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Module 5.5: nag sym bnd lin sys

Symmetric Banded Systems of Linear Equations

nag sym bnd lin sys provides a procedure for solving real symmetric or complex

Hermitian banded systems of linear equations with one or many right-hand sides:

Ax = b or AX = B,

where the matrix A is positive definite. It also provides procedures for factorizing A and
solving a system of equations when the matrix A has already been factorized.
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Introduction

1 Notation and Background

We use the following notation for a system of linear equations:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

In this module, the matrix A (the coefficient matrix ) is assumed to be real symmetric or complex
Hermitian, positive definite, and banded . The procedures take advantage of these properties in order to
economize on the work and storage required.

If the matrix A is real symmetric or complex Hermitian but not positive definite, it is not possible to
preserve the bandwidth while maintaining numerical stability. The system must be treated either as a
general banded system (see module nag gen bnd lin sys) or as a full symmetric or Hermitian system
(see module nag sym lin sys).

The module provides options to return forward or backward error bounds on the computed solution.
It also provides options to evaluate the determinant of A and to estimate the condition number of A,
which is a measure of the sensitivity of the computed solution to perturbations of the original data or to
rounding errors in the computation. For more details on error analysis, see the Chapter Introduction.

To solve the system of equations the first step is to factorize A, using the Cholesky factorization. The
system of equations can then be solved by forward and backward substitution.

2 Choice of Procedures

The procedure nag sym bnd lin sol should be suitable for most purposes; it performs the factorization
of A and solves the system of equations in a single call. It also has options to estimate the condition
number of A, and to return forward and backward error bounds on the computed solution.

The module also provides lower-level procedures which perform the two computational steps in the
solution process:

nag sym bnd lin fac computes a factorization of A, with options to evaluate the determinant and
to estimate the condition number;

nag sym bnd lin sol fac solves the system of equations, assuming that A has already been
factorized by a call to nag sym bnd lin fac. It has options to return forward and backward
error bounds on the solution.

These lower-level procedures are intended for more experienced users. For example, they enable
a factorization computed by nag sym bnd lin fac to be reused several times in repeated calls to
nag sym bnd lin sol fac.

3 Storage of Matrices

The procedures in this module use the following storage scheme for the symmetric or Hermitian band
matrix A with k super-diagonals or sub-diagonals:

• If uplo = 'u' or 'U', aij is stored in a(k + i− j + 1, j), for max(j − k, 1) ≤ i ≤ j.

• If uplo = 'l' or 'L', aij is stored in a(i− j + 1, j), for j ≤ i ≤ min(j + k, n).
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For example

uplo Hermitian band matrix A Band storage in array a

'u' or 'U'
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a31 a42 a53 ∗ ∗
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Procedure: nag sym bnd lin sol

1 Description

nag sym bnd lin sol is a generic procedure which computes the solution of a system of linear equations,
with one or many right-hand sides, where the matrix of coefficients is banded , and

real symmetric positive definite, or

complex Hermitian positive definite.

We write:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

The procedure also has options to return an estimate of the condition number of A, and forward and
backward error bounds for the computed solution or solutions. See the Chapter Introduction for an
explanation of these terms. If error bounds are requested, the procedure performs iterative refinement
of the computed solution in order to guarantee a small backward error.

2 Usage

USE nag sym bnd lin sys

CALL nag sym bnd lin sol(uplo, a, b [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 4 combinations of the following cases:

Real / complex data

Real data: a and b are of type real(kind=wp).

Complex data: a and b are of type complex(kind=wp).

One / many right-hand sides
One r.h.s.: b is a rank-1 array, and the optional arguments bwd err and fwd err are

scalars.
Many r.h.s.: b is a rank-2 array, and the optional arguments bwd err and fwd err are

rank-1 arrays.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the band matrix A

k ≥ 0 — the number of super-diagonals or sub-diagonals in the band matrix A

r — the number of right-hand sides
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3.1 Mandatory Arguments

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A is supplied, and whether the factorization
involves an upper triangular matrix U or a lower triangular matrix L.

If uplo = 'u' or 'U', the upper triangle is supplied, and is overwritten by an upper triangular
factor U ;

if uplo = 'l' or 'L', the lower triangle is supplied, and is overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(k + 1, n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the band matrix A.

If uplo = 'u', the elements of the upper triangle of A within the band must be stored, with
aij in a(k + i− j + 1, j) for max(j − k, 1) ≤ i ≤ j;

if uplo = 'l', the elements of the lower triangle of A within the band must be stored, with
aij in a(i− j + 1, j) for j ≤ i ≤ min(j + k, n).

Output: the supplied triangle of A is overwritten by the Cholesky factor U or L as specified by
uplo, using the same storage format as described above.

Constraints: if A is complex Hermitian, its diagonal elements must have zero imaginary parts.

b(n) / b(n, r) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the right-hand side vector b or matrix B.

Output: overwritten on exit by the solution vector x or matrix X.

Constraints: b must be of the same type as a.

Note: if optional error bounds are requested then the solution returned is that computed by iterative
refinement.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

bwd err / bwd err(r) — real(kind=wp), intent(out), optional

Output: if bwd err is a scalar, it returns the component-wise backward error bound for the single
solution vector x. Otherwise, bwd err(i) returns the component-wise backward error bound for
the ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if b has rank 1, bwd err must be a scalar; if b has rank 2, bwd err must be a rank-1
array.

fwd err / fwd err(r) — real(kind=wp), intent(out), optional

Output: if fwd err is a scalar, it returns an estimated bound for the forward error in the single
solution vector x. Otherwise, fwd err(i) returns an estimated bound for the forward error in the
ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if b has rank 1, fwd err must be a scalar; if b has rank 2, fwd err must be a rank-1
array.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of A, κ∞(A)(= κ1(A) for A
symmetric or Hermitian). rcond is set to zero if exact singularity is detected or the estimate
underflows. If rcond is less than EPSILON(1.0 wp), then A is singular to working precision.
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error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Matrix not positive definite.

The Cholesky factorization cannot be completed. Either A is close to singularity, or
it has at least one negative eigenvalue. No solutions or error bounds are computed.

Warnings (error%level = 1):

error%code Description

101 Approximately singular matrix.

The estimate of the reciprocal condition number (returned in rcond if present) is less
than EPSILON(1.0 wp). The matrix is singular to working precision, and it is likely
that the computed solution returned in b has no accuracy at all. You should examine
the forward error bounds returned in fwd err, if present.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 1 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure first calls nag sym bnd lin fac to factorize A, and to estimate the condition number. It
then calls nag sym bnd lin sol fac to compute the solution to the system of equations, and, if required,
the error bounds. See the documents for those procedures for more details, and Chapter 4 of Golub and
Van Loan [2] for background. The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The accuracy of the computed solution is given by the forward and backward error bounds which are
returned in the optional arguments fwd err and bwd err.

The backward error bound bwd err is rigorous; the forward error bound fwd err is an estimate, but is
almost always satisfied.
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The condition number κ∞(A) gives a general measure of the sensitivity of the solution of Ax = b, either
to uncertainties in the data or to rounding errors in the computation. An estimate of the reciprocal of
κ∞(A) is returned in the optional argument rcond. However, forward error bounds derived using this
condition number may be more pessimistic than the bounds returned in fwd err, if present.

6.3 Timing

The time taken is roughly proportional to n(k+1)2, assuming nÀ k and there are only a few right-hand
sides. The time taken for complex data is about 4 times as long as that for real data.
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Procedure: nag sym bnd lin fac

1 Description

nag sym bnd lin fac is a generic procedure which factorizes a real symmetric or complex Hermitian
positive definite band matrix A of order n. The factorization is written as:

A = UTU or A = LLT , if A is real symmetric;

A = UHU or A = LLH , if A is complex Hermitian;

where U is upper triangular, L is lower triangular, and both are banded, with the same number of
super-diagonals or sub-diagonals as A.

This procedure can also return the determinant of A and an estimate of the condition number κ∞(A)
(= κ1(A)).

2 Usage

USE nag sym bnd lin sys

CALL nag sym bnd lin fac(uplo, a [, optional arguments])

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the band matrix A

k ≥ 0 — the number of super-diagonals or sub-diagonals in the band matrix A

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A is supplied, and whether the factorization
involves an upper triangular matrix U or a lower triangular matrix L.

If uplo = 'u' or 'U', the upper triangle is supplied, and is overwritten by an upper triangular
factor U ;

if uplo = 'l' or 'L', the lower triangle is supplied, and is overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

a(k + 1, n) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the band matrix A.

If uplo = 'u', the elements of the upper triangle of A within the band must be stored, with
aij in a(k + i− j + 1, j) for max(j − k, 1) ≤ i ≤ j;

if uplo = 'l', the elements of the lower triangle of A within the band must be stored, with
aij in a(i− j + 1, j) for j ≤ i ≤ min(j + k, n).

Output: the supplied triangle of A is overwritten by the Cholesky factor U or L as specified by
uplo, using the same storage format as described above.

Constraints: if A is complex Hermitian, its diagonal elements must have zero imaginary parts.
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3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

rcond — real(kind=wp), intent(out), optional

Output: an estimate of the reciprocal of the condition number of A, κ∞(A)(= κ1(A) for A
symmetric or Hermitian). rcond is set to zero if exact singularity is detected or the estimate
underflows. If rcond is less than EPSILON(1.0 wp), then A is singular to working precision.

det frac — real(kind=wp), intent(out), optional

det exp — integer, intent(out), optional

Output: det frac returns the fractional part f , and det exp returns the exponent e, of the
determinant of A expressed as f.be, where b is the base of the representation of the floating point
numbers (given by RADIX(1.0 wp)), or as SCALE (det frac,det exp). The determinant is returned
in this form to avoid the risk of overflow or underflow.

Constraints: if either det frac or det exp is present the other must also be present.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.

4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Matrix not positive definite.

This error can only occur if the Cholesky factorization cannot be completed. Either
A is close to singularity, or it has at least one negative eigenvalue. If the factorization
is used to solve a system of linear equations, an error will occur.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The procedure performs a banded Cholesky factorization of A:

A = UHU , with U upper triangular and banded, if uplo = 'u';
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A = LLH , with L lower triangular and banded, if uplo = 'l'.

See Section 4.3.6 of Golub and Van Loan [2].

To estimate the condition number κ∞(A) (= κ1(A) = ‖A‖1‖A−1‖1) the procedure first computes ‖A‖1
directly, and then uses Higham’s modification of Hager’s method (see Higham [3]) to estimate ‖A−1‖1.
The procedure returns the reciprocal ρ = 1/κ∞(A), rather than κ∞(A) itself.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

If uplo = 'u', the computed factor U is the exact factor of a perturbed matrix A+ E, such that

|E| ≤ c(k + 1)ε|UH | |U |,

where c(k+1) is a modest linear function of k+1, and ε = EPSILON(1.0 wp). If uplo = 'l', a similar
statement holds for the computed factor L. It follows that in both cases |eij | ≤ c(k + 1)ε

√
aiiajj .

The computed estimate rcond is never less than the true value ρ, and in practice is nearly always less
than 10ρ (although examples can be constructed where the computed estimate is much larger).

Since ρ = 1/κ(A), this means that the procedure never overestimates the condition number, and hardly
ever underestimates it by more than a factor of 10.

6.3 Timing

The total number of floating-point operations required is roughly n(k + 1)2 for real A, and 4n(k + 1)2

for complex A, assuming nÀ k.

Estimating the condition number involves solving a number of systems of linear equations with A or AT

as the coefficient matrix; the number is usually 4 or 5 and never more than 11. Each solution involves
approximately 4nk floating-point operations if A is real, or 16nk if A is complex.
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Procedure: nag sym bnd lin sol fac

1 Description

nag sym bnd lin sol fac is a generic procedure which computes the solution of a real symmetric or
complex Hermitian positive definite banded system of linear equations, with one or many right-hand
sides, assuming that the coefficient matrix has already been factorized by nag sym bnd lin fac.

We write:

Ax = b, if there is one right-hand side b;

AX = B, if there are many right-hand sides (the columns of the matrix B).

The procedure also has options to return forward and backward error bounds for the computed solution
or solutions.

2 Usage

USE nag sym bnd lin sys

CALL nag sym bnd lin sol fac(uplo, a fac, b [, optional arguments])

2.1 Interfaces

Distinct interfaces are provided for each of the 4 combinations of the following cases:

Real / complex data

Real data: a fac, b and the optional argument a are of type real(kind=wp).

Complex data: a fac, b and the optional argument a are of type complex(kind=wp).

One / many right-hand sides
One r.h.s.: b is a rank-1 array, and the optional arguments bwd err and fwd err are

scalars.
Many r.h.s.: b is a rank-2 array, and the optional arguments bwd err and fwd err are

rank-1 arrays.

3 Arguments

Note. All array arguments are assumed-shape arrays. The extent in each dimension must be exactly that required by
the problem. Notation such as ‘x(n)’ is used in the argument descriptions to specify that the array x must have exactly n

elements.

This procedure derives the values of the following problem parameters from the shape of the supplied
arrays.

n — the order of the matrix A

k ≥ 0 — the number of super-diagonals or sub-diagonals in the band matrix A

r — the number of right-hand sides

3.1 Mandatory Arguments

uplo — character(len=1), intent(in)

Input: specifies whether the upper or lower triangle of A was supplied to nag sym bnd lin fac,
and whether the factorization involves an upper triangular matrix U or a lower triangular matrix
L.
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If uplo = 'u' or 'U', the upper triangle was supplied, and was overwritten by an upper
triangular factor U ;

if uplo = 'l' or 'L', the lower triangle was supplied, and was overwritten by a lower triangular
factor L.

Constraints: uplo = 'u', 'U', 'l' or 'L'.

Note: the value of uplo must be the same as in the preceding call to nag sym bnd lin fac.

a fac(k + 1, n) — real(kind=wp) / complex(kind=wp), intent(in)

Input: the factorisation of A, as returned by nag sym bnd lin fac.

b(n) / b(n, r) — real(kind=wp) / complex(kind=wp), intent(inout)

Input: the right-hand side vector b or matrix B.

Output: overwritten on exit by the solution vector x or matrix X.

Constraints: b must be of the same type as a fac.

Note: if optional error bounds are requested then the solution returned is that computed by iterative
refinement.

3.2 Optional Arguments

Note. Optional arguments must be supplied by keyword, not by position. The order in which they are described below
may differ from the order in which they occur in the argument list.

bwd err / bwd err(r) — real(kind=wp), intent(out), optional

Output: if bwd err is a scalar, it returns the component-wise backward error bound for the single
solution vector x. Otherwise, bwd err(i) returns the component-wise backward error bound for
the ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if bwd err is present, the original matrix A must be supplied in a; if b has rank 1,
bwd err must be a scalar; if b has rank 2, bwd err must be a rank-1 array.

fwd err / fwd err(r) — real(kind=wp), intent(out), optional

Output: if fwd err is a scalar, it returns an estimated bound for the forward error in the single
solution vector x. Otherwise, fwd err(i) returns an estimated bound for the forward error in the
ith solution vector, returned in the ith column of b, for i = 1, 2, . . . , r.

Constraints: if fwd err is present, the original matrix A must be supplied in a; if b has rank 1,
fwd err must be a scalar; if b has rank 2, fwd err must be a rank-1 array.

a(k + 1, n) — real(kind=wp) / complex(kind=wp), intent(in), optional

Input: the original coefficient matrix A, as supplied to nag sym bnd lin fac.

Constraints: a must be present if either bwd err or fwd err is present; a must be of the same type
and rank as a fac.

error — type(nag error), intent(inout), optional

The NAG fl90 error-handling argument. See the Essential Introduction, or the module document
nag error handling (1.2). You are recommended to omit this argument if you are unsure how to
use it. If this argument is supplied, it must be initialized by a call to nag set error before this
procedure is called.
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4 Error Codes

Fatal errors (error%level = 3):

error%code Description

301 An input argument has an invalid value.

302 An array argument has an invalid shape.

303 Array arguments have inconsistent shapes.

305 Invalid absence of an optional argument.

320 The procedure was unable to allocate enough memory.

Failures (error%level = 2):

error%code Description

201 Matrix not positive definite.

The supplied array a fac does not contain a valid Cholesky factorization, indicating
that the original matrix A was not positive definite. No solutions or error bounds are
computed.

5 Examples of Usage

A complete example of the use of this procedure appears in Example 2 of this module document.

6 Further Comments

6.1 Algorithmic Detail

The solution x is computed by forward and backward substitution. If uplo = 'u', UHy = b is solved
for y, and then Ux = b is solved for x. A similar method is used if uplo = 'l'.

If error bounds are requested (that is, fwd err or bwd err is present), iterative refinement of the solution
is performed (in working precision), to reduce the backward error as far as possible.

The algorithms are derived from LAPACK (see Anderson et al. [1]).

6.2 Accuracy

The accuracy of the computed solution is given by the forward and backward error bounds which are
returned in the optional arguments fwd err and bwd err.

The backward error bound bwd err is rigorous; the forward error bound fwd err is an estimate, but is
almost always satisfied.

For each right-hand side b, the computed solution x̂ is the exact solution of a perturbed system of
equations (A+ E)x̂ = b. Assuming uplo = 'u':

|E| ≤ c(k + 1)ε|UH | |U |

where c(k + 1) is a modest linear function of k + 1, and ε = EPSILON(1.0 wp). This assumes k ¿ n.

The condition number κ∞(A) gives a general measure of the sensitivity of the solution of Ax = b, either
to uncertainties in the data or to rounding errors in the computation. An estimate of the reciprocal
of κ∞(A) is returned by nag sym bnd lin fac in its optional argument rcond. However, forward error
bounds derived using this condition number may be more pessimistic than the bounds returned in
fwd err, if present.

If the reciprocal of the condition number is less than EPSILON(1.0 wp), then A is singular to working
precision; if the factorization is used to solve a system of linear equations, the computed solution may
have no meaningful accuracy and should be treated with great caution.
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6.3 Timing

The number of real floating-point operations required to compute the solutions is roughly 4nkr if A is
real, and 16nkr if A is complex, assuming nÀ k.

To compute the error bounds fwd err and bwd err usually requires about 5 times as much work.
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Example 1: Solution of a Real Symmetric Positive Definite

Banded System of Linear Equations

Solve a real symmetric positive definite banded system of linear equations, with one right-hand side
Ax = b. Estimate the condition number of A, and forward and backward error bounds on the computed
solutions. This example calls the procedure nag sym bnd lin sol.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_bnd_lin_sys_ex01

! Example Program Text for nag_sym_bnd_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_bnd_lin_sys, ONLY : nag_sym_bnd_lin_sol

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC KIND, MAX, MIN

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: i, j, k, n

REAL (wp) :: bwd_err, fwd_err, rcond

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: a(:,:), b(:)

! .. Executable Statements ..

WRITE (nag_std_out,*) &

’Example Program Results for nag_sym_bnd_lin_sys_ex01’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, k

READ (nag_std_in,*) uplo

ALLOCATE (a(k+1,n),b(n)) ! Allocate storage

SELECT CASE (uplo)

CASE (’L’,’l’)

DO i = 1, n

READ (nag_std_in,*) (a(1+i-j,j),j=MAX(1,i-k),i)

END DO

CASE (’U’,’u’)

DO i = 1, n

READ (nag_std_in,*) (a(k+1+i-j,j),j=i,MIN(n,i+k))

END DO

END SELECT

READ (nag_std_in,*) b

! Solve the system of equations

CALL nag_sym_bnd_lin_sol(uplo,a,b,bwd_err=bwd_err,fwd_err=fwd_err, &

rcond=rcond)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,’’kappa(A) (1/rcond)’’/2X,ES11.2)’) 1/rcond
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WRITE (nag_std_out,*)

WRITE (nag_std_out,’(a,100(/f12.4:))’) ’ Solution’, b

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Backward error bound’

WRITE (nag_std_out,’(2X,4ES11.2)’) bwd_err

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Forward error bound (estimate)’

WRITE (nag_std_out,’(2X,4ES11.2)’) fwd_err

DEALLOCATE (a,b) ! Deallocate storage

END PROGRAM nag_sym_bnd_lin_sys_ex01

2 Program Data

Example Program Data for nag_sym_bnd_lin_sys_ex01

4 1 :Value of n and k

’L’ :Value of uplo

5.49

2.68 5.63

-2.39 2.60

-2.22 5.17 :End of Matrix A

22.09

9.31

-5.24

11.83 :End of right-hand side vector b

3 Program Results

Example Program Results for nag_sym_bnd_lin_sys_ex01

kappa(A) (1/rcond)

7.42E+01

Solution

5.0000

-2.0000

-3.0000

1.0000

Backward error bound

4.43E-17

Forward error bound (estimate)

3.84E-14
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Example 2: Factorization of a Hermitian Positive Definite

Band Matrix and Solution of a Related System of

Linear Equations

Solve a complex Hermitian positive definite banded system of linear equations, with many right-hand
sides AX = B. Estimate forward and backward error bounds on the computed solution. This example
calls nag sym bnd lin fac to factorize A, then nag sym bnd lin sol fac to solve the equations using
the factorization.

1 Program Text

Note. The listing of the example program presented below is double precision. Single precision users are referred to
Section 5.2 of the Essential Introduction for further information.

PROGRAM nag_sym_bnd_lin_sys_ex02

! Example Program Text for nag_sym_bnd_lin_sys

! NAG fl90, Release 4. NAG Copyright 2000.

! .. Use Statements ..

USE nag_examples_io, ONLY : nag_std_in, nag_std_out

USE nag_sym_bnd_lin_sys, ONLY : nag_sym_bnd_lin_fac, &

nag_sym_bnd_lin_sol_fac

USE nag_write_mat, ONLY : nag_write_gen_mat, nag_write_bnd_mat

! .. Implicit None Statement ..

IMPLICIT NONE

! .. Intrinsic Functions ..

INTRINSIC EPSILON, KIND, MAX, MIN, SCALE

! .. Parameters ..

INTEGER, PARAMETER :: wp = KIND(1.0D0)

! .. Local Scalars ..

INTEGER :: det_exp, i, j, k, ku, n, nrhs

REAL (wp) :: det_frac, rcond

CHARACTER (1) :: uplo

! .. Local Arrays ..

REAL (wp), ALLOCATABLE :: bwd_err(:), fwd_err(:)

COMPLEX (wp), ALLOCATABLE :: a(:,:), a_fac(:,:), b(:,:)

! .. Executable Statements ..

WRITE (nag_std_out,*) ’Example Program Results for nag_sym_lin_sys_ex02’

READ (nag_std_in,*) ! Skip heading in data file

READ (nag_std_in,*) n, k, nrhs

READ (nag_std_in,*) uplo

ALLOCATE (a(k+1,n),b(n,nrhs),a_fac(k+1,n),bwd_err(nrhs),fwd_err(nrhs))

! Allocate storage

a = 0.0_wp

SELECT CASE (uplo)

CASE (’L’,’l’)

ku = 0

DO i = 1, n

READ (nag_std_in,*) (a(1+i-j,j),j=MAX(1,i-k),i)

END DO

CASE (’U’,’u’)

ku = k

DO i = 1, n

READ (nag_std_in,*) (a(k+1+i-j,j),j=i,MIN(n,i+k))

END DO

END SELECT
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READ (nag_std_in,*) (b(i,:),i=1,n)

! Carry out the Cholesky factorisation

a_fac = a

CALL nag_sym_bnd_lin_fac(uplo,a_fac,rcond=rcond,det_frac=det_frac, &

det_exp=det_exp)

WRITE (nag_std_out,*)

CALL nag_write_bnd_mat(ku,a_fac,format=’(f7.4)’, &

title=’Details of Cholesky factorisation’)

WRITE (nag_std_out,*)

WRITE (nag_std_out, &

’(1X,’’determinant = SCALE(det_frac,det_exp) =’’,2X,ES11.3)’) &

SCALE(det_frac,det_exp)

WRITE (nag_std_out,*)

WRITE (nag_std_out,’(1X,’’kappa(A) (1/rcond)’’/2X,ES11.2)’) 1/rcond

WRITE (nag_std_out,*)

IF (rcond<EPSILON(1.0_wp)) THEN

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’ ** WARNING ** ’

WRITE (nag_std_out,*) &

’The matrix is almost singular: the solution may have no accuracy.’

WRITE (nag_std_out,*) &

’Examine the forward error bounds estimate returned in fwd_err.’

END IF

! Solve the system of equations

CALL nag_sym_bnd_lin_sol_fac(uplo,a_fac,b,a=a,bwd_err=bwd_err, &

fwd_err=fwd_err)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) &

’Result of the solution of the simultaneous equations’

WRITE (nag_std_out,*)

CALL nag_write_gen_mat(b,format=’(F7.4)’,int_col_labels=.TRUE., &

title=’Solutions (one per column)’)

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Backward error bounds’

WRITE (nag_std_out,’(2X,4(7X,ES11.2:))’) bwd_err

WRITE (nag_std_out,*)

WRITE (nag_std_out,*) ’Forward error bounds (estimates)’

WRITE (nag_std_out,’(2X,4(7X,ES11.2:))’) fwd_err

DEALLOCATE (a,b,a_fac,bwd_err,fwd_err) ! Deallocate storage

END PROGRAM nag_sym_bnd_lin_sys_ex02
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2 Program Data

Example Program Data for nag_sym_bnd_lin_sys_ex02

4 1 2 :Value of n,k,nrhs

’U’ :Value of uplo

(9.39,0.00) (1.08,-1.73)

(1.69, 0.00) (-0.04,0.29)

( 2.65,0.00) (-0.33,2.24)

( 2.17,0.00) :End of Matrix A

(-12.42,68.42) (54.30,-56.56)

( -9.93, 0.88) (18.32, 4.76)

(-27.30,-0.01) (-4.40, 9.97)

( 5.31,23.63) ( 9.43, 1.41) :End of right-hand sides (one per column)

3 Program Results

Example Program Results for nag_sym_lin_sys_ex02

Details of Cholesky factorisation

( 3.0643, 0.0000) ( 0.3524,-0.5646)

( 1.1167, 0.0000) (-0.0358, 0.2597)

( 1.6066, 0.0000) (-0.2054, 1.3942)

( 0.4289, 0.0000)

determinant = SCALE(det_frac,det_exp) = 5.561E+00

kappa(A) (1/rcond)

1.22E+02

Result of the solution of the simultaneous equations

Solutions (one per column)

1 2

(-1.0000, 8.0000) ( 5.0000,-6.0000)

( 2.0000,-3.0000) ( 2.0000, 3.0000)

(-4.0000,-5.0000) (-8.0000, 4.0000)

( 7.0000, 6.0000) (-1.0000,-7.0000)

Backward error bounds

1.84E-16 3.28E-16

Forward error bounds (estimates)

3.63E-14 2.20E-14
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Additional Examples

Not all example programs supplied with NAG fl90 appear in full in this module document. The following
additional examples, associated with this module, are available.

nag sym bnd lin sys ex03

Solution of a real symmetric positive definite banded system of linear equations, with many right-
hand sides.

nag sym bnd lin sys ex04

Solution of a complex Hermitian positive definite banded system of linear equations, with one
right-hand side.

nag sym bnd lin sys ex05

Factorization of a real symmetric positive definite band matrix, and use of the factorization to
solve a system of linear equations with many right-hand sides.

nag sym bnd lin sys ex06

Solution of a complex Hermitian positive definite banded system of linear equations, with many
right-hand sides.
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