NAG Toolbox for Matlab

s17de

1 Purpose
s17de returns a sequence of values for the Bessel functions \(J_{\nu+n}(z) \) for complex \(z \), non-negative \(\nu \) and \(n = 0, 1, \ldots, N - 1 \), with an option for exponential scaling.

2 Syntax

\[
[cy, nz, ifail] = s17de(fnu, z, n, scal)
\]

3 Description
s17de evaluates a sequence of values for the Bessel function \(J_{\nu}(z) \), where \(z \) is complex, \(-\pi < \arg z \leq \pi\), and \(\nu \) is the real, non-negative order. The \(N \)-member sequence is generated for orders \(\nu, \nu + 1, \ldots, \nu + N - 1 \). Optionally, the sequence is scaled by the factor \(e^{-|\text{Im}(z)|} \).

Note: although the function may not be called with \(\nu \) less than zero, for negative orders the formula \(J_{-\nu}(z) = J_{\nu}(z) \cos(\pi \nu) - Y_{\nu}(z) \sin(\pi \nu) \) may be used (for the Bessel function \(Y_{\nu}(z) \), see s17dc).

The function is derived from the function CBESJ in Amos (1986). It is based on the relations \(J_{\nu}(z) = e^{\nu \pi i/2} I_{\nu}(-iz), \text{Im}(z) \geq 0.0, \) and \(J_{\nu}(z) = e^{-\nu \pi i/2} I_{\nu}(iz), \text{Im}(z) < 0.0, \).

The Bessel function \(I_{\nu}(z) \) is computed using a variety of techniques depending on the region under consideration.

When \(N \) is greater than 1, extra values of \(J_{\nu}(z) \) are computed using recurrence relations.

For very large \(|z| \) or \((\nu + N - 1)\), argument reduction will cause total loss of accuracy, and so no computation is performed. For slightly smaller \(|z| \) or \((\nu + N - 1)\), the computation is performed but results are accurate to less than half of machine precision. If \(\text{Im}(z) \) is large, there is a risk of overflow and so no computation is performed. In all the above cases, a warning is given by the function.

4 References

5 Parameters

5.1 Compulsory Input Parameters

1: \(\text{fnu} – \text{double scalar} \)

\(\nu \), the order of the first member of the sequence of functions.

Constraint: \(\text{fnu} \geq 0.0. \)

2: \(\text{z} – \text{complex scalar} \)

The argument \(z \) of the functions.

3: \(\text{n} – \text{int32 scalar} \)

\(N \), the number of members required in the sequence \(J_{\nu}(z), J_{\nu+1}(z), \ldots, J_{\nu+N-1}(z) \).

Constraint: \(n \geq 1. \)
scal – string
The scaling option.
scal = 'U'
 The results are returned unscaled.
scal = 'S'
The results are returned scaled by the factor $e^{-|\text{Im}(z)|}$.
Constraint: scal = 'U' or 'S'.

5.2 Optional Input Parameters
None.

5.3 Input Parameters Omitted from the MATLAB Interface
None.

5.4 Output Parameters
1: cy(n) – complex array
 The N required function values: $cy(i)$ contains $J_{\nu+\ell-1}(z)$, for $i = 1, 2, \ldots, N$.

2: nz – int32 scalar
 The number of components of cy that are set to zero due to underflow. If nz > 0, then elements $cy(n - nz + 1), cy(n - nz + 2), \ldots, cy(n)$ are set to zero.

3: ifail – int32 scalar
 ifail = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings
Errors or warnings detected by the function:

ifail = 1
 On entry, fnu < 0.0,
 or n < 1,
 or scal ≠ 'U' or 'S'.

ifail = 2
 No computation has been performed due to the likelihood of overflow, because $\text{Im}(z)$ is larger than a machine-dependent threshold value. This error exit can only occur when scal = 'U'.

ifail = 3
 The computation has been performed, but the errors due to argument reduction in elementary functions make it likely that the results returned by s17de are accurate to less than half of machine precision. This error exit may occur if either $\text{abs}(z)$ or fnu + n - 1 is greater than a machine-dependent threshold value.

ifail = 4
 No computation has been performed because the errors due to argument reduction in elementary functions mean that all precision in results returned by s17de would be lost. This error exit may occur when either $\text{abs}(z)$ or fnu + n - 1 is greater than a machine-dependent threshold value.
ifail = 5

No results are returned because the algorithm termination condition has not been met. This may occur because the parameters supplied to s17de would have caused overflow or underflow.

7 Accuracy

All constants in s17de are given to approximately 18 digits of precision. Calling the number of digits of precision in the floating-point arithmetic being used \(t \), then clearly the maximum number of correct digits in the results obtained is limited by \(p = \min(t, 18) \). Because of errors in argument reduction when computing elementary functions inside s17de, the actual number of correct digits is limited, in general, by \(p - s \), where \(s \approx \max(1, |\log_{10}|z|, |\log_{10}\nu|) \) represents the number of digits lost due to the argument reduction. Thus the larger the values of \(|z| \) and \(\nu \), the less the precision in the result. If s17de is called with \(n > 1 \), then computation of function values via recurrence may lead to some further small loss of accuracy.

If function values which should nominally be identical are computed by calls to s17de with different base values of \(\nu \) and different \(n \), the computed values may not agree exactly. Empirical tests with modest values of \(\nu \) and \(z \) have shown that the discrepancy is limited to the least significant 3 – 4 digits of precision.

8 Further Comments

The time taken for a call of s17de is approximately proportional to the value of \(n \), plus a constant. In general it is much cheaper to call s17de with \(n \) greater than 1, rather than to make \(N \) separate calls to s17de.

Paradoxically, for some values of \(z \) and \(\nu \), it is cheaper to call s17de with a larger value of \(n \) than is required, and then discard the extra function values returned. However, it is not possible to state the precise circumstances in which this is likely to occur. It is due to the fact that the base value used to start recurrence may be calculated in different regions for different \(n \), and the costs in each region may differ greatly.

Note that if the function required is \(J_0(x) \) or \(J_1(x) \), i.e., \(\nu = 0.0 \) or 1.0, where \(x \) is real and positive, and only a single unscaled function value is required, then it may be much cheaper to call s17ae or s17af respectively.

9 Example

```matlab
fnu = 0;
z = complex(0.3, +0.4);
n = int32(2);
scal = 'U';
[cy, nz, ifail] = s17de(fnu, z, n, scal)
```

<table>
<thead>
<tr>
<th>cy</th>
<th>nz</th>
<th>ifail</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0167 - 0.0605i</td>
<td>0.1573 + 0.1972i</td>
<td>0</td>
</tr>
</tbody>
</table>

ifail = 0