
Linear Equations Module Contents

Module 5.3: nag tri lin sys

Triangular Systems of Linear Equations

nag tri lin sys provides a procedure for solving real or complex triangular systems of
linear equations with one or many right-hand sides:

Ax = b or AX = B,

where A is upper or lower triangular. It also provides a procedure for estimating the
condition number of a triangular matrix and a procedure to evaluate the determinant of
A in a form that avoids overflow or underflow.

Contents

Introduction . 5.3.3

Procedures

nag tri lin sol . 5.3.5
Solves a real or complex triangular system of linear equations

nag tri lin cond . 5.3.9
Estimates the condition number of a real or complex triangular matrix

nag tri mat det . 5.3.13
Evaluates the determinant of a real or complex triangular matrix

Examples

Example 1: Solution of a real triangular system of linear equations . 5.3.15

Additional Examples . 5.3.19

References . 5.3.20

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.1

Module Contents Linear Equations

5.3.2 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations Module Introduction

Introduction

1 Notation

We use the following notation for a system of linear equations:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

In this module, the matrix A (the coefficient matrix) is assumed to be upper or lower triangular.

The procedure nag tri lin sol solves the equations by a simple process of forward or backward
substitution. It has options to solve alternative forms of the equations

AT x = b, AT X = B, AHx = b or AHX = B.

(If A is real, then AH = AT .)
The procedure nag tri lin sol has options to return forward or backward error bounds on the computed
solution.

The procedure nag tri lin cond returns an estimate of the condition number of A, which is a measure
of the sensitivity of the computed solution to perturbations of the original system or to rounding errors
in the computation. For more details on error analysis, see the Chapter Introduction.

The procedure nag tri mat det returns the determinant of A.

2 Storage of Matrices

The procedures in this module allow a choice of storage schemes for the triangular matrix A: conventional
storage or packed storage. The choice is determined by the rank of the corresponding argument a.

2.1 Conventional Storage

a is a rank-2 array, of shape (n,n). Matrix element aij is stored in a(i, j). If A is upper triangular, only
the elements of the upper triangle (i ≤ j) need be stored; if A is lower triangular, only the elements of
the lower triangle (i ≥ j) need be stored; the remaining elements of a need not be set.

This storage scheme is more straightforward and carries less risk of user error than packed storage; on
some machines it may result in more efficient execution. It requires almost twice as much memory as
packed storage, although the other triangle of a may be used to store other data.

2.2 Packed Storage

a is a rank-1 array of shape (n(n + 1)/2). The elements of either the upper or the lower triangle of A,
as specified by uplo, are packed by columns into contiguous elements of a.

Packed storage is more economical in use of memory than conventional storage, but may result in less
efficient execution on some machines.

The details of packed storage are as follows:

• if uplo = 'u' or 'U', aij is stored in a(i + j(j − 1)/2), for i ≤ j;

• if uplo = 'l' or 'L', aij is stored in a(i + (2n − j)(j − 1)/2), for i ≥ j.

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.3

Module Introduction Linear Equations

For example

uplo Triangular Matrix Packed storage in array a

'u' or 'U'

a11 a12 a13 a14

a22 a23 a24

a33 a34

a44

 a11 a12 a22︸ ︷︷ ︸ a13 a23 a33︸ ︷︷ ︸ a14 a24 a34 a44︸ ︷︷ ︸

'l' or 'L'

a11

a21 a22

a31 a32 a33

a41 a42 a43 a44

 a11 a21 a31 a41︸ ︷︷ ︸ a22 a32 a42︸ ︷︷ ︸ a33 a43︸ ︷︷ ︸ a44

2.3 Unit Triangular Matrices

A unit triangular matrix is a triangular matrix whose diagonal elements are known to be 1. The
procedures in this module have an optional argument unit diag which can be used to specify that the
matrix is unit triangular, and then the diagonal elements do not need to be stored; the storage of the
other elements of the matrix is not affected.

5.3.4 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations nag tri lin sol

Procedure: nag tri lin sol

1 Description

nag tri lin sol is a generic procedure which computes the solution of a real or complex triangular
system of linear equations with one or many right-hand sides. It allows conventional or packed storage
for A.

We write:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B);

where the matrix A (the coefficient matrix) is upper or lower triangular.

Optionally, the procedure can solve alternative forms of the system of equations:

AT x = b, AT X = B, AHx = b or AHX = B.

(If A is real, then AH = AT .)

The procedure also has options to return forward and backward error bounds for the computed solution
or solutions. See the Chapter Introduction for an explanation of these terms.

2 Usage

USE nag tri lin sys

CALL nag tri lin sol(uplo, a, b [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the eight combinations of the following cases:

Real / complex data
Real data: a and b are of type real(kind=wp).
Complex data: a and b are of type complex(kind=wp).

One / many right-hand sides
One r.h.s.: b is a rank-1 array, and the optional arguments bwd err and fwd err are

scalars.
Many r.h.s.: b is a rank-2 array, and the optional arguments bwd err and fwd err are

rank-1 arrays.

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.
Packed: a is a rank-1 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix A

r — the number of right-hand sides

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.5

nag tri lin sol Linear Equations

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether A is upper or lower triangular.

If uplo = 'u' or 'U', A is upper triangular;
if uplo = 'l' or 'L', A is lower triangular.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n + 1)/2) — real(kind=wp) / complex(kind=wp), intent(in)
Input: the triangular matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', A is upper triangular, and elements below the diagonal need not be set;
if uplo = 'l', A is lower triangular, and elements above the diagonal need not be set.

Packed storage (a has shape (n(n + 1)/2))
If uplo = 'u', A is upper triangular, and its upper triangle must be stored, packed by
columns, with aij in a(i + j(j − 1)/2) for i ≤ j;
if uplo = 'l', A is lower triangular, and its lower triangle must be stored, packed by
columns, with aij in a(i + (2n − j)(j − 1)/2) for i ≥ j.

If unit diag = .true., the diagonal elements of A are assumed to be 1; they need not be stored,
and are not referenced by the procedure.

b(n) / b(n, r) — real(kind=wp) / complex(kind=wp), intent(inout)
Input: the right-hand side vector b or matrix B.
Output: overwritten on exit by the solution vector x or matrix X .
Constraints: b must have the same type as a.
Note: if optional error bounds are requested then the solution returned is that computed by iterative
refinement.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

unit diag — logical, intent(in), optional
Input: specifies whether A has unit diagonal elements.

If unit diag = .false., the diagonal elements of A must be explicitly stored;
if unit diag= .true., A has unit diagonal elements: they need not be stored and are assumed
to be 1.

Default: unit diag = .false..

trans — character(len=1), intent(in), optional
Input: specifies whether the equations involve A or its transpose AT or its conjugate-transpose AH

(= AT if A is real).
If trans = 'n' or 'N', the equations involve A (i.e., Ax = b);
if trans = 't' or 'T', the equations involve AT (i.e., AT x = b);
if trans = 'c' or 'C', the equations involve AH (i.e., AHx = b).

Default: trans = 'n'.
Constraints: trans = 'n', 'N', 't', 'T', 'c' or 'C'.

5.3.6 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations nag tri lin sol

bwd err / bwd err(r) — real(kind=wp), intent(out), optional
Output: if bwd err is a scalar, it returns the component wise backward error bound for the single
solution vector x. Otherwise, bwd err(i) returns the component wise backward error bound for
the ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.
Constraints: if b has rank 1, bwd err must be a scalar; if b has rank 2, bwd err must be a rank-1
array.

fwd err / fwd err(r) — real(kind=wp), intent(out), optional
Output: if fwd err is a scalar, it returns an estimated bound for the forward error in the single
solution vector x. Otherwise, fwd err(i) returns an estimated bound for the forward error in the
ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.
Constraints: if b has rank 1, fwd err must be a scalar; if b has rank 2, fwd err must be a rank-1
array.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Singular matrix.

A has a zero diagonal element, and so is exactly singular. No solutions or error bounds
are computed.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The solution x is computed by forward or backward substitution.

If error bounds are requested (that is, fwd err or bwd err is present), iterative refinement of the solution
is performed (in working precision), to reduce the backward error as far as possible.

The algorithm is derived from LAPACK (see Anderson et al. [1]).

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.7

nag tri lin sol Linear Equations

6.2 Accuracy

The accuracy of the computed solution is given by the forward and backward error bounds which are
returned in the optional arguments fwd err and bwd err.

The backward error bound bwd err is rigorous; the forward error bound fwd err is an estimate, but is
almost always satisfied.

The solutions of triangular systems of equations are usually computed to high accuracy. See Higham [3].

For each right-hand side b, the computed solution x̂ is the exact solution of a perturbed system of
equations (A + E)x̂ = b, such that

|E| ≤ c(n)ε|A|,

where c(n) is a modest linear function of n, and ε = EPSILON(1.0 wp).

The condition number κ∞(A) gives a general measure of the sensitivity of the solution of Ax = b, either to
uncertainties in the data or to rounding errors in the computation. If the system has one of the alternative
forms AT x = b or AHx = b, the appropriate condition number is κ1(A) (= κ∞(AT) = κ∞(AH)). An
estimate of the reciprocal of κ∞(A) or κ1(A) is returned by the function nag tri lin cond. However,
forward error bounds derived using these condition numbers may be more pessimistic than the bounds
returned in fwd err, if present.

If the reciprocal of the condition number ≤ EPSILON(1.0 wp), then A is singular to working precision; if
the matrix is used to solve a system of linear equations, the computed solution may have no meaningful
accuracy and should be treated with great caution.

6.3 Timing

The number of real floating-point operations required to compute the solutions is roughly n2r if A is
real, and 4n2r if A is complex.

To compute the error bounds fwd err and bwd err usually requires about 5 times as much work.

5.3.8 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations nag tri lin cond

Procedure: nag tri lin cond

1 Description

nag tri lin cond is a generic procedure which estimates the condition number of a real or complex
triangular matrix A of order n. It allows either conventional or packed storage for A.

The procedure can estimate the condition number in either the infinity-norm (the default), defined as

κ∞(A) = ‖A‖∞‖A−1‖∞,

or in the 1-norm, defined as

κ1(A) = ‖A‖1‖A−1‖1.

Note that κ1(A) = κ∞(AT) = κ∞(AH).

If A is singular, the condition number is infinite. Therefore, to avoid the possibility of overflow, the
procedure returns the reciprocal of the condition number. If the reciprocal of the condition number is
less than EPSILON(1.0 wp), then A is singular to working precision.

2 Usage

USE nag tri lin sys

[value =] nag tri lin cond(uplo, a [, optional arguments])

The function result is a scalar of type real(kind=wp).

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data
Real data: a is of type real(kind=wp).
Complex data: a is of type complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.
Packed: a is a rank-1 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether A is upper or lower triangular.

If uplo = 'u' or 'U', A is upper triangular;
if uplo = 'l' or 'L', A is lower triangular.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.9

nag tri lin cond Linear Equations

a(n, n) / a(n(n + 1)/2) — real(kind=wp) / complex(kind=wp), intent(in)
Input: the triangular matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', A is upper triangular, and elements below the diagonal need not be set;
if uplo = 'l', A is lower triangular, and elements above the diagonal need not be set.

Packed storage (a has shape (n(n + 1)/2))
If uplo = 'u', A is upper triangular, and its upper triangle must be stored, packed by
columns, with aij in a(i + j(j − 1)/2) for i ≤ j;
if uplo = 'l', A is lower triangular, and its lower triangle must be stored, packed by
columns, with aij in a(i + (2n − j)(j − 1)/2) for i ≥ j.

If unit diag = .true., the diagonal elements of A are assumed to be 1; and are not referenced by
the procedure.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

unit diag — logical, intent(in), optional
Input: specifies whether A has unit diagonal elements.

If unit diag = .false., the diagonal elements of A must be explicitly stored;
if unit diag= .true., A has unit diagonal elements: they need not be stored and are assumed
to be 1.

Default: unit diag = .false..

one norm — logical, intent(in), optional
Input: specifies whether the condition number of A is to be estimated in the infinity-norm or the
1-norm.

If one norm = .false., the procedure estimates κ∞(A);
if one norm = .true., the procedure estimates κ1(A) (= κ∞(AT) = κ∞(AH)).

Default: one norm = .false..

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

5.3.10 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations nag tri lin cond

6 Further Comments

6.1 Algorithmic Detail

To estimate κ∞(A) (= ‖A‖∞‖A−1‖∞), the procedure first computes ‖A‖∞ directly, and then uses
Higham’s modification of Hager’s method (see Higham [2]) to estimate ‖A−1‖∞. The procedure returns
the reciprocal ρ = 1/κ∞(A), rather than κ∞(A) itself.

A similar approach is used to estimate κ1(A).

The algorithm is derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The computed estimate is never less than the true value ρ, and in practice is nearly always less than 10ρ
(although examples can be constructed where the computed estimate is much larger).

Since ρ = 1/κ(A), this means that the procedure never overestimates the condition number, and hardly
ever underestimates it by more than a factor of 10.

6.3 Timing

The method involves solving a number of systems of linear equations with A or AT as the coefficient
matrix; the number is usually 4 or 5 and never more than 11. Each solution involves approximately n2

floating-point operations if A is real, or 4n2 if A is complex. Thus, for large n, the cost is much less than
that of directly computing A−1 and its norm, which would require O(n3) operations.

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.11

nag tri lin cond Linear Equations

5.3.12 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations nag tri mat det

Procedure: nag tri mat det

1 Description

nag tri mat det is a generic procedure which evaluates the determinant of a real or complex triangular
matrix A of order n. It allows either conventional or packed storage for A.

The determinant is returned in a form which avoids overflow or underflow.

2 Usage

USE nag tri lin sys

CALL nag tri mat det(uplo, a, det frac, det exp [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the four combinations of the following cases:

Real / complex data

Real data: a and det frac are of type real(kind=wp).
Complex data: a and det frac are of type complex(kind=wp).

Conventional / packed storage (see the Module Introduction)
Conventional: a is a rank-2 array.

Packed: a is a rank-1 array.

3 Arguments
Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n
elements.

This procedure derives the value of the following problem parameter from the shape of the supplied
arrays.

n — the order of the matrix A

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)
Input: specifies whether A is upper or lower triangular.

If uplo = 'u' or 'U', A is upper triangular;
if uplo = 'l' or 'L', A is lower triangular.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(n, n) / a(n(n + 1)/2) — real(kind=wp) / complex(kind=wp), intent(in)
Input: the triangular matrix A.

Conventional storage (a has shape (n, n))
If uplo = 'u', A is upper triangular, and elements below the diagonal need not be set;
if uplo = 'l', A is lower triangular, and elements above the diagonal need not be set.

Packed storage (a has shape (n(n + 1)/2))
If uplo = 'u', A is upper triangular, and its upper triangle must be stored, packed by
columns, with aij in a(i + j(j − 1)/2) for i ≤ j;

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.13

nag tri mat det Linear Equations

if uplo = 'l', A is lower triangular, and its lower triangle must be stored, packed by
columns, with aij in a(i + (2n − j)(j − 1)/2) for i ≥ j.

If unit diag = .true., the diagonal elements of A are assumed to be 1; and are not referenced by
the procedure.

det frac — real(kind=wp) / complex(kind=wp), intent(out)
det exp — integer, intent(out)

Output: det frac returns the fractional part f , and det exp returns the exponent e, of the
determinant of A expressed as f.be, where b is the base of the representation of the floating point
numbers (given by RADIX(1.0 wp)), or as SCALE (det frac,det exp). The determinant is returned
in this form to avoid the risk of overflow or underflow.
Constraints: det frac must be of the same type as a.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

unit diag — logical, intent(in), optional
Input: specifies whether A has unit diagonal elements.

If unit diag = .false., the diagonal elements of A must be explicitly stored;
if unit diag= .true., A has unit diagonal elements: they need not be stored and are assumed
to be 1.

Default: unit diag = .false..
Note: this argument has been added for consistency with other procedures in the module.

error — type(nag error), intent(inout), optional
The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

320 The procedure was unable to allocate enough memory.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

5.3.14 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations Example 1

Example 1: Solution of a real triangular system
of linear equations

Solve a real triangular system of linear equations with many right-hand sides AX = B, also estimating
the condition number of A and forward and backward error bounds on the computed solutions. This
example uses conventional storage for A.

1 Program Text
Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_tri_lin_sys_ex01

! Example Program Text for nag_tri_lin_sys

! NAG fl90, Release 3. NAG Copyright 1997.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_tri_lin_sys, ONLY : nag_tri_lin_sol, nag_tri_lin_cond, &

nag_tri_mat_det

USE nag_write_mat, ONLY : nag_write_gen_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, KIND, SCALE

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: det_exp, i, n, nrhs

REAL (wp) :: det_frac, rcond_inf

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:,:), bwd_err(:), fwd_err(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_tri_lin_sys_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, nrhs

READ (nag_std_in,*) uplo

ALLOCATE (a(n,n),b(n,nrhs),bwd_err(nrhs), &

fwd_err(nrhs)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

READ (nag_std_in,*) (a(i,:i),i=1,n)

CASE (’U’,’u’)

READ (nag_std_in,*) (a(i,i:),i=1,n)

END SELECT

READ (nag_std_in,*) (b(i,:),i=1,n)

! Compute the determinant

CALL nag_tri_mat_det(uplo,a,det_frac,det_exp)

WRITE (nag_std_out,*)

WRITE (nag_std_out, &

’(1X,’’determinant = SCALE(det_frac,det_exp) =’’,2X,ES11.3)’) &

SCALE(det_frac,det_exp)

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.15

Example 1 Linear Equations

! Compute the condition number

rcond_inf = nag_tri_lin_cond(uplo,a)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,’’kappa(A) (1/rcond_inf)’’/2X,ES11.2)’) 1/ &

rcond_inf

IF (rcond_inf<=EPSILON(1.0_wp)) THEN

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ ** WARNING ** ’

WRITE (nag_std_out,*) &

’The matrix is almost singular: the solution may have no accuracy.’

WRITE (nag_std_out,*) &

’Examine the forward error bounds estimates returned in fwd_err.’

END IF

! Solve the system of equations

CALL nag_tri_lin_sol(uplo,a,b,bwd_err=bwd_err,fwd_err=fwd_err)

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(b,int_col_labels=.TRUE., &

title=’Solution vectors (one vector per column)’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Backward error bounds’

WRITE (nag_std_out,’(2X,4ES11.2)’) bwd_err

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Forward error bounds (estimates)’

WRITE (nag_std_out,’(2X,4ES11.2)’) fwd_err

DEALLOCATE (a,b,bwd_err,fwd_err) ! Deallocate storage

END PROGRAM nag_tri_lin_sys_ex01

2 Program Data
Example Program Data for nag_tri_lin_sys_ex01

4 2 : Values of n, nrhs

’L’ : Value of uplo

4.30

-3.96 -4.87

0.40 0.31 -8.02

-0.27 0.07 -5.95 0.12 : End of Matrix A (lower triangle)

-12.90 -21.50

16.75 14.93

-17.55 6.33

-11.04 8.09 : End of right-hand sides (one rhs per column)

5.3.16 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations Example 1

3 Program Results
Example Program Results for nag_tri_lin_sys_ex01

determinant = SCALE(det_frac,det_exp) = 2.015E+01

kappa(A) (1/rcond_inf)

1.38E+02

Solution vectors (one vector per column)

1 2

-3.0000 -5.0000

-1.0000 1.0000

2.0000 -1.0000

1.0000 6.0000

Backward error bounds

6.89E-17 0.00E+00

Forward error bounds (estimates)

1.66E-13 5.27E-14

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.17

Example 1 Linear Equations

5.3.18 Module 5.3: nag tri lin sys [NP3245/3/pdf]

Linear Equations Additional Examples

Additional Examples
Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag tri lin sys ex02

Solution of a complex triangular system of linear equations with many right-hand sides, using
conventional storage.

nag tri lin sys ex03

Solution of a real triangular system of linear equations with many right-hand sides, using packed
storage.

nag tri lin sys ex04

Solution of a complex triangular system of linear equations with many right-hand sides, using
packed storage.

nag tri lin sys ex05

Solution of a real triangular system of linear equations with one right-hand side, using conventional
storage.

nag tri lin sys ex06

Solution of a complex triangular system of linear equations with one right-hand side, using
conventional storage.

nag tri lin sys ex07

Solution of a real triangular system of linear equations with one right-hand side, using packed
storage.

nag tri lin sys ex08

Solution of a complex triangular system of linear equations with one right-hand side, using packed
storage.

[NP3245/3/pdf] Module 5.3: nag tri lin sys 5.3.19

References Linear Equations

References

[1] Anderson E, Bai Z, Bischof C, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling
S, McKenney A, Ostrouchov S and Sorensen D (1995) LAPACK Users’ Guide (2nd Edition) SIAM,
Philadelphia

[2] Higham N J (1988) Algorithm 674: Fortran codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation ACM Trans. Math. Software 14 381–396

[3] Higham N J (1989) The accuracy of solutions to triangular systems SIAM J. Numer. Anal. 26
1252–1265

5.3.20 Module 5.3: nag tri lin sys [NP3245/3/pdf]

