NAG Library Function Document

nag_1d_cheb_intg (e02ajc)

1 Purpose

nag_1d_cheb_intg (e02ajc) determines the coefficients in the Chebyshev series representation of the indefinite integral of a polynomial given in Chebyshev series form.

2 Specification

```
#include <nag.h>
#include <nage02.h>
void nag_ld_cheb_intg (Integer n, double xmin, double xmax, const double a[],
    Integer ial, double qatml, double aintc[], Integer iaintl,
    NagError *fail)
```


3 Description

nag_1d_cheb_intg (e02ajc) forms the polynomial which is the indefinite integral of a given polynomial. Both the original polynomial and its integral are represented in Chebyshev series form. If supplied with the coefficients a_{i}, for $i=0,1, \ldots, n$, of a polynomial $p(x)$ of degree n, where

$$
p(x)=\frac{1}{2} a_{0}+a_{1} T_{1}(\bar{x})+\cdots+a_{n} T_{n}(\bar{x}),
$$

the function returns the coefficients a_{i}^{\prime}, for $i=0,1, \ldots, n+1$, of the polynomial $q(x)$ of degree $n+1$, where

$$
q(x)=\frac{1}{2} a_{0}^{\prime}+a_{1}^{\prime} T_{1}(\bar{x})+\cdots+a_{n+1}^{\prime} T_{n+1}(\bar{x})
$$

and

$$
q(x)=\int p(x) d x
$$

Here $T_{j}(\bar{x})$ denotes the Chebyshev polynomial of the first kind of degree j with argument \bar{x}. It is assumed that the normalized variable \bar{x} in the interval $[-1,+1]$ was obtained from your original variable x in the interval $\left[x_{\text {min }}, x_{\max }\right]$ by the linear transformation

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{x_{\max }-x_{\min }}
$$

and that you require the integral to be with respect to the variable x. If the integral with respect to \bar{x} is required, set $x_{\max }=1$ and $x_{\text {min }}=-1$.
Values of the integral can subsequently be computed, from the coefficients obtained, by using nag_1d_cheb_eval2 (e02akc).
The method employed is that of Chebyshev series (see Chapter 8 of Modern Computing Methods (1961)), modified for integrating with respect to x. Initially taking $a_{n+1}=a_{n+2}=0$, the function forms successively

$$
a_{i}^{\prime}=\frac{a_{i-1}-a_{i+1}}{2 i} \times \frac{x_{\max }-x_{\min }}{2}, \quad i=n+1, n, \ldots, 1
$$

The constant coefficient a_{0}^{\prime} is chosen so that $q(x)$ is equal to a specified value, qatm1, at the lower end point of the interval on which it is defined, i.e., $\bar{x}=-1$, which corresponds to $x=x_{\min }$.

4 References

Modern Computing Methods (1961) Chebyshev-series NPL Notes on Applied Science 16 (2nd Edition) HMSO

5 Arguments

1: $\quad \mathbf{n}$ - Integer
Input
On entry: n, the degree of the given polynomial $p(x)$.
Constraint: $\mathbf{n} \geq 0$.

2: xmin - double Input
3: xmax - double Input
On entry: the lower and upper end points respectively of the interval $\left[x_{\min }, x_{\max }\right]$. The Chebyshev series representation is in terms of the normalized variable \bar{x}, where

$$
\bar{x}=\frac{2 x-\left(x_{\max }+x_{\min }\right)}{x_{\max }-x_{\min }} .
$$

Constraint: xmax $>$ xmin.

4: $\quad \mathbf{a}[\operatorname{dim}]-$ const double

Input

Note: the dimension, dim, of the array a must be at least $(1+(\mathbf{n}+1-1) \times \mathbf{i a 1})$.
On entry: the Chebyshev coefficients of the polynomial $p(x)$. Specifically, element $i \times \mathbf{i a 1}$ of a must contain the coefficient a_{i}, for $i=0,1, \ldots, n$. Only these $n+1$ elements will be accessed.

5: ia1 - Integer
Input
On entry: the index increment of a. Most frequently the Chebyshev coefficients are stored in adjacent elements of a, and ia1 must be set to 1 . However, if for example, they are stored in $\mathbf{a}[0], \mathbf{a}[3], \mathbf{a}[6], \ldots$, then the value of ia1 must be 3 . See also Section 9.
Constraint: $\mathbf{i a} \mathbf{1} \geq 1$.

6: qatm1 - double
Input
On entry: the value that the integrated polynomial is required to have at the lower end point of its interval of definition, i.e., at $\bar{x}=-1$ which corresponds to $x=x_{\min }$. Thus, qatm1 is a constant of integration and will normally be set to zero by you.

7: aintc $[\operatorname{dim}]$ - double
Output
Note: the dimension, dim, of the array aintc must be at least $(1+(\mathbf{n}+1) \times$ iaint $)$.
On exit: the Chebyshev coefficients of the integral $q(x)$. (The integration is with respect to the variable x, and the constant coefficient is chosen so that $q\left(x_{\min }\right)$ equals qatm1). Specifically, element $i \times$ iaint1 of ainte contains the coefficient a_{i}^{\prime}, for $i=0,1, \ldots, n+1$.

8: iaint1 - Integer
Input
On entry: the index increment of aintc. Most frequently the Chebyshev coefficients are required in adjacent elements of aintc, and iaint1 must be set to 1 . However, if, for example, they are to be stored in $\boldsymbol{a i n t c}[0]$, aintc $[3]$, aintc $[6], \ldots$, then the value of iaint1 must be 3 . See also Section 9 .
Constraint: iaint $\mathbf{1} \geq 1$.

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.
See Section 2.3.1.2 in How to Use the NAG Library and its Documentation for further information.

NE_BAD_PARAM

On entry, argument $\langle v a l u e\rangle$ had an illegal value.

NE_INT

On entry, ia1 $=\langle$ value \rangle.
Constraint: $\mathbf{i a} 1 \geq 1$.
On entry, iaint1 $=\langle$ value \rangle.
Constraint: iaint $1 \geq 1$.
On entry, $\mathbf{n}+1=\langle$ value \rangle.
Constraint: $\mathbf{n}+1 \geq 1$.
On entry, $\mathbf{n}=\langle$ value \rangle.
Constraint: $\mathbf{n} \geq 0$.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please contact NAG for assistance.
An unexpected error has been triggered by this function. Please contact NAG.
See Section 2.7.6 in How to Use the NAG Library and its Documentation for further information.

NE_NO_LICENCE

Your licence key may have expired or may not have been installed correctly.
See Section 2.7.5 in How to Use the NAG Library and its Documentation for further information.

NE_REAL_2

On entry, $\mathbf{x m a x}=\langle$ value \rangle and $\mathbf{x m i n}=\langle$ value \rangle.
Constraint: xmax > xmin.

7 Accuracy

In general there is a gain in precision in numerical integration, in this case associated with the division by $2 i$ in the formula quoted in Section 3.

8 Parallelism and Performance

nag_1d_cheb_intg (e02ajc) is not threaded in any implementation.

9 Further Comments

The time taken is approximately proportional to $n+1$.
The increments ia1, iaint1 are included as arguments to give a degree of flexibility which, for example, allows a polynomial in two variables to be integrated with respect to either variable without rearranging the coefficients.

10 Example

Suppose a polynomial has been computed in Chebyshev series form to fit data over the interval $[-0.5,2.5]$. The following program evaluates the integral of the polynomial from 0.0 to 2.0 . (For the purpose of this example, xmin, xmax and the Chebyshev coefficients are simply supplied . Normally a program would read in or generate data and compute the fitted polynomial).

10.1 Program Text

```
/* nag_1d_cheb_intg (e02ajc) Example Program.
    *
    * NAGPRODCODE Version.
    *
    * Copyright 2016 Numerical Algorithms Group.
    *
    * Mark 26, 2016.
    */
#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nage02.h>
int main(void)
{
    /* Initialized data */
    const double xmin = -0.5;
    const double xmax = 2.5;
    const double a[7] =
                            {2.53213, 1.13032, 0.2715, 0.04434, 0.00547, 5.4e-4, 4e-5 };
    /* Scalars */
    double ra, rb, result, xa, xb, zero;
    Integer exit_status, n, one;
    NagError fail;
    /* Arrays */
    double *aint = 0;
    INIT_FAIL(fail);
    exit_status = 0;
    printf("nag_1d_cheb_intg (e02ajc) Example Program Results\n");
    n = 6;
    zero = 0.0;
    one = 1;
    /* Allocate memory */
    if (!(aint = NAG_ALLOC(n + 2, double)))
    {
        printf("Allocation failure\n");
        exit_status = -1;
        goto END;
}
    /* nag_1d_cheb_intg (e02ajc).
        * Integral of fitted polynomial in Chebyshev series form
        */
    nag_1d_cheb_intg(n, xmin, xmax, a, one, zero, aint, one, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_ld_cheb_intg (e02ajc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
}
    xa = 0.0;
    xb = 2.0;
    /* nag_1d_cheb_eval2 (e02akc).
```

```
        * Evaluation of fitted polynomial in one variable from
        * Chebyshev series form
        */
    nag_1d_cheb_eval2(n + 1, xmin, xmax, aint, one, xa, &ra, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_1d_cheb_eval2 (e02akc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    /* nag_1d_cheb_eval2 (e02akc), see above. */
    nag_ld_cheb_eval2(n + 1, xmin, xmax, aint, one, xb, &rb, &fail);
    if (fail.code != NE_NOERROR) {
        printf("Error from nag_ld_cheb_eval2 (e02akc).\n%s\n", fail.message);
        exit_status = 1;
        goto END;
    }
    result = rb - ra;
    printf("\n");
    printf("Value of definite integral is %10.4f\n", result);
END:
    NAG_FREE(aint);
    return exit_status;
}
```


10.2 Program Data

None.

10.3 Program Results

```
nag_1d_cheb_intg (e02ajc) Example Program Results
```

Value of definite integral is 2.1515

