NAG Toolbox for Matlab

s15ag

1 Purpose
s15ag returns the value of the scaled complementary error function $\text{erfcx}(x)$, via the function name.

2 Syntax

$$[\text{result, } \text{ifail}] = \text{s15ag}(x)$$

3 Description
s15ag calculates an approximate value for the scaled complementary error function

$$\text{erfcx}(x) = e^{-x^2} \text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt = e^{-x^2} (1 - \text{erf}(x)).$$

Let \hat{x} be the root of the equation $\text{erfc}(x) - \text{erf}(x) = 0$ (then $\hat{x} \approx 0.46875$). For $|x| \leq \hat{x}$ the value of $\text{erfcx}(x)$ is based on the following rational Chebyshev expansion for $\text{erf}(x)$:

$$\text{erf}(x) \approx x R_{\ell,m}(x^2),$$

where $R_{\ell,m}$ denotes a rational function of degree ℓ in the numerator and m in the denominator.

For $|x| > \hat{x}$ the value of $\text{erfcx}(x)$ is based on a rational Chebyshev expansion for $\text{erfc}(x)$: for $\hat{x} < |x| \leq 4$ the value is based on the expansion

$$\text{erfc}(x) \approx e^{-x^2} R_{\ell,m}(x);$$

and for $|x| > 4$ it is based on the expansion

$$\text{erfc}(x) \approx e^{1/2} \left(\frac{1}{\sqrt{\pi}} + \frac{1}{x^2} R_{\ell,m}(1/x^2) \right).$$

For each expansion, the specific values of ℓ and m are selected to be minimal such that the maximum relative error in the expansion is of the order 10^{-d}, where d is the maximum number of decimal digits that can be accurately represented for the particular implementation (see x02be).

Asymptotically, $\text{erfcx}(x) \sim 1/(\sqrt{\pi} \text{abs}(x))$. There is a danger of setting underflow in $\text{erfcx}(x)$ whenever $x \geq x_{\text{hi}} = \min(x_{\text{huge}}, 1/(\sqrt{\pi} x_{\text{tiny}}))$, where x_{huge} is the largest positive model number (see x02al) and x_{tiny} is the smallest positive model number (see x02ak). In this case s15ag exits with $\text{ifail} = 1$ and returns $\text{erfcx}(x) = 0$. For x in the range $1/(2\sqrt{\epsilon}) \leq x < x_{\text{hi}}$, where ϵ is the machine precision, the asymptotic value $1/(\sqrt{\pi} \text{abs}(x))$ is returned for $\text{erfcx}(x)$ and s15ag exits with $\text{ifail} = 2$.

There is a danger of setting overflow in e^{-x^2} whenever $x < x_{\text{neg}} = -\sqrt{\log(x_{\text{huge}}/2)}$. In this case s15ag exits with $\text{ifail} = 3$ and returns $\text{erfcx}(x) = x_{\text{huge}}$.

The values of x_{hi}, $1/(2\sqrt{\epsilon})$ and x_{neg} are given in the Users’ Note for your implementation.

4 References
5 Parameters

5.1 Compulsory Input Parameters

1: \(x \) – double scalar
 The argument \(x \) of the function.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.

5.4 Output Parameters

1: \(\text{result} \) – double scalar
 The result of the function.

2: \(\text{ifail} \) – int32 scalar
 \(\text{ifail} = 0 \) unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Note: s15ag may return useful information for one or more of the following detected errors or warnings.

Errors or warnings detected by the function:

\(\text{ifail} = 1 \)

On entry, \(x \geq x_{\text{hi}} \) (see Section 3). On soft failure the function value returned is 0.

\(\text{ifail} = 2 \)

On entry, \(1/(2\sqrt{e}) \leq x < x_{\text{hi}} \) (see Section 3). On soft failure the function value returned is \(1/(\sqrt{\pi} \text{abs}(x)) \).

\(\text{ifail} = 3 \)

On entry, \(x < x_{\text{neg}} \) (see Section 3). On soft failure the function value returned is the largest positive model number.

7 Accuracy

The relative error in computing \(\text{erfcx}(x) \) may be estimated by evaluating

\[
E = \frac{\text{erfcx}(x) - e^2 \sum_{n=1}^{\infty} I^n \text{erfc}(x)}{\text{erfcx}(x)},
\]

where \(I^n \) denotes repeated integration. Empirical results suggest that on the interval \((x, 2)\) the loss in base \(b \) significant digits for maximum relative error is around 3.3, while for root-mean-square relative error on that interval it is 1.2 (see x02bh for the definition of the model parameter \(b \)). On the interval \((2, 20)\) the values are around 2.0 for maximum and 0.05 for root-mean-square relative errors; note that on these two intervals \(\text{erfc}(x) \) is the primary computation. See also Section 7 in s15ad.
8 Further Comments

None.

9 Example

```matlab
x = [-30.0; -6.0; -4.5; -1.0; 1.0; 4.5; 6.0; 7.0e7];
result = zeros(8, 1);
ifail = zeros(8, 1, 'int32');
for i=1:8
    [result(i), ifail(i)] = s15ag(x(i));
end
fprintf(' x erfcx(x) ifail
');
for i=1:8
    fprintf('%13.5e %13.5e %d
', x(i), result(i), ifail(i));
end
% The first number returned is too big to be input into Matlab
% Compare the logs to avoid differences in least significant digit
```

Warning: s15ag returned a non-zero warning or error indicator (3)

Warning: s15ag returned a non-zero warning or error indicator (2)

```matlab
x erfcx(x) ifail
-3.00000e+01  1.79769e+308  3
-6.00000e+00  8.62246e+15   0
-4.50000e+00  1.24593e+09   0
-1.00000e+00  5.00898e+00   0
 1.00000e+00  4.27584e-01   0
 4.50000e+00  1.22485e-01   0
 6.00000e+00  9.27766e-02   0
 7.00000e+07  8.05985e-09   2
```