NAG Toolbox for Matlab

s30cb

1 Purpose

s30cb computes the price of a binary or digital cash-or-nothing option together with its sensitivities (Greeks).

2 Syntax

\[[p, \text{delta}, \text{gamma}, \text{vega}, \text{theta}, \text{rho}, \text{crho}, \text{vanna}, \text{charm}, \text{speed}, \text{colour}, \text{zomma}, \text{vomma}, \text{ifail}] = \text{s30cb}(\text{calput}, x, s, k, t, \sigma, r, q, 'm', m, 'n', n) \]

3 Description

s30cb computes the price of a binary or digital cash-or-nothing option, together with the Greeks or sensitivities, which are the partial derivatives of the option price with respect to certain of the other input parameters. This option pays a fixed amount, \(K \), at expiration if the option is in-the-money (see Section 2.4 in the S Chapter Introduction). For a strike price, \(X \), underlying asset price, \(S \), and time to expiry, \(T \), the payoff is therefore \(K \), if \(S > X \) for a call or \(S < X \) for a put. Nothing is paid out when this condition is not met.

The price of a call with volatility, \(\sigma \), risk-free interest rate, \(r \), and annualised dividend yield, \(q \), is

\[P_{\text{call}} = Ke^{-rT}\Phi(d_2) \]

and for a put,

\[P_{\text{put}} = Ke^{-rT}\Phi(-d_2) \]

where \(\Phi \) is the cumulative Normal distribution function,

\[\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} \exp(-y^2/2)dy \]

and

\[d_2 = \frac{\ln(S/X) + (r - q - \sigma^2/2)T}{\sigma\sqrt{T}} \]

4 References

Reiner E and Rubinstein M (1991) Unscrambling the binary code Risk 4

5 Parameters

5.1 Compulsory Input Parameters

1: \(\text{calput} \) – string

Determines whether the option is a call or a put.

\(\text{calput} = 'C' \)

A call. The holder has a right to buy.

\(\text{calput} = 'P' \)

A put. The holder has a right to sell.

Constraint: \(\text{calput} = 'C' \) or \('P' \).
2: \(x(m) \) – double array

m, the dimension of the array, must satisfy the constraint \(m \geq 1 \).

x(i) must contain \(X_i \), the \(i \)th strike price, for \(i = 1, 2, \ldots, m \).

Constraint: \(x(i) \geq z \) and \(x(i) \leq 1/z \), where \(z = \text{X02AMF()} \), the safe range parameter, for \(i = 1, 2, \ldots, m \).

3: \(s \) – double scalar

S, the price of the underlying asset.

Constraint: \(s \geq z \) and \(s \leq 1/z \), where \(z = \text{X02AMF()} \), the safe range parameter.

4: \(k \) – double scalar

The amount, \(K \), to be paid at expiration if the option is in-the-money, i.e., if \(s > x(i) \) when \(\text{calput} = 'C' \), or if \(s < x(i) \) when \(\text{calput} = 'P' \), for \(i = 1, 2, \ldots, m \).

Constraint: \(k \geq 0.0 \).

5: \(t(n) \) – double array

\(n \), the dimension of the array, must satisfy the constraint \(n \geq 1 \).

t(i) must contain \(T_i \), the \(i \)th time, in years, to expiry, for \(i = 1, 2, \ldots, n \).

Constraint: \(t(i) \geq z \), where \(z = \text{X02AMF()} \), the safe range parameter, for \(i = 1, 2, \ldots, n \).

6: \(\sigma \) – double scalar

\(\sigma \), the volatility of the underlying asset. Note that a rate of 15\% should be entered as 0.15.

Constraint: \(\sigma > 0.0 \).

7: \(r \) – double scalar

r, the annual risk-free interest rate, continuously compounded. Note that a rate of 5\% should be entered as 0.05.

Constraint: \(r \geq 0.0 \).

8: \(q \) – double scalar

\(q \), the annual continuous yield rate. Note that a rate of 8\% should be entered as 0.08.

Constraint: \(q \geq 0.0 \).

5.2 Optional Input Parameters

1: \(m \) – int32 scalar

Default: The dimension of the array \(x \).

the number of strike prices to be used.

Constraint: \(m \geq 1 \).

2: \(n \) – int32 scalar

Default: The dimension of the array \(t \).

the number of times to expiry to be used.

Constraint: \(n \geq 1 \).
5.3 Input Parameters Omitted from the MATLAB Interface

ldp

5.4 Output Parameters

1: \(p(ldp,n) \) – double array
The \(m \times n \) array \(p \) contains the computed option prices.

2: \(\text{delta}(ldp,n) \) – double array
The \(m \times n \) array \(\text{delta} \) contains the sensitivity, \(\frac{\partial P}{\partial S} \), of the option price to change in the price of the underlying asset.

3: \(\text{gamma}(ldp,n) \) – double array
The \(m \times n \) array \(\text{gamma} \) contains the sensitivity, \(\frac{\partial^2 P}{\partial S^2} \), of \(\text{delta} \) to change in the price of the underlying asset.

4: \(\text{vega}(ldp,n) \) – double array
The \(m \times n \) array \(\text{vega} \) contains the sensitivity, \(\frac{\partial P}{\partial \sigma} \), of the option price to change in the volatility of the underlying asset.

5: \(\text{theta}(ldp,n) \) – double array
The \(m \times n \) array \(\text{theta} \) contains the sensitivity, \(\frac{\partial P}{\partial T} \), of the option price to change in the time to expiry of the option.

6: \(\text{rho}(ldp,n) \) – double array
The \(m \times n \) array \(\text{rho} \) contains the sensitivity, \(\frac{\partial P}{\partial r} \), of the option price to change in the annual risk-free interest rate.

7: \(\text{crho}(ldp,n) \) – double array
The \(m \times n \) array \(\text{crho} \) containing the sensitivity, \(\frac{\partial P}{\partial \beta} \), of the option price to change in the annual cost of carry rate, \(\beta \), where \(\beta = r - q \).

8: \(\text{vanna}(ldp,n) \) – double array
The \(m \times n \) array \(\text{vanna} \) contains the sensitivity, \(\frac{\partial^2 P}{\partial S \partial \sigma} \), of \(\text{vega} \) to change in the price of the underlying asset or, equivalently, the sensitivity of \(\text{delta} \) to change in the volatility of the asset price.

9: \(\text{charm}(ldp,n) \) – double array
The \(m \times n \) array \(\text{charm} \) contains the sensitivity, \(-\frac{\partial^2 P}{\partial S \partial T} \), of \(\text{delta} \) to change in the time to expiry of the option.

10: \(\text{speed}(ldp,n) \) – double array
The \(m \times n \) array \(\text{speed} \) contains the sensitivity, \(\frac{\partial^3 P}{\partial S^3} \), of \(\text{gamma} \) to change in the price of the underlying asset.

11: \(\text{colour}(ldp,n) \) – double array
The \(m \times n \) array \(\text{colour} \) contains the sensitivity, \(-\frac{\partial^3 P}{\partial S^2 \partial T} \), of \(\text{gamma} \) to change in the time to expiry of the option.
12: \textbf{zomma}(l\textit{dp}, n) – double array

The $m \times n$ array \textit{zomma} contains the sensitivity, $\frac{\partial^3 P}{\partial k \partial S^2}$, of \textit{gamma} to change in the volatility of the underlying asset.

13: \textbf{vomma}(l\textit{dp}, n) – double array

The $m \times n$ array \textit{vomma} contains the sensitivity, $\frac{\partial^2 P}{\partial \sigma \partial S}$, of \textit{vega} to change in the volatility of the underlying asset.

14: \textbf{ifail} – int32 scalar

\textit{ifail} = 0 unless the function detects an error (see Section 6).

6 Error Indicators and Warnings

Errors or warnings detected by the function:

\text{ifail} = 1

On entry, \textit{calput} \neq 'C' or 'P'.

\text{ifail} = 2

On entry, $m \leq 0$.

\text{ifail} = 3

On entry, $n \leq 0$.

\text{ifail} = 4

On entry, $x(i) < z$ or $x(i) > 1/z$, where $z = \text{X02AMF}()$, the safe range parameter.

\text{ifail} = 5

On entry, $s < z$ or $s > 1/z$, where $z = \text{X02AMF}()$, the safe range parameter.

\text{ifail} = 6

On entry, $k < 0.0$.

\text{ifail} = 7

On entry, $t(i) < z$, where $z = \text{X02AMF}()$, the safe range parameter.

\text{ifail} = 8

On entry, $\text{sigma} \leq 0.0$.

\text{ifail} = 9

On entry, $r < 0.0$.

\text{ifail} = 10

On entry, $q < 0.0$.

\text{ifail} = 12

On entry, $l\text{dp} < m$.

7 Accuracy

The accuracy of the output is dependent on the accuracy of the cumulative Normal distribution function, Φ. This is evaluated using a rational Chebyshev expansion, chosen so that the maximum relative error in the expansion is of the order of the machine precision (see s15ab and s15ad). An accuracy close to machine precision can generally be expected.

8 Further Comments

None.

9 Example

```matlab
s30cb('C', 110.0, 5.0, 0.35, 0.05, 0.04, [87.0], [0.75], [p, delta, gamma, theta, rho, crho, vanna, charm, speed, colour, ... zomma, vomma, ifail] = s30cb('C', x, s, k, t, sigma, r, q);
fprintf('
Binary (Digital): Cash-or-Nothing
European Call :
Spot = 110.0000
Payout = 5.0000
Volatility = 0.3500
Rate = 0.0500
Dividend = 0.0400
Time to Expiry : 0.7500
Strike Price Delta Gamma Vega Theta Rho CRho
87.0000 3.5696 -0.0013 -4.2307 1.1788 3.8560
Strike Price Vanna Charm Speed Colour Zomma Vomma
87.0000 3.5696 -0.0514 0.0153 0.0000 -0.0019 0.0079 12.8874
```

Binary (Digital): Cash-or-Nothing
European Call :
Spot = 110.0000
Payout = 5.0000
Volatility = 0.3500
Rate = 0.0500
Dividend = 0.0400
Time to Expiry : 0.7500
Strike Price Delta Gamma Vega Theta Rho CRho
87.0000 3.5696 -0.0013 -4.2307 1.1788 3.8560
Strike Price Vanna Charm Speed Colour Zomma Vomma
87.0000 3.5696 -0.0514 0.0153 0.0000 -0.0019 0.0079 12.8874