NAG C Library Chapter Introduction

f16 – NAG Interface to BLAS

Contents

1 Scope of the Chapter .. 2
2 Background to the Problems 2
3 Recommendations on Choice and Use of Available Functions 2
4 Index .. 2
5 Functions Withdrawn or Scheduled for Withdrawal 3
6 References .. 3
1 Scope of the Chapter
This chapter is concerned with basic linear algebra functions which perform elementary algebraic
operations involving vectors and matrices.

2 Background to the Problems
The functions in this chapter follow the specification of The BLAS Technical Forum Standard (2001).
They are called extensively as auxiliaries by functions in other chapters of the NAG Library, especially in
the linear algebra chapters. They are intended to be useful building-blocks for users of the Library who are
developing their own applications.

The vector functions are referred to as **Level-1** BLAS functions, the matrix-vector and matrix functions as
Level-2 BLAS functions, and the matrix-matrix functions as **Level-3** BLAS functions. The terminology
reflects the number of operations involved, so for example a Level-2 function involves \(0(n^2)\) operations,
for vectors and matrices of order \(n\).

In many implementations of the NAG Library, the functions in this chapter serve as interfaces to an
efficient machine-specific implementation of the BLAS, usually provided by the vendor of the machine.
Such implementations are stringently tested before being used with the NAG Library, to ensure that they
correctly meet the specifications of the BLAS, and that they return the desired accuracy.

3 Recommendations on Choice and Use of Available Functions
The functions in this chapter make available only some of the Basic Linear Algebra Subprograms which
carry out the low level operations required by linear algebra applications. These will not normally be
needed by the general user. The purpose of each function is described by its individual document.

It should be noted that, in some cases, The BLAS Technical Forum Standard (2001) extends the
functionality of earlier BLAS specifications. For example, **nag_daxpby** (f16ecc) carrying out the operation

\[y \leftarrow \alpha x + y \]

is replaced by **nag_daxpby** (f16ecc) which performs the operation

\[y \leftarrow \alpha x + \beta y. \]

The operator arguments **conj**, **diag**, **norm**, **order**, **side**, **trans** and **uplo** are defined as enumeration types.
The **order** argument allows for 2D arrays to be supplied in either row or column ordering. The precise
meaning of this for the packed and banded matrix storage schemes which are used by some of the
functions in this chapter is described in the f07 Chapter Introduction and the f08 Chapter Introduction.

Invalid values of arguments cause an error message to be returned via the NAG error handler **fail**.

Note that only a small subset of BLAS is presented at this mark. The full set of BLAS will be
documented at Mark 8.

4 Index
Level 1 (Vector) operations:
- Complex vector(s):
 - broadcast a scalar into a vector ... **nag_zload** (f16hbc)
- Integer vector(s):
 - broadcast a scalar into a vector ... **nag_iload** (f16dbc)
- Real vector(s):
 - broadcast a scalar into a vector ... **nag_dload** (f16fbc)
 - scale and add two vectors .. **nag_daxpby** (f16ecc)

Level 2 (Matrix-vector and matrix) operations:
- Complex matrix and vector(s):
 - compute a norm or the element of largest absolute value:
 - band matrix .. **nag_zgb_norm** (f16ubc)
 - general matrix .. **nag_zge_norm** (f16uac)
Hermitian band matrix .. nag_zhb_norm (f16uec)
Hermitian matrix .. nag_zhe_norm (f16ucc)
Hermitian matrix, packed form nag_zhp_norm (f16udc)
symmetric matrix .. nag_zsy_norm (f16ufc)
symmetric matrix, packed form nag_zsp_norm (f16ugc)
matrix initialisation .. nag_zge_load (f16thc)
 rank-2 update:
 matrix copy, rectangular or trapezoidal nag_zge_copy (f16tfc)
solution of a system of equations:
 triangular matrix .. nag_ztrsv (f16sjc)

Real matrix and vector(s):
 compute a norm or the element of largest absolute value:
 band matrix .. nag_dgb_norm (f16rbc)
 general matrix .. nag_dge_norm (f16rac)
 matrix initialisation ... nag_dge_load (f16qhc)
 symmetric band matrix nag_dsb_norm (f16rec)
 symmetric matrix .. nag_dsy_norm (f16rcc)
 symmetric matrix, packed form nag_dsp_norm (f16rdc)
 rank-2 update:
 matrix copy, rectangular or trapezoidal nag_dge_copy (f16qfc)
 solution of a system of equations:
 triangular matrix .. nag_dtrsv (f16pjc)

Level 3 (Matrix-matrix) operations:
Complex matrices:
 solution of triangular systems of equations nag_ztrsm (f16zjc)
Real matrices:
 solution of triangular systems of equations nag_dtrsm (f16yjc)

5 Functions Withdrawn or Scheduled for Withdrawal

None.

6 References