NAG Toolbox for Matlab

s21be

1 Purpose

s21be returns a value of the classical (Legendre) form of the incomplete elliptic integral of the first kind, via the function name.

2 Syntax

[result, ifail] = s21be(phi, dm)

3 Description

s21be calculates an approximation to the integral

\[F(\phi \mid m) = \int_0^{\phi} (1 - m \sin^2 \theta)^{-\frac{1}{2}} d\theta, \]

where \(0 \leq \phi \leq \frac{\pi}{2} \), \(m \sin^2 \phi \leq 1 \) and \(m \) and \(\sin \phi \) may not both equal one.

The integral is computed using the symmetrised elliptic integrals of Carlson (Carlson (1979) and Carlson (1988)). The relevant identity is

\[F(\phi \mid m) = \sin \phi R_F(q, r, 1), \]

where \(q = \cos^2 \phi \), \(r = 1 - m \sin^2 \phi \) and \(R_F \) is the Carlson symmetrised incomplete elliptic integral of the first kind (see s21bb).

4 References

Carlson B C (1979) Computing elliptic integrals by duplication Numerische Mathematik 33 1–16

5 Parameters

5.1 Compulsory Input Parameters

1: \(\phi \) – double scalar
2: \(m \) – double scalar

The arguments \(\phi \) and \(m \) of the function.

Constraints:

\[
0.0 \leq \phi \leq \frac{\pi}{2}; \\
\text{dm} \times \sin^2(\phi) \leq 1.0; \\
\text{Only one of } \sin(\phi) \text{ and } \text{dm} \text{ may be } 1.0.
\]

Note that \(\text{dm} \times \sin^2(\phi) = 1.0 \) is allowable, as long as \(\text{dm} \neq 1.0. \)

5.2 Optional Input Parameters

None.
5.3 Input Parameters Omitted from the MATLAB Interface
None.

5.4 Output Parameters
1: result – double scalar
 The result of the function.

2: ifail – int32 scalar
 ifail = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings
Errors or warnings detected by the function:

ifail = 1
 phi lies outside the range $[0, \frac{\pi}{2}]$. On soft failure, the function returns zero.

ifail = 2
 On entry, $dm \times \sin^2(\phi) > 1$; the function is undefined. On soft failure, the function returns zero.

ifail = 3
 On entry, $\sin(\phi) = 1.0$ and $dm = 1.0$; the function is infinite. On soft failure, the function returns the largest machine number (see x02al).

7 Accuracy
In principle s21be is capable of producing full machine precision. However round-off errors in internal arithmetic will result in slight loss of accuracy. This loss should never be excessive as the algorithm does not involve any significant amplification of round-off error. It is reasonable to assume that the result is accurate to within a small multiple of the machine precision.

8 Further Comments
You should consult the S Chapter Introduction, which shows the relationship between this function and the Carlson definitions of the elliptic integrals. In particular, the relationship between the argument-constraints for both forms becomes clear.

For more information on the algorithm used to compute R_F, see the function document for s21bb.

If you wish to input a value of ϕ outside the range allowed by this function you should refer to Section 17.4 of Abramowitz and Stegun (1972) for useful identities.

9 Example

```matlab
result = zeros(3, 1);
ifail = zeros(3, 1, 'int32');
fprintf('
 phi dm s21be ifail
');
for ix = 1:3
    phi = ix*pi/6;
    dm = ix/4;
    [result(ix), ifail(ix)] = s21be(phi, dm);
    fprintf(' %7.2f %7.2f %12.4f %d
', phi, dm, result(ix), ifail(ix));
end
```
<table>
<thead>
<tr>
<th>phi</th>
<th>dm</th>
<th>s21be</th>
<th>ifail</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.52</td>
<td>0.25</td>
<td>0.5294</td>
<td>0</td>
</tr>
<tr>
<td>1.05</td>
<td>0.50</td>
<td>1.1424</td>
<td>0</td>
</tr>
<tr>
<td>1.57</td>
<td>0.75</td>
<td>2.1565</td>
<td>0</td>
</tr>
</tbody>
</table>