

https://www.nag.com/downloads/impl/dco-summary.html .

The numerous example programs referred to in the following can be found on
the dco/c++ research website

https://github.com/numericalalgorithmsgroup/dco_cpp

Reproduction of the numerical results requires a (trial) license for dco/c++. Li-
censing and distribution is organised by NAG.

2.1.1 Burgers Equation
We consider the numerical solution of the 1D Burgers Equation [7]

dy _ d’y dy

@ =2 Y @
over the unit square defined by ¢ € [0,1] and « = [0,1]. For a given initial
condition on the state y = y(t, z), for example, y(0,2) = sin(2rz), and fixed
vanishing boundary conditions we use central finite differences combined with
upwinding in space and backward finite differences in time yielding an implicit
Euler scheme implemented as

Listing 1: Type-generic primal Burgers code
// ... global passive read-only data

template <typename T>
void burgers(vector<T>& y) {
for (int j=0;j<m;j++) {
vector<T> yp=y;
newton(yp,y);
}
}

2nag. co.uk
3www.stce.rwth-aachen.de



1 04
Sox Y
08 0
05
02
04
02 01
3 o
02 o1 \
%
02 \
05 \
08 03
a 04
0 o1 o0z 03 o0a 05 o0s 07 08 o0s 1 0 o1 o0z 03 o4 05 05 07 08 09 1

(a) (b) ()

Figure 1: Burgers equation: Initial condition y° € R" (a), solution y™ € R"
(b) and Jacobian of the solution with respect to the initial condition within the
interior domain.

with type-generic discrete state vector y* of size n holding the discrete initial
condition y° € R" (see Fig. 1(a)) as input and the approximate discrete solution
y™ € R" (see Fig. 1(b)) as output for given viscosity v and m time steps per-
formed. Individual Euler steps are computed as solutions of nonlinear systems
using Newton’s method in L1:7;% see Sec. 3.1 for further details. Experiments
are run for the shock-free scenario v=0.01. All passive read-only data (n, m, v) is
declared globally yielding easier to follow source code listings due to simplified
signatures of the routines called. Refer to [39] and to references therein for a
more detailed discussion of the Burgers equation.

To illustrate the features offered by dco/c++ we consider derivatives of the
approximate discrete solution with respect to the discrete initial condition, in-
cluding projections of the Jacobian matrix

dy?
and of the Hessian tensor
H— d2ym c RXxn
dyO2 )

For example, Fig. 1 (c¢) shows a 3D-plot of the whole Jacobian. Finite difference
(FD) approximation of derivatives is used as a method for potential validation
of derivatives returned by dco/c++ whenever possible. Closely matching val-
ues typically indicate success. The negation of this statement does not apply
in general due to the well-known numerical instability of FD in finite preci-
sion floating-point arithmetic. We observe a good correspondence between first
derivatives obtained by double-precision AD and FD for all our test problems.
Higher precision arithmetic is used® to obtain reliable FD approximations of
higher derivatives.

4Depending on the context we use the mathematical, e.g., y, and source code listing
notations, e.g., y interchangeably.

5We reference line i in Listing k by Lk:i. Sequences of lines i to j in Listing k are denoted
by Lk:i—j. Sets of nonconsecutive lines i1, ...,4; in Listing k are denoted by Lk:iy,...,1;.

5We use ARPREC [1] developed at Lawrence Berkeley National Laboratory.



10

11

12

When comparing runtimes of the various derivative codes we typically report
values for their computational cost (runtime) relative to an optimized implemen-
tation of the primal. For example,

. COSt(F(l))

Cost(F) 3)

denotes the relative runtime of an adjoint version F{;) of a primal F. All tests are
performed on an Intel Xeon E5-2630 with 128GB of main memory and running
Linux. For n = 10% and m = 10%, the runtime of the primal Burgers code is
1.0s.

Reported results of runtime measurements should be considered as qualita-
tive. Experience shows that they can be sensitive to the choice of computation
environment including hardware specifications, system software and compiler
version. Qualitative statements can be expected to remain valid.

2.1.2 LIBOR Market Model

As a second case study, we consider the LIBOR” market model introduced in [6]
and used in [12] as an illustration of the benefits of adjoint AD for simulations
in finance. Over recent years adjoint AD has gained significant importance in
computational finance driven mainly by increasing gradient sizes in the context
of XVA calculations and documented by a large number of related publications,
e.g., [40, 32].

The LIBOR sample code simulates the payoff P € R of a portfolio of swap-
tions with given swap rates and maturities. Swaps of the floating forward rate
L € R" and a given fixed swap rate are considered. The primal shown in List-
ing 2 is generic in the data type of the active in- (L) and outputs (P) (L2:3-4).
Again, all passive read-only data (n,m,p, LIBOR interval, volatility, maturities,
swap rates) is declared globally. We use dco/c++ to compute the gradient of the
payoff with respect to the initial LIBOR rates.

Listing 2: Type-generic primal LIBOR code
// ... global passive read-only data

template<typename T>
void libor(const vector<T>& L, T& P,
const vector<vector<double>>& Z) {
T Ps=0;
for (int j=0;j<p;j++) {
vector<T> Lc(L);
path_calc(j,Lc,Z);
portfolio(Lc,P);
Ps+=P;
}

"London Interbank Offered Rate



13

14

10

11

12

13

14

15

16

17

18

P=Ps/p;
}

Monte Carlo simulation with a normally distributed random variable Z € RP*™
performs p path calculations evolving L for m time steps. Path simulations
(L2:9) are performed on local copies (L2:8) of the initial LIBOR rates. The
payoff of each scenario is evaluated (1.2:10) followed by summing up individual
payoffs (L2:11) for subsequent averaging over all paths (L2:13).

Refer to [13] for further discussion of the mathematical details behind the
LIBOR market model. All numerical results obtained by our implementation
were validated against the implementation used in [12] and available from Giles’
website® at the University of Oxford, UK. The runtime of p = 10* primal Monte
Carlo path simulations is 1.9s.

2.2 First-Order Tangents

In tangent mode directional derivatives are computed alongside with function

values as <y%’1)) e (x,x(l)) _ <<($§(ﬁm>) ) (4)

We mark first-order tangent versions of program variables by the superscript
(1). To implement Eqn. (4) a generic tangent 1%*-order scalar type is provided
by dco/c++. Its use is illustrated in Listing 3.

Listing 3: First-order tangents with dco/c++

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

#include "burgers.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_T;

int main() {
vector<DCO_T> y(n);
for (int i=1;i<n-1;i++) y[i]l=sin(2*PI*i/n);
dco::derivative(y[24])=1;
burgers(y) ;
vector<double> yp(dco::value(y)), dydy_v(dco::derivative(y));
// ... output and return

8people.maths.ox.ac.uk/gilesm/codes/libor_AD



All dco/c++ data types, overloaded arithmetic operations and support functions
are declared in the C++ header file dco . hpp included in L3:8. They are members
of the namespace dco. Differentiation modes are generic with respect to their
base types. Instantiation with a non-derivative type such as double yields a
first derivative mode. AD by overloading is enabled by switching the types of
all active program variables to the data type type associated with each mode.
We use the shortcut DCO_T for derivative types provided by dco/c++ (L3:9).

The primal in burgers.h included in L3:6 is fully generic with respect to
the type of its active variables; here the state y declared as a C++ vector of
type DCO_T in L3:12 and initialized in L3:13. PI implements a sufficiently accu-
rate approximation of 7. All passive read-only variables are declared globally in
burgers.h as outlined in Sec. 2.1.1. The initial directional derivative is set equal
to the 25'"" Cartesian basis vector? in R™ (L3:14). A single overloaded evalu-
ation of the primal in L3:15 yields the 25" column of the Jacobian alongside
with the final primal state. Both are stored in corresponding vector variables
in L3:16. Their values are printed for subsequent validation. Special read-
/write access routines for function values (dco::value(...)) and derivatives
(dco::derivative(...)) are provided.

The entire Jacobian can be accumulated column-wise by letting the initial
tangent range over the Cartesian basis in R" yielding a computational cost of
O(n) - Cost(F'). The cost of a single tangent evaluation relative to an optimized
primal typically ranges between 1.5 and 2.5 depending on specifics of the given
implementation. A generic tangent 15*-order vector type is provided by dco/c++
to compute several directional derivatives simultaneously. Its use is illustrated
in the following by the computation of the gradient for the LIBOR case study.
Improvements in runtime can be expected due to avoiding repeated evaluation of
partial derivatives of all operations and better support for vectorization provided
by the hardware and system software. For the given problem size we observe a
reduction of the runtime for accumulation of the Jacobian of the Burgers case
study by a factor of three when switching to gt1v mode. The corresponding code
and further relevant examples are collected on the dco/c++ research website.

To avoid misunderstanding due to overloaded meanings of the term “deriva-
tive” in computational finance derivatives are referred to as greeks and denoted
by corresponding greek letters. For example, in the LIBOR case study, the
gradient of the payoff with respect to the initial LIBOR rates is also known as
delta. Its accumulation in tangent mode requires n directional derivatives in
the corresponding Cartesian basis directions to be evaluated. For n = 80 and
p = 10* Monte Carlo paths, the scalar (gtls) version takes more than 136s
while the corresponding vector (gtlv) version completes the same job in less
than 60s.

Listing 4: Gradient for LIBOR in first-order tangent vector mode
// ... stdlib

9Vector entries in C++ are interpreted as offsets into arrays. Hence the it? element carries
index ¢ — 1.



10

11

12

13

14

15

16

17

18

19

20

21

#include "libor.h"

#include "dco.hpp"
typedef dco::gtlv<double,n>::type DCO_T;

int main() {
vector<DCO_T> L(n,0.05); DCO_T P=0;
srand(0); default_random_engine generator(0);
normal_distribution<double> distribution(0.0,1.0);
vector<vector<double>> Z(p,vector<double>(m));
for (int j=0; j<p;j++)
for (int i=0;i<m;i++)
Z[j1[1]=0.3+distribution(generator) ;
for (int i=0;i<n;i++) dco::derivative(L[i]) [i]l=1;
libor(L,P,Z);
vector<double> dPdL(n,0);
for (int i=0;i<n;i++) dPdL[il=dco::derivative(P) [i];
// ... output and return
}

Random numbers are generated in L4:10-15. The length of the derivative vec-
tor is passed as a compile-time parameter to the gtiv template (L4:6). Here
we choose to set it equal to the number of directional derivatives to be evalu-
ated yielding implicitly a product of the gradient with the identity in R"™. The
optimal choice of this compile-time parameter depends on hardware specifics
and may require some experiments. Vectors of length n are returned by the
derivative access routine in vector mode. Offset dereferencing is used to ac-
cess the individual components; see 1.4:16 and 1.4:19.

The accumulation of Jacobians as sequences of directional derivatives in
tangent (vector) mode turns out to be trivially parallel. Multithreaded (using
OpenMP) tangent versions of the Burgers code can be found on the dco/c++
research website.

2.3 First-Order Adjoints

A first-order adjoint version of y := F'(x) augments the primal computation with
incrementation of given adjoints x(;) € R" of the inputs x with the product
of the transposed Jacobian with a given vector of adjoints y;) € R™ of the
outputs y as

<X3<yl>) = Fo oxw,yw) = (X(l) + <§<(i?f§f:(><)>> ' )

First-order adjoint versions of program variables are marked by subscript (1).
The entire Jacobian can be accumulated row-wise by letting the adjoints of the
primal results range over the Cartesian basis in R™ yielding a computational

10



r:=2
y:=1
2= (2 +y) -y
frnd . P
y=x-y ‘tmp:‘&l\\:}
r:=3-7 Lo
. N
17 TN
4 \\
0:2=2 ’1:.7/:1‘

zgl) 1\ /1 1 1\ (%) 0\ /0\ /0\ /0
Yo ol o 0 o || v i (1] 1] |1
z‘fl) =(ol. 3. |3].[3|lzy| =10, [1] |1 |1
v of lof (12| |12 ol |3 7] |7
20 0/ \o 0 3/ \al, o/ \o/ \o/ \1

Figure 2: Internal representation used by dco/c++ in adjoint mode for the given
example (a): tape without statement-level gradient preaccumulation (b); tape
with statement-level gradient preaccumulation (c); (comma-separated) evolu-
tion of vector of adjoints for computation of second row of Jacobian (d); evolu-
tion of vector of adjoints for computation of first row of Jacobian (e);

11



cost of O(m) - Cost(F). A single algorithmic adjoint evaluation typically ex-
hibits a relative runtime more than three optimized primal function evaluations
depending on the specifics of the given implementation. The reduction of the
runtime overhead is one of the dominating challenges in adjoint AD. Insufficient
memory resources may result in failure to evaluate algorithmic adjoints. Real-
istically this scenario is more common than one would like. Naive application
of adjoint mode to practically relevant problems is almost certainly going to
exceed the given memory bound. User expertise is required to make adjoints
work in general. A feasible solution can always be constructed.

A simple example (n = m = 2) illustrating the algorithm employed by
dco/c++ to implement Eqn. (5) is shown in Fig. 2. A tape (Fig. 2 (c)) is recorded
storing information on data dependences (visualized as a directed acyclic graph;
dag) and local partial derivatives (visualized as edge labels). We use statement-
level gradient preaccumulation implemented efficiently by template metapro-
gramming [41]. The dag of the statement x := (x +y)-y marked by dashed lines
in Fig. 2 (b) is replaced by the local gradient yielding the final tape in Fig. 2 (c).
For given adjoints of the active outputs (instances of y and z associated with
vertices 3 and 4, and their adjoints denoted as y?l) and x‘(ll), respectively) in-
terpretation of the tape over an associated vector of adjoints yields a linear
combination of the rows of the Jacobian. In Fig. 2 (e) and (d) we illustrate the
propagation of both Cartesian basis vectors in R” as a comma-separated list of
states of the vector of adjoints. During a last-in-first-out traversal of the vertices
v® in the dag (e.g., i = 4,...,0), adjoints associated with all predecessors are
incremented with the product of vfl with the local partial derivative labelling
the corresponding edge. The resulting Jacobian entries are highlighted.

The distinction between tape and associated vector of adjoints enables sep-
aration of sequentially (tape) and nonsequentially (vector of adjoints) accessed
data. Recording typically dominates the computational effort in comparison to
interpretation as supported by results in Sec. 2.7. Moreover, decomposition of
the internal data structure allows the allocation of several vectors of adjoints
and their parallel interpretation as described in Sec. 3.2.2.

To implement Eqn. (5) dco/c++ provides a generic adjoint 1%°-order scalar
type defined in dco.hpp. Refer to Listing 5 for illustration in the context of the
Burgers case study.

Listing 5: First-order adjoints with dco/c++
// ... stdlib

#include "burgers.h"

#include "dco.hpp"

typedef dco::gals<double> DCO_M;
typedef DCO_M::type DCO_T;
typedef DCO_M::tape_t DCO_TAPE_T;

int main() {

12



11

12

13

14

15

16

17

18

19

20

21

22

23

// ... L3:12-13
DCO_M: :global_tape=DCO_TAPE_T::create();
DCO_M: :global_tape->register_variable(y) ;
vector<DCO_T> yc(y);
burgers(yc) ;
DCO_M: :global_tape->register_output_variable(yc[25]);
dco::derivative(yc[25])=1.;
DCO_M: :global_tape->interpret_adjoint();
vector<double> v_dydy(dco::derivative(y));
cerr << dco::size_of (DCO_M::global_tape) << "B" << endl;
DCO_TAPE_T: :remove (DCO_M: :global_tape) ;
// ... output and return

¥

As in tangent mode, all active program variables need to be redeclared. The
new type (shortcut: DCO_T) is defined as part of the adjoint mode (DCO_M)
over a passive base type (here: double); L5:6-7. A tape type is associated
with adjoint mode (DCO_TAPE_T; L5:8). An instance is created in L5:12 to
record all information required for the evaluation of Eqn. (5). Recording is
triggered by overloaded operations on previously recorded arguments. Hence,
all independent inputs need to be recorded (also: registered with the tape)
explicitly (L5:13). Results of overloaded operations are recorded automatically.

All independent inputs (y) must be read-only in order to ensure correct
access to their adjoints in L5:19. The evolution of the state is therefore per-
formed on a copy yc (L5:14). The value of the final state can be extracted
from yc following the call to the overloaded primal (L5:15). Active outputs
need to be registered explicitly (L5:16) to ensure correct computation of their
adjoints despited possible reuse in subsequent computations. This scenario is
not illustrated by the given example, where line 16 could in fact be omitted.
Nevertheless, we advise users of dco/c++ to register active outputs in order to
avoid potential trouble in less obvious situations.

We chose to compute the gradient of the 26" entry of the final state with
respect to the initial state by setting the adjoint final state equal to the cor-
responding Cartesian basis vector (L5:17). Derivative components of active
program variables of dco/c++ adjoint type are guaranteed to be equal to zero
prior to their first use. Interpretation of the tape in L5:18 yields adjoints with
machine accuracy. Function values match the ones obtained in tangent mode.
The adjoints are entries of the 26" row the Jacobian which intersects with the
25" column computed in Sec. 2.2 in its 25" element. Numerical results can be
validated by running the tangent and adjoint versions of the Burgers case study
provided in the dco/c++ research website. The size of the tape in bytes can be
recovered for diagnostics (L5:20). Deallocation of the tape requires the calling
of a dedicated routine (L5:21).

The current version of dco/c++ supports three kinds of tapes. A “blob tape”
allocates a specified amount of main memory for recording and interpretation
at maximum speed. It is up to the user to ensure that sufficient tape memory

13



10

11

12

13

14

16

17

18

is allocated; an exception is raised otherwise. Improved robustness comes with
the “chunk tape”. It allocates chunks of main memory of specified size up to the
limit of the physical memory available. A slight runtime overhead is induced
by chunk management. Chunks can be written to and read from the hard disc
when using a “file tape.” The resulting increase in tape memory comes at the
expense of a further decrease in computational efficiency. However, it allows
“brute force” evaluation of adjoints of larger problem instances at no extra
development cost. This feature proves advantageous for debugging during the
development and for validation of more sophisticated solutions.

In Listing 5 a global tape was used. Thread-safe adjoint simulations require
thread-local tapes supported by dco/c++ through its galsm mode allowing for
multiple tapes to be allocated. Built-in varied (also: forward activity) analysis
[22] can help reduce the size of the tapes. An adjoint vector mode is also
available. Refer to the dco/c++ user guide for further information.

For the LIBOR case study, a single evaluation of the adjoint consisting of
tape recording (L6:9-12) and interpretation (L6:13-14) gives the entire gradient
extracted in L6:15.

Listing 6: Gradient for LIBOR in first-order adjoint mode
// ... stdlib

#include "libor.h"
// ... L3:6-8

int main() {
vector<DCO_T> L(n,0.05); DCO_T P=0;
// ... random number generation
DCO_M: :global_tape=DCO_TAPE_T::create();
DCO_M: :global_tape->register_variable(L) ;
libor(L,P);
DCO_M: :global_tape->register_output_variable(P);
dco::derivative(P)=1;
DCO_M: :global_tape->interpret_adjoint();
vector<double> dPdL(dco::derivative(L));
DCO_TAPE_T: :remove (DCO_M: :global_tape) ;
// ... output and return

}

For n = 80 and p = 10* Monte Carlo paths, the above returns the gradient after
less than 3s yielding a speedup by a factor of roughly 30 compared to tangent
vector mode.

In Fig. 2.3 we compare (total) runtimes for gradients of the midpoint of the
solution of Burgers’ case study with respect to the initial condition. The rela-
tive computational costs of all three tangent versions considered scale linearly
with the number of active inputs while the relative cost of the adjoint remains
essentially constant.

14



Figure 3: Race: We com-
pare runtimes (in seconds)
for gradients of the mid-
point of the solution of
Burgers’ case study with re-
spect to the initial condition

100 } | gtls ——gtlv
——gtls_.omp —e—gals

% 10 for m = 1000 implicit Euler
g steps and n = 100,...,500
= spatial grid points. Four
é 1 dco/c++ modes are con-

sidered: Scalar tangent
mode (gtls), vector tangent
‘ mode with vector length n

%00 ] 400 (gt1v), parallel scalar tan-
Problem size [n] gent mode with OpenMP
on four threads (gtls_omp),
scalar adjoint mode (gals).

100

Similar to tangent mode dco/c++ features a generic adjoint 15%-order vector
data type (galv). The accumulation of Jacobians as sequences of adjoints in
adjoint (vector) mode is also trivially parallel. See Sec. 3.2.2 for discussion of a
corresponding solution with dco/c++.

2.4 Second-Order Tangents

Application of tangent mode to a first-order tangent code yields a second-order
tangent code for evaluating

y
2
Yéli = p12) (X,X<2>7X<1>7X(1,2>)
y
F(x) (6)
<dF x X(2)>

Il
[
—~~

Tangent versions of program variables due to the application of tangent mode
to first derivative code are marked by superscript (2). We set v(D(2) = ¢(1,.2),
When implementing Eqn. (6) with dco/c++ both the computation of the function
value and of the first directional derivative are augmented with their respective
directional derivatives yielding two first derivatives y") and y(®) and a second
derivative y(12) alongside the function value y. Extraction of pure second deriva-
tive information requires x(1:?) = 0 on input. Individual entries y(1:?) € R™ of
the Hessian can be obtained by setting x() and x) equal to the corresponding

15



10

11

12

13

14

16

Cartesian basis vectors yielding a computational cost of O(n?) - Cost(F) for the
accumulation of the whole Hessian.

To illustrate the use of dco/c++ in second-order tangent mode we compute

d2 m
oy 5~ €R"
dyz4dyszs

for the Burgers case study in Listing 7.

Listing 7: Second-order tangents with dco/c++
// ... stdlib

#include "burgers.h"

#include "dco.hpp"
typedef dco::gtls<double>::type DCO_BT;
typedef dco::gtls<DCO_BT>::type DCO_T;

int main() {
// ... L3:12-13
dco::value(dco: :derivative(y[24]))=1;
dco::derivative(dco: :value(y[25]))=1;
burgers(y);
vector<double> ddydyy_v_v(dco::derivative(dco::derivative(y)));
// ... output and return
}

A dco/c++ first-order tangent type is defined over a base type DCO_BT. Set-
ting this base type equal to a first-order tangent type over double yields a
second-order tangent type (L7:6-7). The data access pattern is illustrated in
Fig. 4 (a). Recursive template instantiation results in a data type with four
elements of type double. Access to them is provided by corresponding nested
calls to dco::value(...) and dco::derivative(...). For example, a call
of dco::derivative(v) on a variable v of second-order tangent type returns
its derivative component v(!). Calling dco: :derivative(v(!)) on this variable
of first-order tangent type yields v(:?). The value of vV can be extracted by
calling dco: :value(v(l)). In Fig. 4 the order of a variable is determined by
its distance from the leaf nodes of the tree. For example, the intermediate v
represents a first-order tangent type while its successor with the same label is
the actual value (“O'" derivative”).

Consequently, ) is set equal to the 25" Cartesian basis vector in L7:11
followed by setting y(!) equal to the 26" Cartesian ;basis vector in L.7:12. The

g2y

dyg;;lygs
matching size n in L.7:14. Code for the accumulation of the whole Hessian tensor
is easily derived from Listing 7.

As one of the greeks the Hessian of the payoff with respect to the initial
LIBOR rates is also referred to as gamma. Its accumulation shown in Listing 8

stored in a vector of

overloaded primal called in L7:13 yields y(1?) =

16



10

11

12

13

14

15

16

17

18

19

20

21

22

value derivative value derivative
v @) v V(1)
value’/ \derivat ive value’/ \derivat ive valu(i/ \:16rivative valu(i/ \:16rivat ive
v 0@ e L(12) v 2@ v(1) o)

(a) (b)

Figure 4: Data access in second-order (tangent over) tangent (a) and (tangent
over) adjoint (b) types provided by dco/c++

takes (";‘1) evaluations of the primal model overloaded for second-order tangent
dco/c++ types.

Listing 8: Hessian of LIBOR in second-order tangent mode
// ... stdlib

#include "libor.h"
// ... L7:5-7

int main() {
vector<DCO_T> L(n,0.05); DCO_T P=0;
// ... random number generation
vector<vector<double> > ddPdLL(n,vector<double>(n,0));
for (int i=0;i<n;i++) {
dco::value(dco: :derivative(L[i]))=1;
for (int j=0;j<=1i;j++) {
dco::derivative(dco::value(L[j]1))=1;
libor(L,P);
ddPdLL[i] [j1=ddPdLL[j] [i]
=dco: :derivative(dco: :derivative(P));
dco::derivative(dco::value(L[j]))=0;

}

dco::value(dco: :derivative(L[i]))=0;
}
// ... output and return

3

With x = L € R" the input directions x() and x(® are set to range inde-
pendently over the Cartesian basis vectors in R", respectively (L8:11,19 and
L.8:13,17). All derivative components of the second-order tangent variables are
guaranteed to be equal to zero following construction (L8:7). The symmetry of

17



the Hessian is exploited (1.8:12,15-16). The overloaded LIBOR model is eval-
uated for each of the > k = ("#') relevant combinations of x(*) and x(?).
With y = P € R the resulting second-order tangent projection y(*2) of the Hes-
sian contains h; ; = h;; (L8:15). Resetting x§-2) =0 (L8:17) and %(1) =0 (L8:19)
ensures correct (re)seeding with Cartesian basis vectors. Note that x = L is not
modified by the 1ibor function which makes selective resetting of its derivative
components feasible. If x was modified, then all derivative components of all
its entries would have to be reset to zero to ensure correct seeding prior to each
overloaded call to libor.

For the given scenario (see Sec. 2.2) the total runtime of Hessian accumu-
lation in second-order tangent mode adds up to more than 4 hours. A similar
runtime is observed when using central finite difference approximation in double
precision. Combinations of gtls and gtiv types are possible. Multithreading
can be applied to speed up the computation. Still the overall runtime remains
unsatisfactory.

2.5 Second-Order Adjoints

Application of tangent mode to a first-order adjoint code yields a second-order
adjoint code for evaluating

y
(@)
y R ) (2) ©) (2)
Xglg : F(l) <X7X aX(1)7X(1)7y(1)7Y(1))
2
X
(7)
F(x)
dF
(45 (x),x)

(1) + (Y, G (%)
2 2 2
XElg + <y(1), %(x)7x(2)> + <yglg, %(X)>
As before, we use the superscript (2) to mark tangent versions of program
variables due to the application of tangent mode to a first derivative code (here:
first-order adjoint code). To implement Eqn. (7) with dco/c++ the computation
of the function value and of the first-order adjoint are augmented with their

first derivatives yielding y® and Xg; as directional derivatives of y and x(q)

in direction x(?), respectively. Extraction of pure second derivative information
from X% requires xgg = yg; = 0 on input. Individual columns (ng e R"™)
of the Hessian are obtained by setting y(;) and x(?) equal to the corresponding
Cartesian basis vectors yielding a computational cost of O(m - n) - Cost(F)
for accumulation of the whole Hessian. Fig. 5 illustrates second-order adjoint
mode implemented as tangents of adjoints as in Eqn. (7) for the same simple
example used in Fig. 2. Directional derivatives in direction (x(2),y(2))T are
stored alongside function values and local partial derivatives yielding value pairs
labelling the vertices and edges in the dag shown in Fig. 5 (b). Statement-level

18



T =2
y:=1
ri=(r+y)-y

— . r,,,\,,\,
y=zy \tmp:(S,Z)\‘\(S.l)
r:=3-x

S T YT

. N
(1,0),7 (1,0} ©
7 \

N

0: z=(2,1) ’]:y:(l,])‘ ’ 0: x

(a) (b) (c)

”3§1> (1,0)\ /(1,0)\ /(1,0) (1,0)
Y1) (1,0) (1,0) (1,1) (1,1)
.CE(21) = (Ov O) ’ (37 0) ’ (47 1) ) (47 1)
o) 0.0 | 1©0)| |35 | @921
2] \wo) \eo) \0o) \us

Figure 5: Internal representation used by dco/c++ in second-order adjoint mode
for the given example (a): tape without statement-level gradient preaccumu-
lation (b); tape with statement-level gradient preaccumulation (c); (comma-
separated) evolution of vector of first- and second-order adjoints for computation
of Hessian projection (below the horizontal line)

19



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

preaccumulation yields the local gradient for  := (x 4+ y) - y and the product
of the local 2 x 2 Hessian with the vector (z(?),y?)”. For given adjoints y?l)
and 1’41 of the active outputs and assuming vanishing second-order adjoints
interpretation of the tape yields a second-order projection of the Hessian tensor
in directions (z(1),y1))” and (z(?,y)7. The evolution of the corresponding
vector of first- and second-order adjoints is shown in the bottom part of Fig. 5.
During a last-in-first-out traversal of the vertices v?, entries of the resulting
Hessian projection are highlighted.
To illustrate the use of dco/c++ in second-order adjoint mode we compute

d?y5t

cR"
dy9,dy®

for the Burgers case study in Listing 9.

Listing 9: Second-order adjoints with dco/c++
// ... stdlib

#include "burgers.h"

#include "dco.hpp"

typedef dco::gtls<double>::type DCO_BT;
typedef dco::gals<DCO_BT> DCO_M;
typedef DCO_M::type DCO_T;

typedef DCO_M::tape_t DCO_TAPE_T;

int main() {
// ... L3:12-13
DCO_M: :global_tape=DCO_TAPE_T: :create();
DCO_M: :global_tape->register_variable(y);
dco::derivative(dco: :value(y[24]))=1;
vector<DCO_T> yc(y);
burgers(yc) ;
DCO_M: :global_tape->register_output_variable(yc[25]);
dco::derivative(yc[25])=1.;
DCO_M: :global_tape->interpret_adjoint();
vector<double> v_ddydyy_v(dco::derivative(dco::derivative(y)));
DCO_TAPE_T: :remove(DCO_M: :global_tape) ;
// ... output and return

}

The first-order adjoint version of the Burgers case study is overloaded for a
first-order tangent base type over double in L9:6-7. Creation of the tape and
registration of the initial state as active input is similar to the first-order adjoint
(L9:13-14). The direction x? is set equal to the 25" Cartesian basis vector in
L9:15. Recording of the tape (L9:17) is again performed on a copy yc of the state
(L9:16) to ensure correct access to the first- and second-order adjoints of the

20



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

initial state in 1.9:23. Both the function evaluation and its derivative in direction
x(?) are recorded. The adjoint final state is set equal to the 26'* Cartesian basis
vector (1.9:19) prior to interpretation of the tape (1.9:20), that is, propagation
of adjoints of the function evaluation and of its directional derivative. Access to
the individual elements of second-order adjoint variables follows the same logic
as the second-order tangent version. It is illustrated in Fig. 4 (b). Within the
Hessian tensor

41 dyOdyO

H:( )k — dem E]Rnxnxn

the second-order tangent and adjoint results intersect in element hgi%. The
correctness of the numerical results can be verified by running the sample codes
provided on the dco/c++ research website.

Accumulation of the entire Hessian for the LIBOR example takes n evalu-
ations of the second-order adjoint routine with P(;) = y(;) = 1 and L) = x(?
ranging over the Cartesian basis vectors in R™ as shown in Listing 10.

Listing 10: Hessian of LIBOR in second-order adjoint mode
// ... stdlib

#include "libor.h"
// ... L9:5-9

int main() {
vector<DCO_T> L(n,0.05); DCO_T P=0;
// ... random number generation
DCO_M: :global_tape=DCO_TAPE_T::create();
DCO_M: :global_tape->register_variable(L);
DCO_TAPE_POSITION_T tpos=DCO_M::global_tape->get_position();
vector<vector<double> > ddPdLL(n,vector<double>(n,0));
for(int j=0;j<n;j++) {
dco::derivative(dco::value(L[j]))=1;
libor (L,P);
DCO_M: :global_tape->register_output_variable(P);
dco::value(dco: :derivative(P))=1;
DCO_M: :global_tape->interpret_adjoint_to(tpos);
for(int i=0;i<n;i++) {
ddPdLL[i] [jl=dco: :derivative(dco: :derivative(L[i]));
dco::derivative(L[i])=0;
}
dco::derivative(dco::value(L[j]))=0;
DCO_M: :global_tape->reset_to(tpos);

}
DCO_TAPE_T: :remove (DCO_M: :global_tape);
// ... output and return

3

21



Both creation of the tape (L.10:9) and registration of the active inputs (L10:10)
are performed once followed by n recordings and corresponding interpretations
for the different directions x(®) (L10:14). Once allocated tape memory should
be shared amongst the recordings. Repeated registration of the same inputs
should be avoided. Hence, dco/c++ allows to store the tape position of type

typedef DCO_TAPE_T: :position_t DCO_TAPE_POSITION_T

after registration of the active inputs (L10:11) in order to restart taping from
this position (L10:24). Optionally, interpretation can be stopped at this position
(L10:18) to avoid unnecessary visits of tape locations that represent program
variables and have no effect on the propagation of adjoints due to missing ar-
guments.

Subsequent recordings and interpretations require correct re-initialization of
certain variables on the right-hand side of Eqn. (7), namely xg; (L10:21) and

x(?) (L10:23). Note that both ng and x(1y are set equal to zero in L10:21
ensuring optionally correct first-order adjoints in x(; for all n iterations.

As alternatives to the “tangents of adjoints” approach second-order adjoints
can be computed as “adjoints of tangents” as well as “adjoints of adjoints”;
examples can be found on the dco/c++ research website. While both alternatives
turn out to be mathematically equivalent to the “tangents of adjoints” approach
the latter requires handling of nested tapes yielding mostly suboptimal runtime
performance. See [28] for further studies of the various combinations and for an
example where adjoints of adjoints outperform its competitors.

2.6 Higher-Order Tangents and Adjoints

Recursive nesting of first derivative types allows seamless extension of most
dco/c++ solutions to arbitrary order of differentiation. Despite the fact, that
higher-order tangent versions of first-order adjoints are the preferred option
for computing higher-order adjoints in almost all cases arbitrary combinations
of tangent and adjoint types are possible. For example, third-order adjoint
mode can be implemented as an adjoint version of a second-order adjoint model
derived as a tangent version of a first-order adjoint yielding

y = F(x)

dF
2 . /%7 (2)
vy <dx (x),x >

dF
X)) =X +{¥Ya), ch(X)

2
@) ._ @) &2F ) dF
W <y(1)’ dx2(x)’x(2)> i <y(1), T )

22



dF 2 d°F F
X(3) = X(3) + <Y(3)v CZX(X)> + <yé3§’ dXQ(X)’X(Q)> + <X(1’3), dXQ(X)’X(z)>
(2) 2
> ' <X<1’3>’y<1>’ ol )>
@) (2 (2) dF ©) °F
X(s) =Xz + <y<3>’ dx(x)> XY e )
dF 2y d*F
Y(1,3) = y(173) —+ <X(173), dX(X)> + <XE1’)3)7 dXQ(X)7X(2)>

@ . (2 (2) dF
Y = Yot <X(1,3>v dX(X)>

Projections of the third derivative tensor in directions y i), x| and xg

dF?
+ { X(1,3), Y1) @(X)

2)
1,3)
be computed. An implementation of a corresponding third-order adjoint with
dco/c++ can be found on the dco/c++ research website.

can

2.7 Performance

Performance tuning for AD software is typically focussed on first-order adjoint
mode which poses the main challenges. Scalar tangent mode can be expected to
be implemented efficiently in virtually all cases. Preaccumulation based on tem-
plate metaprogramming as employed by dco/c++ typically has a positive effect
on vector tangent mode. The chosen vector length and parallelization strategy
often turn out to have an even stronger impact. Hence, when evaluating a given
vector tangent mode AD solution its quality is more likely to be dependent on
the skills of the user of the given AD software rather than on the software itself.
Experience shows that this claim holds even more for nontrivial real-world first-
and higher-order adjoint solutions requiring substantial user expertise in terms
of understanding the data dependencies within the primal (e.g., for checkpoint-
ing or preaccumulation), its mathematics (e.g., for handling implicit functions)
or the compute environment (e.g., for the inclusion of GPUs!? into a CPU-based
adjoint). A fair comparison of individual AD tools becomes extremely difficult
if not practically impossible in such cases.

The basic performance of adjoint AD software should be measured in terms
of the relative runtime R (see Eqn. (3)) and the amount of memory occupied by
the internally stored data (e.g., tape and vector(s) of adjoints in case of dco/c++).
Reliable comparison among different tools is only possible for relatively small
test cases whose memory requirement stays within the given bounds on the
available main memory. They should be run in basic adjoint mode (inspired by
the “hello world” adjoint examples from the various user guide), not including
any “user tricks.” Having said this, such performance comparisons are of only
limited benefit when it comes to dealing with real-world scenarios. While they
might indicate that a given AD tool yields very efficient adjoint code at a local
scale the challenge of effective use of the wide range of AD methods by the user

10Graphics Processing Units

23



of the tool remains dominant. This observation implies that while the local
performance of AD tools is important their flexibility with respect to diverse
application scenarios is even more so. For example, a runtime factor of two
gained on local sections of the target code is easily lost by choosing the wrong
preaccumulation or checkpointing strategies. A suboptimal API of an AD tool
may complicate the effective use of such methods due to restricted access to
the internal representation or due to unnecessary copying of data. dco/c++
has proven to address such issues effectively in a number of projects. Some
commercial users, in particular, have gone through extensive test periods before
committing to dco/c++.

In the following, we investigate relative runtimes of basic first-order adjoints
generated with dco/c++ and we comment on results obtained with other AD
tools. Target primals are selected according to the previous discussion, that is,
their adjoints can be evaluated on our target computer within the given limits
on the main memory. The following test problems are part of the dco/c++ test
suite:

3D cross-frame field (CoMISo) This code is part of a method for con-
structing a 3D cross-frame field, a 3D extension of the 2D cross-frame field as
applied to surfaces in applications such as quadrangulation and texture synthe-
sis [26]. It consists of approximately 80 straight lines generated by Maple™
[33] with common subexpression optimization switched on. The code is part of
a test case of the software package CoMISo [5].

Lax-Wendroff (LW) and Toon (Toon) Both test problems are described
in further detail in [24], where they were used to test the performance of the
AD tool Adept. Both solve the one-dimensional advection equation

ou ou

o ar

with state u, time t, spatial coordinate x, and the initial state xg as the param-
eter. The equation is solved on an equidistant grid with either Lax-Wendroff
[27] (linear) or Toon [44] (nonlinear) schemes. The discretized cost functional
is given as f(xg) = ||xe(x0)| with final state x..

Burgers’ equation with forward Euler time stepping (Burgers(F))
This code implements the problem from Sec. 2.1.1 using explicit time stepping.

LIBOR market model (LIBOR) This is the code from Sec. 2.1.2.

Burgers’ equation with backward Euler time stepping (Burgers(B))
This is the code from Sec. 2.1.1.

In Fig. 6, we show measurements for three different dco/c++ configurations:
blob tape, chunk tape, and with multiple tape support. Blob and chunk tapes

24



15 |- B recording |-
N interpretation

() ] ] ] ] ]
288 H2% H42 342 i43 i43
s &3 5 5 3 5 5= 5 5= 5 .8 = s 8 =
= = = = = = = X = X = X
B S g S g S g S g S g

g g g g g g
CoMISo LW Toon  Burgers(F) LIBOR Burgers(B)

Figure 6: This figure shows the runtime ratio R for the listed test problems
for different configurations of dco/c++. The blue part corresponds to the tape
recording time while the red part visualizes tape interpretation time.

were described in Sec. 2.3. Multiple tape support allows for a thread-safe use of
several tapes concurrently yielding a larger memory footprint for each program
variable, since an additional reference to the owning tape is required. Multiple
tapes can be either chunk or blob tapes. We use blob tapes in our measurements.

Our in-house performance test framework constantly measures runtime and
memory consumption for other AD overloading tools including ADOL-C!, Cp-
pAD'?, tapescript'®, and Adept.!* The results indicate dco/c++ to be the fastest
tool, followed by Adept (10% ~ 250% slower) and CppAD (200% ~ 500%
slower). ADOL-C and tapescript turn out to be substantially slower on aver-
age. For example, on the Burgers(B) case study, our measurements for dco/c++
(blob tape) suggest a relative runtime of less than 7. Adept is second fastest at
a relative runtime of 19 followed by CppAD (40), ADOL-C (96) and tapescript
(109). Qualitatively we were able to reproduce the observations from [24] for
LW and Toon. The lowest memory consumption is exhibited by dco/c++ (blob
tape) followed by ADOL-C and Adept (30% ~ 250% increase). CppAD and

Hprojects.coin-or.org/ADOL-C

12yww. coin-or.org/CppAD/
13github.com/compatibl/tapescript

1 yww.met . reading.ac.uk/clouds/adept/

25



tapescript require even more memory.

3 Selected Special Features

While Sec. 2 dealt with the basic functionality provided by dco/c++ we dis-
cuss in the following selected special and partially unique features that turned
out particularly beneficial in actual applications. Three important aspects of
algorithmic adjoints are addressed:

1. Flexibility of user interaction with dco/c++ adjoints; Users may want to
or even have to deviate from the standard dco/c++ approach to the eval-
uation of adjoints (taping + interpretation). For example, source may be
missing for part of the primal making numerical approximation by finite
differences and integration into the adjoint data flow a feasible alternative.
An interface for the inclusion of external adjoints is presented in Sec. 3.1
in the context of the Burgers case study. It is used to replace the algo-
rithmic adjoint Newton solver for the implicit Euler step by a symbolic
adjoint version as described in detail in [37].

2. Multithreading; With virtually all modern computer architectures support-
ing shared memory parallelism thread-safe implementations of adjoints
become increasingly relevant. Two scenarios are discussed in Sec. 3.2:

(a) Numerical simulations running in a multithreaded shared memory
environment require adjoint versions. The use of thread-local tapes
is discussed in the context of the LIBOR test case in Sec. 3.2.1.

(b) The evaluation of several adjoints at a given point (for a given tape)
can be done in parallel using several threads over separate thread-
local vectors of adjoints as shown in Sec. 3.2.2 using the Burgers case
study.

3. Tape compression by preaccumulation; In most cases, the often prohibitive
size of the tape is the main limiting factor for applicability of basic dco/c++
adjoints as introduced in Sec. 2.3. In addition to various checkpointing
schemes which can be implemented using the external adjoint interface
(see Sec. 3.1) dco/c++ offers an easy-to-use preaccumulation interface pre-
sented in Sec. 3.3.

3.1 External Adjoint Interface

This section introduces the external adjoint interface provided by dco/c++. It
enables seamless interaction with a dco/c++ adjoint through implementation of
custom adjoints for selected parts of the primal computation and their inte-
gration into the corresponding tape. The external adjoint interface has proven
crucial for the construction of robust and efficient adjoints for various applica-
tions [46, 31, 30]. Its design is driven by the chain rule of differential calculus.

26



Support is provided for various relevant target scenarios including checkpoint-
ing, preaccumulation, approximate adjoints for black boxes, symbolic adjoints
for implicit functions as well as generalization to higher-order adjoints.

Some formalism is required to introduce the external adjoint interface prop-
erly. For notational convenience we assume all elementals to map from the entire
memory space of the program (vi_n,...,vs) onto itself. A similar approach is
taken in [18] and [17].

The primal program for computing a multivariate vector function F : R" —
R™ as y = F(x) yields an elemental decomposition

vi=o'(viTh), @R 5 R fori=1,...,q

0 _ 0 n—1 _ 0 n—1 ,,1 0 m—1
and vV = (2%, ... 2”1 0,...,0), v?i = (2 ...,2" ot oo 0Pyl Ly )

Consequently, x = P,,-v? andy = v4-QZL for linear operators P, = (Inxn, Onxq) €
R™ ("9 and Q,, = (O (ntp)> Imxm) € R™*("*9) extracting the first n and
last m entries of a vector in R" 19, respectively. The identity in R” is I}« and
Ok x; denotes a matrix of all zeros in R

The adjoint program evaluates the adjoint elemental decomposition

x(1) == X) + (y(1), VF(%))

where

(ya),VF(x)) = P, - @%1)(X, (13%1)(V1, . <I>‘(11)(Vq_1, Vl(zl)) )
and for given v‘(ll) = (0,... ,O,y?l), e ,yz’f)_l) assuming availability of adjoint
elementals

sz)l = @él)(vi_l,vfl)) =Vvoi(vihHT. Vfl) fori=gq,...,1.

By default, the adjoint elemental decomposition is generated homogeneously
with dco/c++. Special treatment of certain elementals (e.g., ®*) may become
desirable or even essential, for example, to ensure the feasibility of the memory
requirement by checkpointing or preaccumulation [9], to exploit the implicit
function theorem [3], to handle nonsmoothness [15] or even discontinuity, or
to integrate parts of the computation running on a different compute platform
(e.g., GPU) [14]. The resulting gaps (the missing tape of ®* in the adjoint
contezt (the tape of F') need to be filled by custom versions of <I>’(€1) yielding

<y(1), VF(X)> as

k—1
V)

Py - (VO (x)T ... VO (vy) T (VO (V)T (VRI(vIHT - vi,)) )

k
V)

An API needs to be provided allowing for

Vé‘Sl = @’El)(vk_l,vfl)) =Vor(vy )T v?l)

27



Ix

F(x(p).p) =0 = x* k-2l oF, N\ oF, .\"
(x(p).P) * differentiate msidua> ( (x )) ‘Z =X pt = (7(’( )>

N

. finite. differences
solve primal & record tape e solve adjoint

T
I

I

. |

Y A y

interpret tape

M
%
»

2
»

C
1%

o
Y

three potentially different values for p

Figure 7: Kinds of differentiation: Algorithmic (solid arrows), approximate
(dotted arrow), symbolic (dashed arrows)

to be evaluated based on custom required data to be recorded by an appro-
priately augmented primal version of ®*. For example, checkpointing the given
implementation of ®* requires its input arguments to be stored to allow context-
free reevaluation of ®*. The adjoint <I>’(“1) restores the argument checkpoint

followed by an augmented primal evaluation of ®* (e.g., generation of a local
tape) and propagation of the adjoints (e.g., interpretation of the local tape).
Moreover, communication with the context needs to be established by enabling
access to in- and outputs of ®* and to the adjoints of all active arguments.

Our upcoming discussion of the external adjoint interface of dco/c++ replaces
the algorithmic adjoint of the Newton solver inside of the Burgers case study
with its symbolic adjoint version. The general concept behind adjoint solvers for
systems of nonlinear equations is illustrated in Fig. 7 based on prior work in [37].
An algorithmic adjoint (solid arrows) version of the implicitly defined function
x(p) is generated with dco/c++ by recording a tape of the Newton iterations
followed by its interpretation yielding a correct adjoint of the approximate pri-
mal solution X with respect to p. Finite differences (dotted arrow) may be able
to validate this adjoint at a much higher computational cost. Alternatively, a
symbolic adjoint (dashed arrows) results from differentiating the residual at the
solution x* followed by solving the adjoint equation. The solution of the latter
at the given approximate primal solution x yields yet another approximation
of the adjoint. The computational cost can be reduced as well as the mem-
ory requirement. See [37] and references therein for further details on symbolic
adjoint nonlinear solvers.

Our sample code applies the above to the solution of Burgers’ equation.
Therefore, let g(y) denote the right-hand side of the ordinary differential equa-
tion resulting from spatial discretization of Burgers’ equation as outlined in
Sec. 2.1.1. Implicit Euler integration with time step At and given initial con-
dition y° computes iterates y* for k = 1, ..., At~! as solutions of the system of
nonlinear equations

foE Yy Y =y -y - At g(y¥) =0. (8)

The new state y* is parameterized by y*~!. It is computed by an implementation

28



10

11

of Newton’s method.

The basic dco/c++ adjoint records all Newton iterations on the tape for later
interpretation in the context of the algorithmic adjoint implicit Euler scheme.
Alternatively, symbolic differentiation of Eqn (8) at the solution y* with respect
to y*~ 1 yields

"y _ofyt oyt ayt oft Lyt

dyk—l - ayk dyk—l 8yk—1
=1

We denote total and partial derivatives by “d” and “9”, respectively. Transposal
and multiplication with

T

k* Gk—1\\ ~
L (8]‘(3’8};3 )) h
from the right yields
« T . T
}’51_1 = <j;’,:1> Yy = (af(}g;;;_ylkl)) z=—-1-z=-z.
Hence the computation of yé“f) ! amounts to the solution of the linear system
« T
(% vy 1)) 2=yl )

The external adjoint interface of dco/c++ requires its users to provide two
versions for the section of the code (w.l.o.g. wrapped into a function call) subject
to non-standard treatment. For the Burgers case study the call to an instance
of the nonlinear solver

template<typename T>
void newton(const vector<T>& yp, vector<T>& y) { ... }

computing y as a function of yp is replaced by the following specialization for
T=DCO_T to be called at the time of recording:

Listing 11: Specialization of newton to be called during recording

template<>

void newton(const vector<DCO_T>& yp, vector<DCO_T>& y) {
DCO_TAPE_T* tape=dco: :tape(yp);
DCO_EAO_T* D=tape->create_callback_object<DCO_EAO_T>();
vector<DCO_BT> ypv=D->register_input (yp);
vector<DCO_BT> yv=dco::value(y);
newton(ypv,yv) ;
D->write_data(yv);
y=D->register_output (yv) ;
tape->insert_callback(newton_adjoint,D);

29



Each active variable stores a pointer to its tape extracted in LL11:3 and required
for the creation of a callback object of external adjoint object type

typedef DCO_M::external_adjoint_object_t DCO_EAO_T

in L11:4. The callback object holds all information necessary for the evaluation
of the local adjoint including references to local in- and outputs (L11:5,9) as
well as required data (here the approximate solution of the nonlinear system;
L11:8). The actual Newton iterations are performed passively (L11:7). Both
ypv returned in L11:5 and yv hold values of type DCO_BT=double. The external
adjoint object is inserted into the tape along with a pointer to the callback
function (here newton_adjoint) to be called by the interpreter when reaching
the current position in the tape (L11:10).
The interpreter expects an implementation of newton_adjoint, e.g.,

Listing 12: Adjoint version of newton to be called during interpretation

void newton_adjoint(DCO_EAO_T* D) {
const vector<DCO_BT>& y=D->read_data<vector<DCO_BT>>();
vector<DCO_BT> ya(y.size()); D->get_output_adjoint(ya);
vector<DCO_BT> A((y.size()-2)*3+4,0);
dfdy(y,A, /*transpose=*/true) ;
LU(A); FS(A,ya); BS(A,ya);
D->increment_input_adjoint (ya) ;

}

The approximate solution of the nonlinear system is recovered (L12:2) followed
by extracting adjoints of the local results from the enclosing tape (L12:3). Eval-
uation of the local adjoint amounts to solving the linear system in Eqn. (9)
(L12:6-7) with the transposed tridiagonal system matrix computed in L12:5.
The solution is used to increment the adjoint inputs (L12:7).

The main driver remains unchanged; see Listing 5. For the given scenario
(see Sec. 2.2) we observe a speedup by a factor of 3.5 on our target computer.
The tape size is reduced by a factor of roughly 30.

Seamless transition to second-order adjoints is supported. It amounts to the
instantiation of the above code with the second-order adjoint dco/c++ data type
introduced in Sec. 2.5 and linkage with the corresponding second-order adjoint
driver. The implementation can be found on the dco/c++ research website. For
example, for n = 500 and m = 1000 the memory requirement of a second-order
adjoint computation is reduced from more than 17GB to less than 400MB. A
decrease in runtime by a factor of three can be observed. Refer to the dco/c++
research website for access to the sample code.

3.2 Multithreading
3.2.1 Adjoints for Multithreading

The LIBOR case study features a high degree of concurrency due to mutually
independent Monte Carlo path simulations. It lends itself to the exploitation of

30



Ps_t I Ps_t
4 v /‘777\7‘
nt/p nt/p-. -it/p wnt/p
N \
riiii/f\ riA\iii\
P_t P_t P_t I P_t
| |
Loy - : i Lo -
| |
| |
rm-b-— : rm-b--
L_ct ' L_ct , L_ct ' L_ct
. L””V\‘,'v L,{,,A
1 1 O~ 1
3 S /
. r ,,/,,‘
L_t | Lt
1 1

Figure 8: Parallel adjoints for LIBOR case study: Distribution of individual
paths to the two threads is marked by dotted and dashed lines, respectively.
For nt threads the j-th path is assigned to the thread with thread id j%nt
(L13:23), that is, paths 0 and 2 are evaluated by thread 0 and paths 1 and 3
are evaluted by thread 1. Known local partial derivatives are attached to the
corresponding edges, for example, the partial derivatives of the final values of
the thread-local Ps_t with respect to the are known to be equal to pathwise
payoffs P_t are known to be equal to nt/p for p paths evaluated by nt threads.
The partial derivatives of the final payoff P with respect to the Ps_t are equal
to 1/nt yielding according to the chain rule 1/p as the partial derivatives of P
with respect to the pathwise payoffs P_t. Similarly, the copy operations L —
L_t and L_t — Lc_t yield unit partial derivatives, respectively.

31



12

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

shared memory parallelism using OpenMP. While a multithreaded implementa-
tion of the primal is rather straight forward the corresponding adjoint requires
more careful treatment. Fig. 8 depicts a graphical representation of the data
flow for a simplified scenario involving four Monte Carlo paths to be evaluated
by two threads. This setup represents a special case of the implementation
shown in Listing 13. Thread-local copies L_t of the common input L are gen-
erated (L.13:18). Read-only inputs are required for correct access to the adjoint
results as outlined previously. Hence each path is evaluated on a local copy Lc_t
(L13:24-25) yielding a local payoff P_t. Thread-local sums Ps_t over the path-
wise payoffs are built (L13:29) followed by averaging (1.13:32) and summation
over all threads to obtain an estimate of the primal payoff P (L.13:34).

Listing 13: Thread-parallel recording of multiple tapes
// ... L6:1-3

#include "dco.hpp"

typedef dco::galsm<double> DCO_M;
typedef DCO_M::type DCO_T;
typedef DCO_M::tape_t DCO_TAPE_T;

#include <omp.h>

void libor(vector<double>& L, double& P, vector<double>& dPdL,
const vector<vector<double>>& Z) {
int nt=omp_get_max_threads();
P=0;
#pragma omp parallel
{
int tid=omp_get_thread_num() ;
DCO_TAPE_T *tape=DCO_TAPE_T::create();
vector<DCO_T> L_t(n,0); for (int i=0;i<mn;i++) L_t[i]l=L[i];
tape->register_variable(L_t);
DCO_T P_t=0; double Ps_t=0;
DCO_TAPE_POSITION_T tpos=tape->get_position();
for (int j=0;j<p;j++t) {
if (j%nt!=tid) continue;
vector<DCO_T> Lc_t(L_t);
path_calc(j,Lc_t,Z); portfolio(Lc_t,P_t);
tape->register_output_variable(P_t);
dco::derivative(P_t)=1./p;
tape->interpret_adjoint();
Ps_t+=dco::value(P_t);
tape->reset_to(tpos);
}
Ps_t/=p;
#pragma omp atomic

32



34

35

36

37

38

39

40

41

42

43

P+=Ps_t;

for (int i=0;i<n;i++) {
#pragma omp atomic
dPdL[i]+=dco::derivative(L_t[i]);

}

DCO_TAPE_T: :remove (tape) ;

}
}

// ... main() calls libor(...)

It remains to compute adjoints of P_t with respect to Lc_t for all paths.
Pair-wise independence of the paths yields mutually independent adjoints. Each
thread allocates a local tape (L13:17). Support for multiple tapes is provided by
dco/c++ in galsm mode (L13:4) enabling thread-safe implementations of tape-
based adjoints. Thread-local active inputs L_t are registered with the tape
(L13:19) followed by recording individual paths (L13:24-26) and immediate in-
terpretation (L13:28) [21] for adjoint local payoffs set equal to 1/p (L.13:27).
Subsequent recordings use the same tape memory as a result of resetting the
tape pointer to the position following the local active inputs (1.13:21,30). The
latter are incremented by repeated interpretations yielding correct adjoints for
a sequence of paths. Both the reductions of the final payoff (L13:34) and of
its gradient with respect to the initial LIBOR rates (L.13:37) require atomic
handling due to potential race conditions.

The relative simplicity of the given implementation is due to the Monte Carlo
section not being followed by further computation on the payoff P. Adjoints of
the path-local payoffs are known to be equal to 1/p at compile time. They do
not depend on adjoints to be computed prior to their evaluation. Otherwise
checkpointing would have to be applied ro delay the adjoint Monte Carlo sim-
ulation until after the adjoint payoff is available. The read-only initial LIBOR
rates L can be used eliminating the need for additional checkpointing memory.
Checkpointing may also become necessary in case of more complex individual
path simulations whose tape sizes may exceed to available memory resources.

The runtime of basic adjoint mode is 2.6s based on a tape of size 1.8GB.
While the runtime is not reduced significantly when using pathwise taping,
the size of the tape is reduced to 40KB. Shared memory parallelization using
four threads increases the tape size by four. A speedup of about three can be
observed. Seamless transition to second- (and higher-)order adjoint modes is
guaranteed; see the corresponding example on the dco/c++ research website.

3.2.2 Multithreading for Adjoints

Multithreading can also be applied to several concurrent interpretations of the
same tape. dco/c++ supports the allocation of multiple thread-local vectors of
adjoints sharing a single, sequentially recorded tape. As an example we consider
the computation of several inner rows of the Jacobian of the Burgers case study

33



10

11

12

13

s ai,o as.o
dy
dy? ai a1
y2 a1,2 a2.2
ap,0 aop,1 Qo2 40,3 3 ais az s
A= aio ain Q12 A13 s . .
G2,0 G21 QA22 G231 O O
y
azo az1 0asz2 03,3}—
dy' 1 0
0 1
y° 0 0

(a) (b) () (d)

Figure 9: Parallel accumulation of two inner rows of the Jacobian A € R™*" (a)
for the Burgers case study with n = 4, m = 3 and using two threads: Tape of
evolution of state with preaccumulated local Jacobians of individual time steps
(b); second row computed by first thread using vector of scalar adjoints (c);
third row computed by second thread using vector of scalar adjoints (d).

illustrated in Fig. 9 for the two inner rows of a 4 x4 Jacobian. Obviously, adjoint
mode would only be used in practice if the number of rows turned out to be
substantially lower than the number of active inputs resulting from the given
spatial discretization scheme. Fig. 9 (b) shows a representation of the tape to be
interpreted twice using vectors of adjoints shown in Fig. 9 (¢) and (d). The two
interpretations can be performed concurrently by two threads with adjoint final
states set equal to the second and third Cartesian basis vectors, respectively.

Our implementation in Listing 14 uses a bandwidth bw defined in burgers.h
to select the 2-bw target rows within the Jacobian. All relevant code is restricted
to the main driver function.

Listing 14: Thread-parallel evaluation of multiple adjoints for a single tape
// ... L5:1-8

#include <omp.h>

int main() {
omp_set_num_threads(nt) ;
vector<DCO_AT> y(n,0);
for (int i=1;i<n-1;i++) y[i]l=sin(2*%PI*i/n);
DCO_AM: :global_tape=DCO_TAPE_T: :create();
DCO_AM: :global_tape->register_variable(y);
vector<DCO_AT> yc(y);
burgers(yc) ;
for(int i=n/2-bw;i<n/2+bw;i++)
DCO_AM: :global_tape->register_output_variable(yc[il);

34



15

-
=N

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

vector<vector<double>> M_dydy (2*bw,vector<double>(n));
#pragma omp parallel

int tid=omp_get_thread_num();
dco::adjoint_vector<DCO_TAPE_T,double, 2*bw/nt>
av(DCO_AM: :global_tape);

for(int i=n/2-bw,j=0;i<n/2+bw;i++) {

if (i%nt!=tid) continue;

av.derivative(yc[i]) [j1=1;

Jj++;
¥
av.interpret_adjoint();
for(int i=n/2-bw,k=0;i<n/2+bw;i++) {

if (i%nt!=tid) continue;

for(int j=1;j<n-1;j++)

M_dydy [i-n/2+bw] [jl=av.derivative(y[j]) [k];

k++;
}
}
DCO_TAPE_T: :remove (DCO_AM: : global_tape) ;
// ... output and return
}

Declaration and initialization of the initial state in (L14:7-8) is followed by the
recording of the tape as previously discussed (L14:9-14). The target rows of
the Jacobian are stored in an appropriately declared matrix (L14:15). Within
the parallel section (L14:16-33) each of the nt threads allocates 2-bw/nt vectors
of adjoints linked to the single global tape and with elements of type double
(L14:19-20). Adjoint final states are set equal to the Cartesian basis vectors
yielding the corresponding row of the Jacobian (L14:21-25) by thread-local tape
interpretation (L14:26). The results are stored (L14:27-32)) prior to leaving the
parallel section and deallocation of the global tape (L14:34).

For bw = 32, n = 500, and m = 1000 basic adjoint mode takes 12s. Shared
memory parallelization with four threads yields a speedup of roughly three.
Ongoing investigations in the context of larger use cases are expected to provide
further insight into the tuning of multithreading applied to separate vectors of
adjoints. Transition to second and higher order is straight forward as illustrated
by examples on the dco/c++ research website.

3.3 Tape Compression by Preaccumulation

The main challenge faced by all users of algorithmic adjoint software including
users of dco/c++ is the often infeasible memory requirement of methods for
implementing the reversal of the data flow, for example, by a tape combined
with a vector of adjoints. Checkpointing is probably the preferred method
for limiting the memory footprint at the expense of additional computation.

35



10

11

12

13

14

Corresponding support is provided by dco/c++, for example, through its external
adjoint interface; see Sec. 3.1. Alternatively, preaccumulation of local Jacobians
can help to ensure the feasibility of an adjoint solution.

dco/c++ offers various ways to replace certain sections of the tape with the
corresponding local Jacobian including its external adjoint interface and direct
insertion of local partial derivatives into the tape not discussed in detail in this
paper; see dco/c++ user guide for further details. The following solution to
preaccumulation has been developed as part of an ongoing effort to simplify the
user interface to dco/c++ wherever possible. Isolated (free of side effects) parts
of the tape can be replaced with their corresponding local Jacobians by using
only a few instructions as illustrated in Listing 15 for the LIBOR case study.
Specific modifications are limited to the libor routine. The enclosing driver
program remains unchanged; see Listing 6.

Listing 15: Reduction of tape size through preaccumulation of local Jacobians

void libor(const vector<DCO_T>& L, DCO_T& P,
const vector<vector<double>>& Z) {
DCO_T Ps=0;
DCO_M: : jacobian_preaccumulator_t jp(dco::tape(L));
for (int j=0;j<p;j++) {
jp-startQ;
vector<DCO_T> Lc(L);
path_calc(j,Lc,Z); portfolio(Lc,P);
jp.register_output (P);
jp-finish(;
Ps+=P;
}
P=Ps/p;
}

In Listing 15 local gradients of path-local payoffs P with respect to the path-local
copies Lc of the initial LIBOR rates are preaccumulated. The corresponding lo-
cal tapes of the entire path calculation and associated evaluation of the portfolio
(L15:8) are replaced by a single gradient, respectively, yielding a substantial de-
crease in overall tape size. Therefore a Jacobian preaccumulator object needs to
be created for the target tape (IL15:4). A pointer to the latter can be extracted
from any active variable by using the dco: :tape routine. For each path, preac-
cumulation is initiated by setting a start position (L15:6). Local active outputs
need to be registered explicitly following the recording of the local tape (L15:9).
The actual preaccumulation is triggered by a call to the finish member func-
tion (L15:10) of the Jacobian preaccumulator object. Interpretation of the local
tape with adjoints of its m outputs set equal to the Cartesian basis vectors in
R™ (here: adjoint of the scalar local output is set equal to one) replaces the
local tape with the local Jacobian (here: gradient).

Preaccumulation applied to a basic adjoint of the LIBOR case study results
in a tape of size 28MB. The runtime of the corresponding gradient computation

36



is 2.7s. Pathwise taping combined with preaccumulation reduces the tape size
to 1.6KB while no significant improvement in runtime can be observed. Shared
memory parallelization with four threads reduces the overall runtime by a factor
of two at the expense of an increase in memory requirement by a factor of four.
Again, the transition to second and higher order does not pose any conceptual
challenges. Corresponding sample codes can be found on the dco/c++ research
website.

4 Above and Beyond dco/c++

Integration of (adjoint) AD into a nontrivial numerical simulation software en-
vironment remains a demanding effort. The benefits in terms of feasibility
of derivative-based methods for parameter sensitivity analysis and calibration,
large-scale nonlinear optimization and uncertainty quantification typically out-
weigh the investment. However, it must be recognized that this investment is
not a one-off exercise. AD has a significant impact on software development and
maintenance procedures. Sensitivity information can and should be included in
unit and regression test hierarchies. Coding guidelines may have to be adapted
to ensure the robustness of new versions of the code base with respect to its
augmented semantics.

Taking all this into account, the level of professionalism expected from an
AD software has risen over recent years. We have been investing in a state of
the art dco/c++ software engineering environment to meet these expectations as
formulated by both commercial and academic partners. Crucial elements include
cross-platform overnight builds'®, a unit and regression test suite, extensive user
documentation and quality assurance mechanisms implemented in collaboration
with our partners at NAG.

dco/c++ forms the basis for a number of extensions targeting other program-
ming models and languages. Inspired by earlier efforts to handle Fortran by
providing a suitable wrapper to an underlying C++ solution (ADOL-F [43])
dco/fortran has been developed as a Fortran front-end to dco/c++. One of
its main target applications is the NAG Library. In collaboration with NAG,
an AD version of the NAG Library is under development including algorithmic
adjoints based on dco/fortran as well as symbolic adjoints of implicit functions
(e.g., [non]linear equation solvers) and hybrid adjoint routines combining both
algorithmic and symbolic elements. dco/fortran is also used to derive and
maintain adjoint versions of Telemac [49] and ICON [50] based on prior work on
the NAG AD Fortran Compiler [38]. Preliminary studies for other programming
languages include dco/matlab and dco/python. Both tools are currently used
in a purely experimental regime.

Working with numerous partners in academia and industry we have been
confronted with requests to extend algorithmic adjoint capabilities to GPUs.
The traditional approach of allocating substantial amounts of (tape) memory

155¢e www.stce.rwth-aachen.de/buildbot/dco

37



dynamically turned out to be infeasible for massively parallel accelerators fea-
turing a relatively low amount of main memory compared to their computational
peak performance. Analysis of the technical challenges resulted in the concept
of meta adjoint programming implemented by dco/map [29]. A domain-specific
language is combined with custom preprocessing of the primal to yield highly
efficient adjoint code on both CPUs and GPUs. Coupling of CPUs and GPUs is
supported through the combination of dco/c++ and dco/map. First applications
of dco/map show highly promising results.

5 Conclusion

Algorithmic adjoint methods for large-scale gradient-based numerical simula-
tion and incorporating symbolic as well as approximate approaches wherever
appropriate or necessary can be expected to play an increasingly important role
in Computational Science, Engineering and Finance. While not being the eas-
iest programming language to master C++ features a degree of flexibility and
semantic richness which is likely to make it the first choice for a large number
of ongoing and future large-scale and long-term simulation software develop-
ment efforts. Software for Algorithmic Differentiation of C++ code will remain
a fundamental element of the numerical simulation toolbox.

The dco/c++ software is a central ingredient of numerous ongoing academic
and commercial projects. Its proven robustness, support for post C++11 stan-
dards, efficiency, innovation and sustainability represents the basis for further
development addressing substantial challenges within an ever-changing com-
putational environment. Ongoing work includes extensions toward vector and
matrix derivative types, implementation of adjoint code design patterns [35] and
further support for parallelism. However, these improvements will not eliminate
the need for user knowledge. A perfect algorithmic adjoint remains the result
of a powerful tool applied by an expert user.

References

[1] D. Bailey, Y. Hida, X. Li, and B. Thompson. Arprec: An arbitrary precision
computation package. Technical report, 2002.

[2] A. Baydin, B. Pearlmutter, and A. Radul. Automatic differentiation in
machine learning: A survey. CoRR, abs/1502.05767, 2015.

[3] B. Bell and J. Burke. Algorithmic differentiation of implicit functions and
optimal values. In [/, pages 67-77. Springer, 2008.

[4] C. Bischof, M. Biicker, P. Hovland, U. Naumann, and J. Utke, editors. Ad-
vances in Automatic Differentiation, number 64 in Lecture Notes in Com-
putational Science and Engineering (LNCSE). Springer, 2008.

38



[5]

[17]

[18]

D. Bommes, H. Zimmer, and L. Kobbelt. Practical mixed-integer opti-
mization for geometry processing. In Curves and Surfaces, Lecture Notes
in Computer Science, pages 193-206. Springer, 2012.

A. Brace, D. Gatarek, and M. Musiela. The market model of interest rate
dynamics. Mathematical Finance, 7:127-147, 1997.

J. Burgers. Mathematical examples illustrating relations occurring in the
theory of turbulent fluid motion. Verhandelingen der Koninklijke Neder-
landse Akademie van Wetenschappen, Afdeeling Natuurkunde, 2(17):1-53,
1939.

G. Corliss, C. Faure, A. Griewank, L. Hascoét, and U. Naumann, editors.
Automatic Differentiation of Algorithms: From Simulation to Optimiza-
tion, Computer and Information Science. Springer, 2002.

M. Fagan and A. Carle. Reducing reverse-mode memory requirements by
using profile-driven checkpointing. Future Generation Computer Systems,
21(8):1380-1390, 2005.

S. Forth, P. Hovland, E. Phipps, J. Utke, and A. Walther, editors. Recent
Advances in Algorithmic Differentiation, volume 87 of Lecture Notes in
Computational Science and Engineering. Springer, Berlin, 2012.

D. Gendler, U. Naumann, and B. Christianson. Automatic differentiation
of Assembler code. In Proceedings of the IADIS International Conference
on Applied Computing, pages 431-436. IADIS, 2007.

M. Giles and P. Glasserman. Smoking adjoints: Fast Monte Carlo Greeks.
Risk, pages 88-92, January 2006.

P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer,
2003.

F. Gremse, A. Hoefter, L. Razik, F. Kiessling, and U. Naumann. GPU-
accelerated adjoint algorithmic differentiation. Computer Physics Commu-
nications, 200:300-311, 2016.

A. Griewank. On stable piecewise linearization and generalized algorithmic
differentiation. Optimization Methods and Software, 28(6):1139-1178, 2013.

A. Griewank, D. Juedes, and J. Utke. Algorithm 755: ADOL-C: A package
for the automatic differentiation of algorithms written in C/C++. ACM
Transactions on Mathematical Software, 22(2):131-167, 1996.

A. Griewank and U. Naumann. Accumulating Jacobians as chained sparse
matrix products. Mathematical Programming, 95(3):555-571, 2003.

A. Griewank and A. Walther. Evaluating Derivatives. Principles and Tech-
niques of Algorithmic Differentiation, Second Edition. Number OT105 in
Other Titles in Applied Mathematics. STAM, 2008.

39



[19]

[20]

R. Hannemann, W. Marquardt, U. Naumann, and B. Gendler. Discrete
first- and second-order adjoints and automatic differentiation for the sensi-
tivity analysis of dynamic models. Procedia Computer Science, 1(1):297 —
305, 2010.

R. Hannemann-Tama&s, J. Tillack, M. Schmitz, M. Forster, J. Wyes,
K. Noh, E. von Lieres, U. Naumann, W. Wiechert, and W. Marquardt.
First- and second-order parameter sensitivities of a metabolically and iso-
topically non-stationary biochemical network model. In FElectronic Proceed-
ings of the 9th International Modelica Conference, Munich, Sep 3-5, 2012.
Modelica Association, 2012.

L. Hascoét, S. Fidanova, and C. Held. Adjoining independent computa-
tions. In /8], Computer and Information Science, chapter 35, pages 299—
304. Springer, New York, NY, 2002.

L. Hascoét, U. Naumann, and V. Pascual. To-Be-Recorded analysis in
reverse mode automatic differentiation. Future Generation Computer Sys-
tems, 21:1401-1417, 2005.

L. Hascoét and V. Pascual. The Tapenade automatic differentiation tool:
Principles, model, and specification. ACM Transactions on Mathematical
Software, 39(3):20:1-20:43, 2013.

R. Hogan. Fast reverse-mode automatic differentiation using expres-
sion templates in C++. ACM Transactions on Mathematical Software,
40(4):26:1-26:24, jun 2014.

P. Hovland, U. Naumann, and B. Norris. An XML-based platform for se-
mantic transformation of numerical programs. In M. Hamza, editor, Soft-
ware Engineering and Applications, pages 530-538. ACTA Press, 2002.

J. Huang, Y. Tong, H. Wei, and H. Bao. Boundary aligned smooth 3d
cross-frame field. ACM Trans. Graph., 30(6):143:1-143:8, 2011.

P. Lax and B. Wendroff. Systems of conservation laws. Communications
on Pure and Applied mathematics, 13(2):217-237, 1960.

J. Lotz. Hybrid Approaches to Adjoint Code Generation with dco/c++. PhD
thesis, RWTH Aachen University, 2016.

J. Lotz, K. Leppkes, U. Naumann, and J. du Toit. Meta adjoint program-
ming in C++. Technical Report AIB-2017-07, Department of Computer
Science, RWTH Aachen University, 2017.

J. Lotz, U. Naumann, R. Hannemann-Tama&s, T. Ploch, and A. Mitsos.
Higher-order discrete adjoint ODE solver in C++ for dynamic optimization.
Procedia Computer Science, 51:256-265, 2015.

40



[31]

[32]

[33]

[34]

[35]

J. Lotz, U. Naumann, and J. Ungermann. Hierarchical algorithmic differ-
entiation: A case study. In [10], pages 187-196. Springer, 2012.

D. Lu. The XVA of Financial Derivatives: CVA, DVA and FVA Ezxplained.
Springer, 2016.

M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter,
J. McCarron, and P. DeMarco. Maple 10 Programming Guide. Maplesoft,
2005.

U. Naumann. The Art of Differentiating Computer Programs. An Intro-
duction to Algorithmic Differentiation. Number SE24 in Software, Envi-
ronments, and Tools. STAM, 2012.

U. Naumann. Adjoint code design patterns. In Seventh International Con-
ference on Algorithmic Differentiation, Ozford, UK, 2016. Extended ab-
stract. Full paper under review.

U. Naumann and J. du Toit. Adjoint algorithmic differentiation tool sup-
port for typical numerical patterns in computational finance. Journal of
Computational Finance, 2016. To appear.

U. Naumann, J. Lotz, K. Leppkes, and M. Towara. Algorithmic differenti-
ation of numerical methods: Tangent and adjoint solvers for parameterized
systems of nonlinear equations. ACM Transactions on Mathematical Soft-
ware, 41:1-26, 2015.

U. Naumann and J. Riehme. A differentiation-enabled Fortran 95 compiler.
ACM Transactions on Mathematical Software, 31(4):458-474, December
2005.

A. Noack and A. Walther. Adjoint concepts for the optimal control of
Burgers equation. Comput. Optim. Appl., 36(1):109-133, 2007.

A. Pfadler. Computing sensitivities of CVA using adjoint algorithmic dif-
ferentiation. Master’s thesis, University of Oxford, 2015.

E. Phipps and R. Pawlowski. Efficient expression templates for operator
overloading-based automatic differentiation. In [10], volume 87 of Lecture
Notes in Computational Science and Engineering, pages 309-319. Springer,
Berlin, 2012.

M. Sambridge, P. Rickwood, N. Rawlinson, and S. Sommacal. Automatic
differentiation in geophysical inverse problems. 170:1 — 8, 07 2007.

D. Shiriaev, A. Griewank, and J. Utke. A user guide to ADOL-F: Auto-
matic differentiation of Fortran codes. Tech. Report IOKOMO-04-1995,
TU Dresden, Dept. of Mathematics, 1996.

41



[44]

[48]

[51]

[52]

O. Toon, R. Turco, D. Westphal, R. Malone, and M. Liu. A multidimen-
sional model for aerosols: Description of computational analogs. Journal
of the Atmospheric Sciences, 45(15):2123-2144, 1988.

M. Towara and U. Naumann. A discrete adjoint model for OpenFOAM.
Procedia Computer Science, 18:429-438, 2013.

M. Towara, M. Schanen, and U. Naumann. MPI-parallel discrete adjoint
OpenFOAM. Procedia Computer Science, 51:19-28, 2015.

J. Ungermann, J. Blank, J. Lotz, K. Leppkes, Lars Hoffmann, T. Guggen-
moser, M. Kaufmann, P. Preusse, U. Naumann, and M. Riese. A 3-d tomo-
graphic retrieval approach with advection compensation for the air-borne
limb-imager GLORIA. Atmospheric Measurement Techniques, 4(11):2509—
2529, 2011.

J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach,
C. Hill, and C. Wunsch. OpenAD/F: A modular open-source tool for auto-
matic differentiation of Fortran codes. ACM Transactions on Mathematical
Software, 34(4):18:1-18:36, July 2008.

C. Villaret, R. Kopmann, J. Riehme, D. Wyncoll, U. Merkel, and U. Nau-
mann. First-order uncertainty analysis using algorithmic differentiation
of the Telemac-2D/Sisyphe morphodynamic model. Computers & Geo-
sciences, 90(B):144-151, 2015.

A. Vlasenko, P. Korn, J. Riehme, and U. Naumann. FEstimation of data
assimilation error: A shallow-water model study. Monthly Weather Review,
142:2502-2520, 2014.

M. VoBibeck, R. Giering, and T. Kaminski. Development and first applica-
tions of TAC++. In /4], pages 187-197. Springer, 2008.

A. Wichter and L. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Math.
Program., 106(1):25-57, 2006.

42



