1 Purpose
s14ac returns a value of the function $\psi(x) - \ln x$, where ψ is the psi function $\psi(x) = \frac{d}{dx} \ln \Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$.

2 Syntax

```
[result, ifail] = s14ac(x)
```

3 Description
s14ac returns a value of the function $\psi(x) - \ln x$. The psi function is computed without the logarithmic term so that when x is large, sums or differences of psi functions may be computed without unnecessary loss of precision, by analytically combining the logarithmic terms. For example, the difference $d = \psi(x + \frac{1}{2}) - \psi(x)$ has an asymptotic behaviour for large x given by

$$d \sim \ln(x + \frac{1}{2}) - \ln x + O\left(\frac{1}{x^2}\right) \sim \ln \left(1 + \frac{1}{2x}\right) \sim \frac{1}{2x}.$$

Computing d directly would amount to subtracting two large numbers which are close to $\ln(x + \frac{1}{2})$ and $\ln x$ to produce a small number close to $\frac{1}{2x}$, resulting in a loss of significant digits. However, using this function to compute $f(x) = \psi(x) - \ln x$, we can compute $d = f(x + \frac{1}{2}) - f(x) + \ln(1 + \frac{1}{2x})$, and the dominant logarithmic term may be computed accurately from its power series when x is large. Thus we avoid the unnecessary loss of precision.

The function is derived from the function PSIFN in Amos (1983).

4 References

5 Parameters
5.1 Compulsory Input Parameters
1: x – double scalar
 The argument x of the function.
 Constraint: $x > 0.0$.

5.2 Optional Input Parameters
None.

5.3 Input Parameters Omitted from the MATLAB Interface
None.
5.4 Output Parameters

1: result – double scalar
 The result of the function.

2: ifail – int32 scalar
 ifail = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

ifail = 1
 On entry, x ≤ 0.0. s14ac returns the value zero.

ifail = 2
 No result is computed because underflow is likely. The value of x is too large. s14ac returns the value zero.

ifail = 3
 No result is computed because overflow is likely. The value of x is too small. s14ac returns the value zero.

7 Accuracy

All constants in s14ac are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used \(t \), then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \).

With the above proviso, results returned by this function should be accurate almost to full precision, except at points close to the zero of \(\psi(x) \), \(x \approx 1.461632 \), where only absolute rather than relative accuracy can be obtained.

8 Further Comments

None.

9 Example

```matlab
x = 0.1;
[result, ifail] = s14ac(x)
result = -8.1212
ifail = 0
```