
NAG Library Function Document

nag_1d_spline_fit_knots (e02bac)

1 Purpose

nag_1d_spline_fit_knots (e02bac) computes a weighted least squares approximation to an arbitrary set
of data points by a cubic spline with knots prescribed by you. Cubic spline interpolation can also be
carried out.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_fit_knots (Integer m, const double x[], const double y[],
const double weights[], double *ss, Nag_Spline *spline, NagError *fail)

3 Description

nag_1d_spline_fit_knots (e02bac) determines a least squares cubic spline approximation s xð Þ to the set
of data points xr ; yrð Þ with weights wr , for r ¼ 1; 2; . . . ;m. The value of spline!n ¼ �nþ 7, where �n is
the number of intervals of the spline (one greater than the number of interior knots), and the values of
the knots �5; �6; . . . ; ��nþ3, interior to the data interval, are prescribed by you.

s xð Þ has the property that it minimizes �, the sum of squares of the weighted residuals �r , for
r ¼ 1; 2; . . . ;m, where

�r ¼ wr yr�s xrð Þð Þ:
The function produces this minimizing value of � and the coefficients c1; c2; . . . ; cq, where q ¼ �nþ 3, in
the B-spline representation

s xð Þ ¼
Xq

i¼1

ciNi xð Þ:

Here Ni xð Þ denotes the normalized B-spline of degree 3 defined upon the knots �i; �iþ1; . . . ; �iþ4.

In order to define the full set of B-splines required, eight additional knots �1; �2; �3; �4 and ��nþ4; ��nþ5,
��nþ6; ��nþ7 are inserted automatically by the function. The first four of these are set equal to the smallest
xr and the last four to the largest xr.

The representation of s xð Þ in terms of B-splines is the most compact form possible in that only �nþ 3
coefficients, in addition to the �nþ 7 knots, fully define s xð Þ.
The method employed involves forming and then computing the least squares solution of a set of m
linear equations in the coefficients ci i ¼ 1; 2; . . . ; �nþ 3ð Þ. The equations are formed using a recurrence
relation for B-splines that is unconditionally stable (Cox (1972), de Boor (1972)), even for multiple
(coincident) knots. The least squares solution is also obtained in a stable manner by using orthogonal
transformations, viz. a variant of Givens rotations (Gentleman (1974) and Gentleman (1973)). This
requires only one equation to be stored at a time. Full advantage is taken of the structure of the
equations, there being at most four nonzero values of Ni xð Þ for any value of x and hence at most four
coefficients in each equation.

For further details of the algorithm and its use see Cox (1974), Cox (1975) and Cox and Hayes (1973).

Subsequent evaluation of s xð Þ from its B-spline representation may be carried out using
nag_1d_spline_evaluate (e02bbc). If derivatives of s xð Þ are also required, nag_1d_spline_deriv
(e02bcc) may be used. nag_1d_spline_intg (e02bdc) can be used to compute the definite integral of
s xð Þ.

e02 – Curve and Surface Fitting e02bac

Mark 26 e02bac.1

4 References

Cox M G (1972) The numerical evaluation of B-splines J. Inst. Math. Appl. 10 134–149

Cox M G (1974) A data-fitting package for the non-specialist user Software for Numerical Mathematics
(ed D J Evans) Academic Press

Cox M G (1975) Numerical methods for the interpolation and approximation of data by spline functions
PhD Thesis City University, London

Cox M G and Hayes J G (1973) Curve fitting: a guide and suite of algorithms for the non-specialist user
NPL Report NAC26 National Physical Laboratory

de Boor C (1972) On calculating with B-splines J. Approx. Theory 6 50–62

Gentleman W M (1973) Least squares computations by Givens transformations without square roots J.
Inst. Math. Applic. 12 329–336

Gentleman W M (1974) Algorithm AS 75. Basic procedures for large sparse or weighted linear least
squares problems Appl. Statist. 23 448–454

Schoenberg I J and Whitney A (1953) On Polya frequency functions III Trans. Amer. Math. Soc. 74
246–259

5 Arguments

1: m – Integer Input

On entry: the number m of data points.

Constraint: m � mdist � 4, where mdist is the number of distinct x values in the data.

2: x½m� – const double Input

On entry: the values xr of the independent variable (abscissa), for r ¼ 1; 2; . . . ;m.

Constraint: x1 � x2 � . . . � xm.

3: y½m� – const double Input

On entry: the values yr of the of the dependent variable (ordinate), for r ¼ 1; 2; . . . ;m.

4: weights½m� – const double Input

On entry: the values wr of the weights, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights,
see the e02 Chapter Introduction.

Constraint: wr > 0, for r ¼ 1; 2; . . . ;m.

5: ss – double * Output

On exit: the residual sum of squares, �.

6: spline – Nag_Spline *

Pointer to structure of type Nag_Spline with the following members:

n – Integer Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater
than the number of interior knots, i.e., the knots strictly within the range x1 to xm) over
which the spline is defined.

Constraint: 8 � n � mdist þ 4, where mdist is the number of distinct x values in the data.

e02bac NAG Library Manual

e02bac.2 Mark 26

lamda – double * Input/Output

On entry: a pointer to which memory of size n must be allocated. lamda½i � 1� must be set
to the i � 4ð Þth interior knot, �i, for i ¼ 5; 6; . . . ; �nþ 3.

On exit: the input values are unchanged, and lamda½i�, i ¼ 0; 1; 2; 3;n� 4, n� 3, n� 2,
n� 1 contains the additional exterior knots introduced by the function.

Constraint: x½0� < lamda½4� � lamda½5� � . . . � lamda½n� 5� < x½m� 1�.
c – double * Output

On exit: a pointer to which memory of size n� 4 is internally allocated. c holds the
coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3.

Note that when the information contained in the pointers lamda and c is no longer of use, or
before a new call to nag_1d_spline_fit_knots (e02bac) with the same spline, you should free this
storage using the NAG macro NAG_FREE.

7: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, spline!n must not be less than 8: spline!n ¼ valueh i.

NE_KNOTS_DISTINCT_ABSCI_CONS

Too many knots for the number of distinct abscissae, mdist: spline!n ¼ valueh i,
mdist ¼ valueh i.
These must satisfy the constraint spline!n � mdist þ 4.

NE_KNOTS_OUTSIDE_DATA_INTVL

On entry, user-specified knots must be interior to the data interval, spline!lamda½4� must be
grea te r than x½0� and spline!lamda½spline!n� 5� must be less than x½m� 1�:
spline!lamda½4� ¼ valueh i, x½0� ¼ valueh i, spline!lamda½ valueh i� ¼ valueh i,
x½ valueh i� ¼ valueh i.

NE_NOT_INCREASING

The sequence spline!lamda i s no t i n c r e a s i ng : spline!lamda½ valueh i� ¼ valueh i,
spline!lamda½ valueh i� ¼ valueh i.
This condition on spline!lamda applies to user-specified knots in the interval spline!lamda½4�,
spline!lamda½spline!n� 5�.
The sequence x is not increasing: x½ valueh i� ¼ valueh i, x½ valueh i� ¼ valueh i.

NE_SW_COND_FAIL

The conditions specified by Schoenberg and Whitney fail.
The conditions specified by Schoenberg and Whitney (1953) fail to hold for at least one subset of
the distinct data abscissae. That is, there is no subset of spline!n� 4 strictly increasing values,
x½r0�, x½r1�; . . . ; x½rspline!n�5�, among the abscissae such that

x½r0� < spline!lamda½0� < x½r4�,
x½r1� < spline!lamda½1� < x½r5�,

e02 – Curve and Surface Fitting e02bac

Mark 26 e02bac.3

. . .

x½rspline!n�9� < spline!lamda½spline!n� 9� < x½rspline!n�5�.
This means that there is no unique solution: there are regions containing too many knots
compared with the number of data points.

NE_WEIGHTS_NOT_POSITIVE

On entry, the weights are not strictly positive: weights½ valueh i� ¼ valueh i.

7 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates yr þ �yr. The ratio of the root-mean-square value for the �yr to the root-mean-square
value of the yr can be expected to be less than a small multiple of ��m�machine precision, where �
is a condition number for the problem. Values of � for 20-30 practical datasets all proved to lie between
4.5 and 7.8 (see Cox (1975)). (Note that for these datasets, replacing the coincident end knots at the
end-points x1 and xm used in the function by various choices of non-coincident exterior knots gave
values of � between 16 and 180. Again see Cox (1975) for further details.) In general we would not
expect � to be large unless the choice of knots results in near-violation of the Schoenberg–Whitney
conditions.

A cubic spline which adequately fits the data and is free from spurious oscillations is more likely to be
obtained if the knots are chosen to be grouped more closely in regions where the function (underlying
the data) or its derivatives change more rapidly than elsewhere.

8 Parallelism and Performance

nag_1d_spline_fit_knots (e02bac) is not threaded in any implementation.

9 Further Comments

The time taken by nag_1d_spline_fit_knots (e02bac) is approximately C � 2mþ �nþ 7ð Þ seconds,
where C is a machine-dependent constant.

Multiple knots are permitted as long as their multiplicity does not exceed 4, i.e., the complete set of
knots must satisfy �i < �iþ4, for i ¼ 1; 2; . . . ; �nþ 3, (see Section 6). At a knot of multiplicity one (the
usual case), s xð Þ and its first two derivatives are continuous. At a knot of multiplicity two, s xð Þ and its
first derivative are continuous. At a knot of multiplicity three, s xð Þ is continuous, and at a knot of
multiplicity four, s xð Þ is generally discontinuous.

The function can be used efficiently for cubic spline interpolation, i.e., if m ¼ �nþ 3. The abscissae
must then of course satisfy x1 < x2 < � � � < xm. Recommended values for the knots in this case are
�i ¼ xi�2, for i ¼ 5; 6; . . . ; �nþ 3.

10 Example

Determine a weighted least squares cubic spline approximation with five intervals (four interior knots)
to a set of 14 given data points. Tabulate the data and the corresponding values of the approximating
spline, together with the residual errors, and also the values of the approximating spline at points half-
way between each pair of adjacent data points.

The example program is written in a general form that will enable a cubic spline approximation with �n
intervals (�n� 1 interior knots) to be obtained to m data points, with arbitrary positive weights, and the
approximation to be tabulated. Note that nag_1d_spline_evaluate (e02bbc) is used to evaluate the
approximating spline. The program is self-starting in that any number of datasets can be supplied.

e02bac NAG Library Manual

e02bac.4 Mark 26

10.1 Program Text

/* nag_1d_spline_fit_knots (e02bac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

Integer exit_status = 0, j, m, ncap, ncap7, r, wght;
NagError fail;
Nag_Spline spline;
double fit, ss, *weights = 0, *x = 0, xarg, *y = 0;

INIT_FAIL(fail);

/* Initialize spline */
spline.lamda = 0;
spline.c = 0;

printf("nag_1d_spline_fit_knots (e02bac) Example Program Results\n");
#ifdef _WIN32

scanf_s("%*[^\n]"); /* Skip heading in data file */
#else

scanf("%*[^\n]"); /* Skip heading in data file */
#endif
#ifdef _WIN32

while (scanf_s("%" NAG_IFMT "", &m) != EOF)
#else

while (scanf("%" NAG_IFMT "", &m) != EOF)
#endif

{
if (m >= 4) {

if (!(weights = NAG_ALLOC(m, double)) ||
!(x = NAG_ALLOC(m, double)) || !(y = NAG_ALLOC(m, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
else {

printf("Invalid m.\n");
exit_status = 1;
goto END;

}
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "", &ncap, &wght);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "", &ncap, &wght);
#endif

if (ncap > 0) {
ncap7 = ncap + 7;
spline.n = ncap7;
if (!(spline.lamda = NAG_ALLOC(ncap7, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}

e02 – Curve and Surface Fitting e02bac

Mark 26 e02bac.5

}
else {

printf("Invalid ncap.\n");
exit_status = 1;
goto END;

}
for (j = 4; j < ncap + 3; ++j)

#ifdef _WIN32
scanf_s("%lf", &(spline.lamda[j]));

#else
scanf("%lf", &(spline.lamda[j]));

#endif
for (r = 0; r < m; ++r) {

if (wght == 1) {
#ifdef _WIN32

scanf_s("%lf%lf", &x[r], &y[r]);
#else

scanf("%lf%lf", &x[r], &y[r]);
#endif

weights[r] = 1.0;
}
else

#ifdef _WIN32
scanf_s("%lf%lf%lf", &x[r], &y[r], &weights[r]);

#else
scanf("%lf%lf%lf", &x[r], &y[r], &weights[r]);

#endif
}
/* nag_1d_spline_fit_knots (e02bac).
* Least squares curve cubic spline fit (including
* interpolation), one variable
*/

nag_1d_spline_fit_knots(m, x, y, weights, &ss, &spline, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_1d_spline_fit_knots (e02bac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\nNumber of distinct knots = %" NAG_IFMT "\n\n", ncap + 1);
printf("Distinct knots located at \n\n");
for (j = 3; j < ncap + 4; j++)

printf("%8.4f%s", spline.lamda[j],
(j - 3) % 6 == 5 || j == ncap + 3 ? "\n" : " ");

printf("\n\n J B-spline coeff c\n\n");
for (j = 0; j < ncap + 3; ++j)

printf(" %" NAG_IFMT " %13.4f\n", j + 1, spline.c[j]);
printf("\nResidual sum of squares = ");
printf("%11.2e\n\n", ss);
printf("Cubic spline approximation and residuals\n");
printf(" r Abscissa Weight Ordinate"

" Spline Residual\n\n");
for (r = 0; r < m; ++r) {

/* nag_1d_spline_evaluate (e02bbc).
* Evaluation of fitted cubic spline, function only
*/

nag_1d_spline_evaluate(x[r], &fit, &spline, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("%3" NAG_IFMT " %11.4f %11.4f %11.4f %11.4f"
" %10.1e\n", r + 1, x[r], weights[r], y[r], fit, fit - y[r]);

if (r < m - 1) {
xarg = (x[r] + x[r + 1]) * 0.5;
/* nag_1d_spline_evaluate (e02bbc), see above. */
nag_1d_spline_evaluate(xarg, &fit, &spline, &fail);

e02bac NAG Library Manual

e02bac.6 Mark 26

if (fail.code != NE_NOERROR) {
printf("Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf(" %14.4f %33.4f\n", xarg, fit);

}
}
/* Free memory used by spline */
NAG_FREE(spline.lamda);
NAG_FREE(spline.c);

END:
NAG_FREE(weights);
NAG_FREE(x);
NAG_FREE(y);

}
return exit_status;

}

10.2 Program Data

nag_1d_spline_fit_knots (e02bac) Example Program Data
14
5 2

1.50
2.60
4.00
8.00
0.20 0.00 0.20
0.47 2.00 0.20
0.74 4.00 0.30
1.09 6.00 0.70
1.60 8.00 0.90
1.90 8.62 1.00
2.60 9.10 1.00
3.10 8.90 1.00
4.00 8.15 0.80
5.15 7.00 0.50
6.17 6.00 0.70
8.00 4.54 1.00

10.00 3.39 1.00
12.00 2.56 1.00

10.3 Program Results

nag_1d_spline_fit_knots (e02bac) Example Program Results

Number of distinct knots = 6

Distinct knots located at

0.2000 1.5000 2.6000 4.0000 8.0000 12.0000

J B-spline coeff c

1 -0.0465
2 3.6150
3 8.5724
4 9.4261
5 7.2716
6 4.1207
7 3.0822
8 2.5597

Residual sum of squares = 1.78e-03

Cubic spline approximation and residuals
r Abscissa Weight Ordinate Spline Residual

e02 – Curve and Surface Fitting e02bac

Mark 26 e02bac.7

1 0.2000 0.2000 0.0000 -0.0465 -4.7e-02
0.3350 1.0622

2 0.4700 0.2000 2.0000 2.1057 1.1e-01
0.6050 3.0817

3 0.7400 0.3000 4.0000 3.9880 -1.2e-02
0.9150 5.0558

4 1.0900 0.7000 6.0000 5.9983 -1.7e-03
1.3450 7.1376

5 1.6000 0.9000 8.0000 7.9872 -1.3e-02
1.7500 8.3544

6 1.9000 1.0000 8.6200 8.6348 1.5e-02
2.2500 9.0076

7 2.6000 1.0000 9.1000 9.0896 -1.0e-02
2.8500 9.0353

8 3.1000 1.0000 8.9000 8.9125 1.2e-02
3.5500 8.5660

9 4.0000 0.8000 8.1500 8.1321 -1.8e-02
4.5750 7.5592

10 5.1500 0.5000 7.0000 6.9925 -7.5e-03
5.6600 6.5010

11 6.1700 0.7000 6.0000 6.0255 2.6e-02
7.0850 5.2292

12 8.0000 1.0000 4.5400 4.5315 -8.5e-03
9.0000 3.9045

13 10.0000 1.0000 3.3900 3.3928 2.8e-03
11.0000 2.9574

14 12.0000 1.0000 2.5600 2.5597 -3.5e-04

e02bac NAG Library Manual

e02bac.8 (last) Mark 26

	e02bac
	1 Purpose
	2 Specification
	3 Description
	4 References
	Cox (1972)
	Cox (1974)
	Cox (1975)
	Cox and Hayes (1973)
	de Boor (1972)
	Gentleman (1973)
	Gentleman (1974)
	Schoenberg and Whitney (1953)

	5 Arguments
	m
	x
	y
	weights
	ss
	spline
	n
	lamda
	c

	fail

	6 Error Indicators and Warnings
	NE_ALLOC_FAIL
	NE_INT_ARG_LT
	NE_KNOTS_DISTINCT_ABSCI_CONS
	NE_KNOTS_OUTSIDE_DATA_INTVL
	NE_NOT_INCREASING
	NE_SW_COND_FAIL
	NE_WEIGHTS_NOT_POSITIVE

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

