NAG Toolbox for Matlab

s15ae

1 Purpose
s15ae returns the value of the error function \(\text{erf}(x) \), via the function name.

2 Syntax
\[
\begin{align*}
[\text{result}, \text{ifail}] = \text{s15ae}(x)
\end{align*}
\]

3 Description
s15ae calculates an approximate value for the error function
\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, dt = 1 - \text{erfc}(x).
\]

Let \(\hat{x} \) be the root of the equation \(\text{erfc}(x) - \text{erf}(x) = 0 \) (then \(\hat{x} \approx 0.46875 \)). For \(|x| \leq \hat{x} \) the value of \(\text{erf}(x) \) is based on the following rational Chebyshev expansion for \(\text{erf}(x) \):
\[
\text{erf}(x) \approx x R_{\ell,m}(x^2),
\]

where \(R_{\ell,m} \) denotes a rational function of degree \(\ell \) in the numerator and \(m \) in the denominator.

For \(|x| > \hat{x} \) the value of \(\text{erf}(x) \) is based on a rational Chebyshev expansion for \(\text{erfc}(x) \): for \(\hat{x} < |x| \leq 4 \) the value is based on the expansion
\[
\text{erfc}(x) \approx e^{x^2} R_{\ell,m}(x);
\]
and for \(|x| > 4 \) it is based on the expansion
\[
\text{erfc}(x) \approx e^{x^2} \left(\frac{1}{\sqrt{\pi}} + \frac{1}{x^2} R_{\ell,m}(1/x^2) \right).
\]

For each expansion, the specific values of \(\ell \) and \(m \) are selected to be minimal such that the maximum relative error in the expansion is of the order \(10^{-d} \), where \(d \) is the maximum number of decimal digits that can be accurately represented for the particular implementation (see x02be).

For \(|x| \geq x_{\text{hi}} \) there is a danger of setting underflow in \(\text{erfc}(x) \). For \(x \geq x_{\text{hi}} \), s15ae returns \(\text{erf}(x) = 1 \); for \(x \leq -x_{\text{hi}} \) it returns \(\text{erf}(x) = -1 \).

4 References

5 Parameters
5.1 Compulsory Input Parameters
1: \(x \) – double scalar
 The argument \(x \) of the function.

5.2 Optional Input Parameters
None.
5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: result – double scalar
 The result of the function.

2: ifail – int32 scalar
 ifail = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

There are no failure exits from s15ae. The parameter ifail has been included for consistency with other functions in this chapter.

7 Accuracy

See Section 7 in s15ad.

8 Further Comments

None.

9 Example

```matlab
x = -6;
[result, ifail] = s15ae(x)
```

```
result =
  -1
ifail =
   0
```