S – Approximations of Special Functions
- S Introduction
- s01ba – ln((1+x))
- nag_specfun_log_shifted – s01ba
- s01ea – Complex exponential, e^z
- nag_specfun_exp_complex – s01ea
- s07aa – tan(x)
- nag_specfun_tan – s07aa
- s09aa – arcsin(x)
- nag_specfun_arcsin – s09aa
- s09ab – arccos(x)
- nag_specfun_arccos – s09ab
- s10aa – tanh(x)
- nag_specfun_tanh – s10aa
- s10ab – sinh(x)
- nag_specfun_sinh – s10ab
- s10ac – cosh(x)
- nag_specfun_cosh – s10ac
- s11aa – arctanh(x)
- nag_specfun_arctanh – s11aa
- s11ab – arcsinh(x)
- nag_specfun_arcsinh – s11ab
- s11ac – arccosh(x)
- nag_specfun_arccosh – s11ac
- s13aa – Exponential integral E_1(x)
- nag_specfun_integral_exp – s13aa
- s13ac – Cosine integral Ci((x))
- nag_specfun_integral_cos – s13ac
- s13ad – Sine integral Si((x))
- nag_specfun_integral_sin – s13ad
- s14aa – Gamma function
- nag_specfun_gamma – s14aa
- s14ab – Log gamma function, real argument
- nag_specfun_gamma_log_real – s14ab
- s14ac – psi (x)-ln(x)
- nag_specfun_polygamma – s14ac
- s14ad – Scaled derivatives of psi (x)
- nag_specfun_polygamma_deriv – s14ad
- s14ae – Polygamma function psi ^(n)(x) for real x
- nag_specfun_psi_deriv_real – s14ae
- s14af – Polygamma function psi ^(n)(z) for complex z
- nag_specfun_psi_deriv_complex – s14af
- s14ag – Logarithm of the gamma function ln( Gamma )(z), complex argument
- nag_specfun_gamma_log_complex – s14ag
- s14ah – Scaled log gamma function
- nag_specfun_gamma_log_scaled_real – s14ah
- s14ba – Incomplete gamma functions P(ax) and Q(ax)
- nag_specfun_gamma_incomplete – s14ba
- s15ab – Cumulative Normal distribution function P(x)
- nag_specfun_cdf_normal – s15ab
- s15ac – Complement of cumulative Normal distribution function Q(x)
- nag_specfun_compcdf_normal – s15ac
- s15ad – Complement of error function erfc((x))
- nag_specfun_erfc_real – s15ad
- s15ae – Error function erf((x))
- nag_specfun_erf_real – s15ae
- s15af – Dawson's integral
- nag_specfun_dawson – s15af
- s15ag – Scaled complement of error function, erfcx((x))
- nag_specfun_erfcx_real – s15ag
- s15dd – Scaled complex complement of error function, exp((-z^2))erfc((-iz))
- nag_specfun_erfc_complex – s15dd
- s17ac – Bessel function Y_0(x)
- nag_specfun_bessel_y0_real – s17ac
- s17ad – Bessel function Y_1(x)
- nag_specfun_bessel_y1_real – s17ad
- s17ae – Bessel function J_0(x)
- nag_specfun_bessel_j0_real – s17ae
- s17af – Bessel function J_1(x)
- nag_specfun_bessel_j1_real – s17af
- s17ag – Airy function Ai((x))
- nag_specfun_airy_ai_real – s17ag
- s17ah – Airy function Bi((x))
- nag_specfun_airy_bi_real – s17ah
- s17aj – Airy function Ai'((x))
- nag_specfun_airy_ai_deriv – s17aj
- s17ak – Airy function Bi'((x))
- nag_specfun_airy_bi_deriv – s17ak
- s17al – Zeros of Bessel functions J_ alpha (x), J'_ alpha (x), Y_ alpha (x) or Y'_ alpha (x)
- nag_specfun_bessel_zeros – s17al
- s17aq – Bessel function vectorized Y_0(x)
- nag_specfun_bessel_y0_real_vector – s17aq
- s17ar – Bessel function vectorized Y_1(x)
- nag_specfun_bessel_y1_real_vector – s17ar
- s17as – Bessel function vectorized J_0(x)
- nag_specfun_bessel_j0_real_vector – s17as
- s17at – Bessel function vectorized J_1(x)
- nag_specfun_bessel_j1_real_vector – s17at
- s17au – Airy function vectorized Ai((x))
- nag_specfun_airy_ai_real_vector – s17au
- s17av – Airy function vectorized Bi((x))
- nag_specfun_airy_bi_real_vector – s17av
- s17aw – Airy function vectorized Ai'((x))
- nag_specfun_airy_ai_deriv_vector – s17aw
- s17ax – Airy function vectorized Bi'((x))
- nag_specfun_airy_bi_deriv_vector – s17ax
- s17dc – Bessel functions Y_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
- nag_specfun_bessel_y_complex – s17dc
- s17de – Bessel functions J_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
- nag_specfun_bessel_j_complex – s17de
- s17dg – Airy functions Ai((z)) and Ai'((z)), complex z
- nag_specfun_airy_ai_complex – s17dg
- s17dh – Airy functions Bi((z)) and Bi'((z)), complex z
- nag_specfun_airy_bi_complex – s17dh
- s17dl – Hankel functions H_ nu +a^(j)(z), j=1,2, real a >= 0, complex z, nu =0,1,2, ...
- nag_specfun_hankel_complex – s17dl
- s18ac – Modified Bessel function K_0(x)
- nag_specfun_bessel_k0_real – s18ac
- s18ad – Modified Bessel function K_1(x)
- nag_specfun_bessel_k1_real – s18ad
- s18ae – Modified Bessel function I_0(x)
- nag_specfun_bessel_i0_real – s18ae
- s18af – Modified Bessel function I_1(x)
- nag_specfun_bessel_i1_real – s18af
- s18aq – Modified Bessel function vectorized K_0(x)
- nag_specfun_bessel_k0_real_vector – s18aq
- s18ar – Modified Bessel function vectorized K_1(x)
- nag_specfun_bessel_k1_real_vector – s18ar
- s18as – Modified Bessel function vectorized I_0(x)
- nag_specfun_bessel_i0_real_vector – s18as
- s18at – Modified Bessel function vectorized I_1(x)
- nag_specfun_bessel_i1_real_vector – s18at
- s18cc – Scaled modified Bessel function e^xK_0(x)
- nag_specfun_bessel_k0_scaled – s18cc
- s18cd – Scaled modified Bessel function e^xK_1(x)
- nag_specfun_bessel_k1_scaled – s18cd
- s18ce – Scaled modified Bessel function e^-|x|I_0(x)
- nag_specfun_bessel_i0_scaled – s18ce
- s18cf – Scaled modified Bessel function e^-|x|I_1(x)
- nag_specfun_bessel_i1_scaled – s18cf
- s18cq – Scaled modified Bessel function vectorized e^xK_0(x)
- nag_specfun_bessel_k0_scaled_vector – s18cq
- s18cr – Scaled modified Bessel function vectorized e^xK_1(x)
- nag_specfun_bessel_k1_scaled_vector – s18cr
- s18cs – Scaled modified Bessel function vectorized e^-|x|I_0(x)
- nag_specfun_bessel_i0_scaled_vector – s18cs
- s18ct – Scaled modified Bessel function vectorized e^-|x|I_1(x)
- nag_specfun_bessel_i1_scaled_vector – s18ct
- s18dc – Modified Bessel functions K_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
- nag_specfun_bessel_k_complex – s18dc
- s18de – Modified Bessel functions I_ nu +a(z), real a >= 0, complex z, nu =0,1,2, ...
- nag_specfun_bessel_i_complex – s18de
- s18gk – Bessel function of the 1st kind J_ alpha ±n(z)
- nag_specfun_bessel_j_seq_complex – s18gk
- s19aa – Kelvin function ber(x)
- nag_specfun_kelvin_ber – s19aa
- s19ab – Kelvin function bei(x)
- nag_specfun_kelvin_bei – s19ab
- s19ac – Kelvin function ker(x)
- nag_specfun_kelvin_ker – s19ac
- s19ad – Kelvin function kei(x)
- nag_specfun_kelvin_kei – s19ad
- s19an – Kelvin function vectorized ber(x)
- nag_specfun_kelvin_ber_vector – s19an
- s19ap – Kelvin function vectorized bei(x)
- nag_specfun_kelvin_bei_vector – s19ap
- s19aq – Kelvin function vectorized ker(x)
- nag_specfun_kelvin_ker_vector – s19aq
- s19ar – Kelvin function vectorized kei(x)
- nag_specfun_kelvin_kei_vector – s19ar
- s20ac – Fresnel integral S(x)
- nag_specfun_fresnel_s – s20ac
- s20ad – Fresnel integral C(x)
- nag_specfun_fresnel_c – s20ad
- s20aq – Fresnel integral vectorized S(x)
- nag_specfun_fresnel_s_vector – s20aq
- s20ar – Fresnel integral vectorized C(x)
- nag_specfun_fresnel_c_vector – s20ar
- s21ba – Degenerate symmetrised elliptic integral of 1st kind R_C(xy)
- nag_specfun_ellipint_symm_1_degen – s21ba
- s21bb – Symmetrised elliptic integral of 1st kind R_F(xyz)
- nag_specfun_ellipint_symm_1 – s21bb
- s21bc – Symmetrised elliptic integral of 2nd kind R_D(xyz)
- nag_specfun_ellipint_symm_2 – s21bc
- s21bd – Symmetrised elliptic integral of 3rd kind R_J(xyzr)
- nag_specfun_ellipint_symm_3 – s21bd
- s21be – Elliptic integral of 1st kind, Legendre form, F( phi | m)
- nag_specfun_ellipint_legendre_1 – s21be
- s21bf – Elliptic integral of 2nd kind, Legendre form,
E ( phi | m)
- nag_specfun_ellipint_legendre_2 – s21bf
- s21bg – Elliptic integral of 3rd kind, Legendre form, Pi (n; phi | m)
- nag_specfun_ellipint_legendre_3 – s21bg
- s21bh – Complete elliptic integral of 1st kind, Legendre form,
K (m)
- nag_specfun_ellipint_complete_1 – s21bh
- s21bj – Complete elliptic integral of 2nd kind, Legendre form,
E (m)
- nag_specfun_ellipint_complete_2 – s21bj
- s21ca – Jacobian elliptic functions sn, cn and dn of real argument
- nag_specfun_jacellip_real – s21ca
- s21cb – Jacobian elliptic functions sn, cn and dn of complex argument
- nag_specfun_jacellip_complex – s21cb
- s21cc – Jacobian theta functions theta _k(xq) of real argument
- nag_specfun_jactheta_real – s21cc
- s21da – General elliptic integral of 2nd kind F(zk'ab) of complex argument
- nag_specfun_ellipint_general_2 – s21da
- s22aa – Legendre functions of 1st kind
P_n^m(x)
or (P_n^m)^-(x)
- nag_specfun_legendre_p – s22aa
- s30aa – Black–Scholes–Merton option pricing formula
- nag_specfun_opt_bsm_price – s30aa
- s30ab – Black–Scholes–Merton option pricing formula with Greeks
- nag_specfun_opt_bsm_greeks – s30ab
- s30ba – Floating-strike lookback option pricing formula
- nag_specfun_opt_lookback_fls_price – s30ba
- s30bb – Floating-strike lookback option pricing formula
with Greeks
- nag_specfun_opt_lookback_fls_greeks – s30bb
- s30ca – Binary option: cash-or-nothing pricing formula
- nag_specfun_opt_binary_con_price – s30ca
- s30cb – Binary option: cash-or-nothing pricing formula
with Greeks
- nag_specfun_opt_binary_con_greeks – s30cb
- s30cc – Binary option: asset-or-nothing pricing formula
- nag_specfun_opt_binary_aon_price – s30cc
- s30cd – Binary option: asset-or-nothing pricing formula
with Greeks
- nag_specfun_opt_binary_aon_greeks – s30cd
- s30fa – Standard barrier option pricing formula
- nag_specfun_opt_barrier_std_price – s30fa
- s30ja – Jump-diffusion, Merton's model, option pricing formula
- nag_specfun_opt_jumpdiff_merton_price – s30ja
- s30jb – Jump-diffusion, Merton's model, option pricing formula
with Greeks
- nag_specfun_opt_jumpdiff_merton_greeks – s30jb
- s30na – Heston's model option pricing formula
- nag_specfun_opt_heston_price – s30na
- s30nb – Heston's model option pricing formula with Greeks
- nag_specfun_opt_heston_greeks – s30nb
- s30qc – American option: Bjerksund and Stensland pricing formula
- nag_specfun_opt_amer_bs_price – s30qc
- s30sa – Asian option: geometric continuous average rate pricing formula
- nag_specfun_opt_asian_geom_price – s30sa
- s30sb – Asian option: geometric continuous average rate pricing formula with Greeks
- nag_specfun_opt_asian_geom_greeks – s30sb