
NAG Library Function Document

nag_ode_ivp_adams_gen (d02cjc)

1 Purpose

nag_ode_ivp_adams_gen (d02cjc) integrates a system of first order ordinary differential equations over
a range with suitable initial conditions, using a variable-order, variable-step Adams' method until a
user-specified function, if supplied, of the solution is zero, and returns the solution at specified points, if
desired.

2 Specification

#include <nag.h>
#include <nagd02.h>

void nag_ode_ivp_adams_gen (Integer neq,

void (*fcn)(Integer neq, double x, const double y[], double f[],
Nag_User *comm),

double *x, double y[], double xend, double tol, Nag_ErrorControl err_c,

void (*output)(Integer neq, double *xsol, const double y[],
Nag_User *comm),

double (*g)(Integer neq, double x, const double y[], Nag_User *comm),

Nag_User *comm, NagError *fail)

3 Description

nag_ode_ivp_adams_gen (d02cjc) advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; yneq
� �

; i ¼ 1; 2; . . . ;neq;

from x ¼ x to x ¼ xend using a variable-order, variable-step Adams' method. The system is defined by
fcn, which evaluates fi in terms of x and y1; y2; . . . ; yneq. The initial values of y1; y2; . . . ; yneq must be
given at x ¼ x.

The solution is returned via output at specified points, if desired: this solution is obtained by C1

interpolation on solution values produced by the method. As the integration proceeds a check can be
made on the user-specified function g x; yð Þ to determine an interval where it changes sign. The position
of this sign change is then determined accurately. It is assumed that g x; yð Þ is a continuous function of
the variables, so that a solution of g x; yð Þ ¼ 0:0 can be determined by searching for a change in sign in
g x; yð Þ. The accuracy of the integration, the interpolation and, indirectly, of the determination of the
position where g x; yð Þ ¼ 0:0, is controlled by the arguments tol and err_c.

For a description of Adams' methods and their practical implementation see Hall and Watt (1976).

4 References

Hall G and Watt J M (ed.) (1976) Modern Numerical Methods for Ordinary Differential Equations
Clarendon Press, Oxford

5 Arguments

1: neq – Integer Input

On entry: the number of differential equations.

Constraint: neq � 1.

d02 – Ordinary Differential d02cjc

Mark 26 d02cjc.1

2: fcn – function, supplied by the user External Function

fcn must evaluate the first derivatives y0i (i.e., the functions fi) for given values of their
arguments x; y1; y2; . . . ; yneq.

The specification of fcn is:

void fcn (Integer neq, double x, const double y[], double f[],
Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the value of the independent variable x.

3: y½neq� – const double Input

On entry: y½i� 1� holds the value of the variable yi, for i ¼ 1; 2; . . . ; neq.

4: f½neq� – double Output

On exit: f½i� 1� must contain the value of fi, for i ¼ 1; 2; . . . ;neq.

5: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm ! p, to obtain the original
object's address with appropriate type. (See the argument comm below.)

3: x – double * Input/Output

On entry: the initial value of the independent variable x.

Constraint: x 6¼ xend.

On exit: if g is supplied, x contains the point where g x; yð Þ ¼ 0:0, unless g x; yð Þ 6¼ 0:0 anywhere
on the range x to xend, in which case, x will contain xend. If g is not supplied x contains xend,
unless an error has occurred, when it contains the value of x at the error.

4: y½neq� – double Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yneq at x ¼ x.

On exit: the computed values of the solution at the final point x ¼ x.

5: xend – double Input

On entry: the final value of the independent variable.

xend < x
Integration proceeds in the negative direction.

Constraint: xend 6¼ x.

6: tol – double Input

On entry: a positive tolerance for controlling the error in the integration. Hence tol affects the
determination of the position where g x; yð Þ ¼ 0:0, if g is supplied.

d02cjc NAG Library Manual

d02cjc.2 Mark 26

nag_ode_ivp_adams_gen (d02cjc) has been designed so that, for most problems, a reduction in
tol leads to an approximately proportional reduction in the error in the solution. However, the
actual relation between tol and the accuracy achieved cannot be guaranteed. You are strongly
recommended to call nag_ode_ivp_adams_gen (d02cjc) with more than one value for tol and to
compare the results obtained to estimate their accuracy. In the absence of any prior knowledge,
you might compare the results obtained by calling nag_ode_ivp_adams_gen (d02cjc) with
tol ¼ 10:0�p and tol ¼ 10:0�p�1 where p correct decimal digits are required in the solution.

Constraint: tol > 0:0.

7: err c – Nag_ErrorControl Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, est, is made. For the current step to be accepted the following condition must be satisfied:

est ¼
ffi
Xneq
i¼1

ei= �r � yij j þ �að Þð Þ2
vuut � 1:0

where �r and �a are defined by

err_c �r �a
Nag Relative tol �
Nag Absolute 0.0 tol
Nag Mixed tol tol

where � is a small machine-dependent number and ei is an estimate of the local error at yi,
computed internally. If the appropriate condition is not satisfied, the step size is reduced and the
solution is recomputed on the current step. If you wish to measure the error in the computed
solution in terms of the number of correct decimal places, then err_c should be set to
Nag Absolute on entry, whereas if the error requirement is in terms of the number of correct
significant digits, then err_c should be set to Nag Relative. If you prefer a mixed error test, then
err_c should be set to Nag Mixed. The recommended value for err_c is Nag Mixed and this
should be chosen unless there are good reasons for a different choice.

Constraint: err c ¼ Nag Relative, Nag Absolute or Nag Mixed.

8: output – function, supplied by the user External Function

output permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by nag_ode_ivp_adams_gen
(d02cjc) with xsol ¼ x (the initial value of x). You must reset xsol to the next point (between the
current xsol and xend) where output is to be called, and so on at each call to output. If, after a
call to output, the reset point xsol is beyond xend, nag_ode_ivp_adams_gen (d02cjc) will
integrate to xend with no further calls to output; if a call to output is required at the point
xsol ¼ xend, then xsol must be given precisely the value xend.

The specification of output is:

void output (Integer neq, double *xsol, const double y[],
Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: xsol – double * Input/Output

On entry: the value of the independent variable x.

On exit: you must set xsol to the next value of x at which output is to be called.

d02 – Ordinary Differential d02cjc

Mark 26 d02cjc.3

3: y½neq� – const double Input

On entry: the computed solution at the point xsol.

4: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm ! p, to obtain the original
object's address with appropriate type. (See the argument comm below.)

If you do not wish to access intermediate output, the actual argument output must be the NAG
defined null function pointer NULLFN.

9: g – function, supplied by the user External Function

g must evaluate g x; yð Þ for specified values x; y. It specifies the function g for which the first
position x where g x; yð Þ ¼ 0 is to be found.

The specification of g is:

double g (Integer neq, double x, const double y[], Nag_User *comm)

1: neq – Integer Input

On entry: the number of differential equations.

2: x – double Input

On entry: the value of the independent variable x.

3: y½neq� – const double Input

On entry: y½i� 1� holds the value of the variable yi, for i ¼ 1; 2; . . . ; neq.

4: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p should be cast to the required type, e.g.,
struct user *s = (struct user *)comm ! p, to obtain the original
object's address with appropriate type. (See the argument comm below.)

If you do not require the root finding option, the actual argument g must be the NAG defined null
double function pointer NULLDFN.

10: comm – Nag_User *

Pointer to a structure of type Nag_User with the following member:

p – Pointer

On entry/exit: the pointer comm!p, of type Pointer, allows you to communicate
information to and from fcn, output and g. An object of the required type should be
declared, e.g., a structure, and its address assigned to the pointer comm!p by means of a
cast to Pointer in the calling program. E.g. comm.p = (Pointer)&s. The type pointer
will be void * with a C compiler that defines void * and char * otherwise.

d02cjc NAG Library Manual

d02cjc.4 Mark 26

11: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_2_REAL_ARG_EQ

On entry, x ¼ valueh i while xend ¼ valueh i. These arguments must satisfy x 6¼ xend.

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_BAD_PARAM

On entry, argument err_c had an illegal value.

NE_INT_ARG_LT

On entry, neq ¼ valueh i.
Constraint: neq � 1.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please contact NAG for assistance.

NE_NO_SIGN_CHANGE

No change in sign of the function g x; yð Þ was detected in the integration range.

NE_REAL_ARG_LE

On entry, tol must not be less than or equal to 0.0: tol ¼ valueh i.

NE_TOL_PROGRESS

The value of tol, valueh i, is too small for the function to make any further progress across the
integration range. Current value of x ¼ valueh i.

NE_TOL_TOO_SMALL

The value of tol, valueh i, is too small for the function to take an initial step.

NE_XSOL_INCONSIST

On call valueh i to the supplied print function xsol was set to a value behind the previous value of
xsol in the direction of integration.
Previous xsol ¼ valueh i, xend ¼ valueh i, new xsol ¼ valueh i.

NE_XSOL_NOT_RESET

On call valueh i to the supplied print function xsol was not reset.

NE_XSOL_SET_WRONG

xsol was set to a value behind x in the direction of integration by the first call to the supplied
print function.
The integration range is value1h i; value2h i½ �, xsol ¼ valueh i.

d02 – Ordinary Differential d02cjc

Mark 26 d02cjc.5

7 Accuracy

The accuracy of the computation of the solution vector y may be controlled by varying the local error
tolerance tol. In general, a decrease in local error tolerance should lead to an increase in accuracy. You
are advised to choose err c ¼ Nag Mixed unless you have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the
properties of g x; yð Þ. You should try to code g without introducing any unnecessary cancellation errors.

8 Parallelism and Performance

nag_ode_ivp_adams_gen (d02cjc) is not threaded in any implementation.

9 Further Comments

If more than one root is required then nag_ode_ivp_adams_roots (d02qfc) should be used.

If the function fails with error exit of fail:code ¼ NE TOL TOO SMALL, then it can be called again
with a larger value of tol if this has not already been tried. If the accuracy requested is really needed
and cannot be obtained with this function, the system may be very stiff (see below) or so badly scaled
that it cannot be solved to the required accuracy.

If the function fails with error exit of fail:code ¼ NE TOL PROGRESS, it is probable that it has been
called with a value of tol which is so small that a solution cannot be obtained on the range x to xend.
This can happen for well-behaved systems and very small values of tol. You should, however, consider
whether there is a more fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the function will usually stop with
error exit of fail:code ¼ NE TOL PROGRESS, unless overflow occurs first. Numerical integration
cannot be continued through a singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the function will use
very small steps in x (internally to nag_ode_ivp_adams_gen (d02cjc)) to preserve stability. This
will exhibit itself by making the computing time excessively long, or occasionally by an exit with
fail:code ¼ NE TOL PROGRESS. Adams' methods are not efficient in such cases.

10 Example

We illustrate the solution of four different problems. In each case the differential system (for a
projectile) is

y0 ¼ tan�

v0 ¼ �0:032 tan�

v
� 0:02v

cos�

�0 ¼ �0:032

v2

over an interval x ¼ 0:0 to xend ¼ 10:0 starting with values y ¼ 0:5, v ¼ 0:5 and � ¼ �=5. We solve
each of the following problems with local error tolerances 1:0e�4 and 1:0e�5.

(i) To integrate to x ¼ 10:0 producing output at intervals of 2.0 until a point is encountered where
y ¼ 0:0.

(ii) As (i) but with no intermediate output.

(iii) As (i) but with no termination on a root-finding condition.

(iv) As (i) but with no intermediate output and no root-finding termination condition.

d02cjc NAG Library Manual

d02cjc.6 Mark 26

10.1 Program Text

/* nag_ode_ivp_adams_gen (d02cjc) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <math.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagd02.h>
#include <nagx01.h>

#ifdef __cplusplus
extern "C"
{
#endif

static void NAG_CALL out(Integer neq, double *xsol, const double y[],
Nag_User *comm);

static void NAG_CALL fcn(Integer neq, double x, const double y[],
double f[], Nag_User *comm);

static double NAG_CALL g(Integer neq, double x, const double y[],
Nag_User *comm);

#ifdef __cplusplus
}
#endif

struct user
{

double xend, h;
Integer k;
Integer *use_comm;

};

int main(void)
{

static Integer use_comm[2] = { 1, 1 };
Integer exit_status = 0, i, j, neq;
Nag_User comm;
double pi, tol, x, y[3];
struct user s;
NagError fail;

INIT_FAIL(fail);

printf("nag_ode_ivp_adams_gen (d02cjc) Example Program Results\n");

/* For communication with user-supplied functions
* assign address of user defined structure
* to Nag pointer.
*/

s.use_comm = use_comm;
comm.p = (Pointer) &s;

neq = 3;
s.xend = 10.0;
/* nag_pi (x01aac).
* pi
*/

pi = nag_pi;
printf("\nCase 1: intermediate output, root-finding\n");
for (j = 4; j <= 5; ++j) {

tol = pow(10.0, (double) (-j));
printf("\n Calculation with tol = %10.1e\n", tol);
x = 0.0;

d02 – Ordinary Differential d02cjc

Mark 26 d02cjc.7

y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
s.k = 4;
s.h = (s.xend - x) / (double) (s.k + 1);
printf("\n X Y(1) Y(2) Y(3)\n");

/* nag_ode_ivp_adams_gen (d02cjc).
* Ordinary differential equation solver using a
* variable-order variable-step Adams method (Black Box)
*/

nag_ode_ivp_adams_gen(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, out, g,
&comm, &fail);

if (fail.code != NE_NOERROR) {
printf("Error from nag_ode_ivp_adams_gen (d02cjc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}

printf("\n Root of Y(1) = 0.0 at %7.3f\n", x);
printf("\n Solution is");
for (i = 0; i < 3; ++i)

printf("%10.5f", y[i]);
printf("\n");

}
printf("\n\nCase 2: no intermediate output, root-finding\n");
for (j = 4; j <= 5; ++j) {

tol = pow(10.0, (double) (-j));
printf("\n Calculation with tol = %10.1e\n", tol);
x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;

/* nag_ode_ivp_adams_gen (d02cjc), see above. */
nag_ode_ivp_adams_gen(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, NULLFN, g,

&comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ode_ivp_adams_gen (d02cjc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}
printf("\n Root of Y(1) = 0.0 at %7.3f\n", x);
printf("\n Solution is");
for (i = 0; i < 3; ++i)

printf("%10.5f", y[i]);
printf("\n");

}
printf("\n\nCase 3: intermediate output, no root-finding\n");
for (j = 4; j <= 5; ++j) {

tol = pow(10.0, (double) (-j));
printf("\n Calculation with tol = %10.1e\n", tol);
x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
s.k = 4;
s.h = (s.xend - x) / (double) (s.k + 1);
printf("\n X Y(1) Y(2) Y(3)\n");

/* nag_ode_ivp_adams_gen (d02cjc), see above. */
nag_ode_ivp_adams_gen(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, out,

NULLDFN, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ode_ivp_adams_gen (d02cjc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

d02cjc NAG Library Manual

d02cjc.8 Mark 26

}

printf("\n\nCase 4: no intermediate output, no root-finding");
printf(" (integrate to xend)\n");
for (j = 4; j <= 5; ++j) {

tol = pow(10.0, (double) (-j));
printf("\n Calculation with tol = %10.1e\n", tol);
x = 0.0;
y[0] = 0.5;
y[1] = 0.5;
y[2] = pi / 5.0;
printf("\n X Y(1) Y(2) Y(3)\n");
printf("%8.2f", x);
for (i = 0; i < 3; ++i)

printf("%13.5f", y[i]);
printf("\n");

/* nag_ode_ivp_adams_gen (d02cjc), see above. */
nag_ode_ivp_adams_gen(neq, fcn, &x, y, s.xend, tol, Nag_Mixed, NULLFN,

NULLDFN, &comm, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_ode_ivp_adams_gen (d02cjc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("%8.2f", x);
for (i = 0; i < 3; ++i)

printf("%13.5f", y[i]);
printf("\n");

}
END:

return exit_status;
}

static void NAG_CALL out(Integer neq, double *xsol, const double y[],
Nag_User *comm)

{
Integer i;
struct user *s = (struct user *) comm->p;

printf("%8.2f", *xsol);
for (i = 0; i < 3; ++i) {

printf("%13.5f", y[i]);
}
printf("\n");
*xsol = s->xend - (double) s->k * s->h;
s->k--;

}

static void NAG_CALL fcn(Integer neq, double x, const double y[], double f[],
Nag_User *comm)

{
double pwr;
struct user *s = (struct user *) comm->p;

if (s->use_comm[0]) {
printf("(User-supplied callback fcn, first invocation.)\n");
s->use_comm[0] = 0;

}

f[0] = tan(y[2]);
f[1] = -0.032 * tan(y[2]) / y[1] - 0.02 * y[1] / cos(y[2]);

pwr = y[1];
f[2] = -0.032 / (pwr * pwr);

}

static double NAG_CALL g(Integer neq, double x, const double y[],
Nag_User *comm)

d02 – Ordinary Differential d02cjc

Mark 26 d02cjc.9

{
struct user *s = (struct user *) comm->p;

if (s->use_comm[1]) {
printf("(User-supplied callback g, first invocation.)\n");
s->use_comm[1] = 0;

}

return y[0];
}

10.2 Program Data

None.

10.3 Program Results

nag_ode_ivp_adams_gen (d02cjc) Example Program Results

Case 1: intermediate output, root-finding

Calculation with tol = 1.0e-04

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832

(User-supplied callback fcn, first invocation.)
(User-supplied callback g, first invocation.)

2.00 1.54931 0.40548 0.30662
4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068

Root of Y(1) = 0.0 at 7.288

Solution is -0.00000 0.47486 -0.76011

Calculation with tol = 1.0e-05

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069

Root of Y(1) = 0.0 at 7.288

Solution is -0.00000 0.47486 -0.76010

Case 2: no intermediate output, root-finding

Calculation with tol = 1.0e-04

Root of Y(1) = 0.0 at 7.288

Solution is -0.00000 0.47486 -0.76011

Calculation with tol = 1.0e-05

Root of Y(1) = 0.0 at 7.288

Solution is -0.00000 0.47486 -0.76010

Case 3: intermediate output, no root-finding

Calculation with tol = 1.0e-04

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54931 0.40548 0.30662

d02cjc NAG Library Manual

d02cjc.10 Mark 26

4.00 1.74229 0.37433 -0.12890
6.00 1.00554 0.41731 -0.55068
8.00 -0.74589 0.51299 -0.85371

10.00 -3.62813 0.63325 -1.05152

Calculation with tol = 1.0e-05

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832
2.00 1.54933 0.40548 0.30662
4.00 1.74232 0.37433 -0.12891
6.00 1.00552 0.41731 -0.55069
8.00 -0.74601 0.51299 -0.85372

10.00 -3.62829 0.63326 -1.05153

Case 4: no intermediate output, no root-finding (integrate to xend)

Calculation with tol = 1.0e-04

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832

10.00 -3.62813 0.63325 -1.05152

Calculation with tol = 1.0e-05

X Y(1) Y(2) Y(3)
0.00 0.50000 0.50000 0.62832

10.00 -3.62829 0.63326 -1.05153

d02 – Ordinary Differential d02cjc

Mark 26 d02cjc.11 (last)

	d02cjc
	1 Purpose
	2 Specification
	3 Description
	4 References
	Hall and Watt (1976)

	5 Arguments
	neq
	fcn
	neq
	x
	y
	f
	comm
	p

	x
	y
	xend
	tol
	err_c
	output
	neq
	xsol
	y
	comm
	p

	g
	neq
	x
	y
	comm
	p

	comm
	p

	fail

	6 Error Indicators and Warnings
	NE_2_REAL_ARG_EQ
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INT_ARG_LT
	NE_INTERNAL_ERROR
	NE_NO_SIGN_CHANGE
	NE_REAL_ARG_LE
	NE_TOL_PROGRESS
	NE_TOL_TOO_SMALL
	NE_XSOL_INCONSIST
	NE_XSOL_NOT_RESET
	NE_XSOL_SET_WRONG

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

