NAG fl90 Library

Chapter 3: Special Functions

Chapter Introduction
Module 3.1: nag_inv_hyp_fun - Inverse Hyperbolic Functions
nag_arctanh Inverse hyperbolic tangent, arctanh x
nag_arcsinh Inverse hyperbolic sine, arcsinh x
nag_arccosh Inverse hyperbolic cosine, arccosh x
Module 3.2: nag_gamma_fun - Gamma Functions
nag_gamma Gamma function
nag_log_gamma Log gamma function
nag_polygamma Polygamma functions
nag_incompl_gamma Incomplete gamma functions
Module 3.3: nag_err_fun - Error Functions
nag_erf Error function erf x
nag_erfc Complementary error function erfc x
nag_dawson Dawson's integral F(x)
Module 3.4: nag_bessel_fun - Bessel Functions
nag_bessel_j0 Bessel function J0(x)
nag_bessel_j1 Bessel function J1(x)
nag_bessel_j Bessel function Jν(z)
nag_bessel_y0 Bessel function Y0(x)
nag_bessel_y1 Bessel function Y1(x)
nag_bessel_y Bessel function Yν(z)
nag_bessel_i0 Modified Bessel function I0(x)
nag_bessel_i1 Modified Bessel function I1(x)
nag_bessel_i Modified Bessel function Iν(z)
nag_bessel_k0 Modified Bessel function K0(x)
nag_bessel_k1 Modified Bessel function K1(x)
nag_bessel_k Modified Bessel function Kν(z)
Module 3.5: nag_fresnel_intg - Fresnel Integrals
nag_fresnel_s Fresnel integral S(x)
nag_fresnel_c Fresnel integral C(x)
Module 3.6: nag_ell_intg - Elliptic Integrals
nag_ell_rf Symmetrised elliptic integral of the first kind
nag_ell_rc Degenerate form of elliptic integral of the first kind
nag_ell_rd Symmetrised elliptic integral of the second kind
nag_ell_rj Symmetrised elliptic integral of the third kind
Module 3.7: nag_ell_fun - Elliptic Functions
nag_ell_jac Jacobian elliptic functions sn, cn and dn
Module 3.8: nag_airy_fun - Airy Functions
nag_airy_ai Airy function Ai(z)
nag_airy_bi Airy function Bi(z)
Module 3.9: nag_kelvin_fun - Kelvin Functions
nag_kelvin_ber Kelvin function ber x
nag_kelvin_bei Kelvin function bei x
nag_kelvin_ker Kelvin function ker x
nag_kelvin_kei Kelvin function kei x

Release 4 Table of Contents
© The Numerical Algorithms Group Ltd, Oxford UK. 2000