1 Purpose

s18ae returns the value of the modified Bessel Function $I_0(x)$, via the function name.

2 Syntax

\[[\text{result}, \text{ifail}] = \text{s18ae}(x) \]

3 Description

s18ae evaluates an approximation to the modified Bessel Function of the first kind $I_0(x)$.

Note: $I_0(-x) = I_0(x)$, so the approximation need only consider $x \geq 0$.

The function is based on three Chebyshev expansions:

For $0 < x \leq 4$,

\[I_0(x) = e^x \sum_{r=0}^{\infty} a_r T_r(t), \quad \text{where } t = 2 \left(\frac{x}{4} \right) - 1. \]

For $4 < x \leq 12$,

\[I_0(x) = e^x \sum_{r=0}^{\infty} b_r T_r(t), \quad \text{where } t = \frac{x - 8}{4}. \]

For $x > 12$,

\[I_0(x) = \frac{e^x}{\sqrt{x}} \sum_{r=0}^{\infty} c_r T_r(t), \quad \text{where } t = 2 \left(\frac{12}{x} \right) - 1. \]

For small x, $I_0(x) \approx 1$. This approximation is used when x is sufficiently small for the result to be correct to machine precision.

For large x, the function must fail because of the danger of overflow in calculating e^x.

4 References

5 Parameters

5.1 Compulsory Input Parameters

1: \(x \) – double scalar

 The argument x of the function.

5.2 Optional Input Parameters

None.

5.3 Input Parameters Omitted from the MATLAB Interface

None.
5.4 Output Parameters
1: result – double scalar
 The result of the function.
2: ifail – int32 scalar
 ifail = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings
Errors or warnings detected by the function:

ifail = 1
 x is too large. On soft failure the function returns the approximate value of $I_0(x)$ at the nearest
 valid argument.

7 Accuracy
Let δ and ϵ be the relative errors in the argument and result respectively.

If δ is somewhat larger than the machine precision (i.e., if δ is due to data errors etc.), then ϵ and δ are
approximately related by:

$$\epsilon \simeq \frac{|xI_1(x)|}{I_0(x)} \delta.$$

Figure 1 shows the behaviour of the error amplification factor

$$\frac{|xI_1(x)|}{I_0(x)}.$$

However if δ is of the same order as machine precision, then rounding errors could make ϵ slightly larger
than the above relation predicts.
For small x the amplification factor is approximately $\frac{x^2}{2}$, which implies strong attenuation of the error, but in general ϵ can never be less than the machine precision.

For large x, $\epsilon \approx x\delta$ and we have strong amplification of errors. However the function must fail for quite moderate values of x, because $I_0(x)$ would overflow; hence in practice the loss of accuracy for large x is not excessive. Note that for large x the errors will be dominated by those of the standard function EXP.

8 Further Comments

None.

9 Example

```matlab
x = 0;
[result, ifail] = s18ae(x)
```

```
result = 1
ifail = 0
```