
NAG Library Function Document

nag_1d_spline_fit_knots (e02bac)

1 Purpose

nag_1d_spline_fit_knots (e02bac) computes a weighted least squares approximation to an arbitrary set
of data points by a cubic spline with knots prescribed by you. Cubic spline interpolation can also be
carried out.

2 Specification

#include <nag.h>
#include <nage02.h>

void nag_1d_spline_fit_knots (Integer m, const double x[], const double y[],
const double weights[], double *ss, Nag_Spline *spline, NagError *fail)

3 Description

nag_1d_spline_fit_knots (e02bac) determines a least squares cubic spline approximation s xð Þ to the set
of data points xr ; yrð Þ with weights wr , for r ¼ 1; 2; . . . ;m. The value of spline!n ¼ �nþ 7, where �n is
the number of intervals of the spline (one greater than the number of interior knots), and the values of
the knots �5; �6; . . . ; ��nþ3, interior to the data interval, are prescribed by you.

s xð Þ has the property that it minimizes �, the sum of squares of the weighted residuals �r , for
r ¼ 1; 2; . . . ;m, where

�r ¼ wr yr�s xrð Þð Þ:
The function produces this minimizing value of � and the coefficients c1; c2; . . . ; cq, where q ¼ �nþ 3, in
the B-spline representation

s xð Þ ¼
Xq

i¼1

ciNi xð Þ:

Here Ni xð Þ denotes the normalized B-spline of degree 3 defined upon the knots �i; �iþ1; . . . ; �iþ4.

In order to define the full set of B-splines required, eight additional knots �1; �2; �3; �4 and ��nþ4; ��nþ5,
��nþ6; ��nþ7 are inserted automatically by the function. The first four of these are set equal to the smallest
xr and the last four to the largest xr.

The representation of s xð Þ in terms of B-splines is the most compact form possible in that only �nþ 3
coefficients, in addition to the �nþ 7 knots, fully define s xð Þ.
The method employed involves forming and then computing the least squares solution of a set of m
linear equations in the coefficients ci i ¼ 1; 2; . . . ; �nþ 3ð Þ. The equations are formed using a recurrence
relation for B-splines that is unconditionally stable (Cox (1972), de Boor (1972)), even for multiple
(coincident) knots. The least squares solution is also obtained in a stable manner by using orthogonal
transformations, viz. a variant of Givens rotations (Gentleman (1974) and Gentleman (1973)). This
requires only one equation to be stored at a time. Full advantage is taken of the structure of the
equations, there being at most four nonzero values of Ni xð Þ for any value of x and hence at most four
coefficients in each equation.

For further details of the algorithm and its use see Cox (1974), Cox (1975) and Cox and Hayes (1973).

Subsequent evaluation of s xð Þ from its B-spline representation may be carried out using
nag_1d_spline_evaluate (e02bbc). If derivatives of s xð Þ are also required, nag_1d_spline_deriv
(e02bcc) may be used. nag_1d_spline_intg (e02bdc) can be used to compute the definite integral of
s xð Þ.
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5 Arguments

1: m – Integer Input

On entry: the number m of data points.

Constraint: m � mdist � 4, where mdist is the number of distinct x values in the data.

2: x½m� – const double Input

On entry: the values xr of the independent variable (abscissa), for r ¼ 1; 2; . . . ;m.

Constraint: x1 � x2 � . . . � xm.

3: y½m� – const double Input

On entry: the values yr of the of the dependent variable (ordinate), for r ¼ 1; 2; . . . ;m.

4: weights½m� – const double Input

On entry: the values wr of the weights, for r ¼ 1; 2; . . . ;m. For advice on the choice of weights,
see the e02 Chapter Introduction.

Constraint: wr > 0, for r ¼ 1; 2; . . . ;m.

5: ss – double * Output

On exit: the residual sum of squares, �.

6: spline – Nag_Spline *

Pointer to structure of type Nag_Spline with the following members:

n – Integer Input

On entry: �nþ 7, where �n is the number of intervals of the spline (which is one greater
than the number of interior knots, i.e., the knots strictly within the range x1 to xm) over
which the spline is defined.

Constraint: 8 � n � mdist þ 4, where mdist is the number of distinct x values in the data.
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lamda – double * Input/Output

On entry: a pointer to which memory of size n must be allocated. lamda½i � 1� must be set
to the i � 4ð Þth interior knot, �i, for i ¼ 5; 6; . . . ; �nþ 3.

On exit: the input values are unchanged, and lamda½i�, i ¼ 0; 1; 2; 3;n� 4, n� 3, n� 2,
n� 1 contains the additional exterior knots introduced by the function.

Constraint: x½0� < lamda½4� � lamda½5� � . . . � lamda½n� 5� < x½m� 1�.
c – double * Output

On exit: a pointer to which memory of size n� 4 is internally allocated. c holds the
coefficient ci of the B-spline Ni xð Þ, for i ¼ 1; 2; . . . ; �nþ 3.

Note that when the information contained in the pointers lamda and c is no longer of use, or
before a new call to nag_1d_spline_fit_knots (e02bac) with the same spline, you should free this
storage using the NAG macro NAG_FREE.

7: fail – NagError * Input/Output

The NAG error argument (see Section 2.7 in How to Use the NAG Library and its
Documentation).

6 Error Indicators and Warnings

NE_ALLOC_FAIL

Dynamic memory allocation failed.

NE_INT_ARG_LT

On entry, spline!n must not be less than 8: spline!n ¼ valueh i.

NE_KNOTS_DISTINCT_ABSCI_CONS

Too many knots for the number of distinct abscissae, mdist: spline!n ¼ valueh i,
mdist ¼ valueh i.
These must satisfy the constraint spline!n � mdist þ 4.

NE_KNOTS_OUTSIDE_DATA_INTVL

On entry, user-specified knots must be interior to the data interval, spline!lamda½4� must be
grea te r than x½0� and spline!lamda½spline!n� 5� must be less than x½m� 1�:
spline!lamda½4� ¼ valueh i, x½0� ¼ valueh i, spline!lamda½ valueh i� ¼ valueh i,
x½ valueh i� ¼ valueh i.

NE_NOT_INCREASING

The sequence spline!lamda i s no t i n c r e a s i ng : spline!lamda½ valueh i� ¼ valueh i,
spline!lamda½ valueh i� ¼ valueh i.
This condition on spline!lamda applies to user-specified knots in the interval spline!lamda½4�,
spline!lamda½spline!n� 5�.
The sequence x is not increasing: x½ valueh i� ¼ valueh i, x½ valueh i� ¼ valueh i.

NE_SW_COND_FAIL

The conditions specified by Schoenberg and Whitney fail.
The conditions specified by Schoenberg and Whitney (1953) fail to hold for at least one subset of
the distinct data abscissae. That is, there is no subset of spline!n� 4 strictly increasing values,
x½r0�, x½r1�; . . . ; x½rspline!n�5�, among the abscissae such that

x½r0� < spline!lamda½0� < x½r4�,
x½r1� < spline!lamda½1� < x½r5�,
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. . .

x½rspline!n�9� < spline!lamda½spline!n� 9� < x½rspline!n�5�.
This means that there is no unique solution: there are regions containing too many knots
compared with the number of data points.

NE_WEIGHTS_NOT_POSITIVE

On entry, the weights are not strictly positive: weights½ valueh i� ¼ valueh i.

7 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates yr þ �yr. The ratio of the root-mean-square value for the �yr to the root-mean-square
value of the yr can be expected to be less than a small multiple of ��m�machine precision, where �
is a condition number for the problem. Values of � for 20-30 practical datasets all proved to lie between
4.5 and 7.8 (see Cox (1975)). (Note that for these datasets, replacing the coincident end knots at the
end-points x1 and xm used in the function by various choices of non-coincident exterior knots gave
values of � between 16 and 180. Again see Cox (1975) for further details.) In general we would not
expect � to be large unless the choice of knots results in near-violation of the Schoenberg–Whitney
conditions.

A cubic spline which adequately fits the data and is free from spurious oscillations is more likely to be
obtained if the knots are chosen to be grouped more closely in regions where the function (underlying
the data) or its derivatives change more rapidly than elsewhere.

8 Parallelism and Performance

nag_1d_spline_fit_knots (e02bac) is not threaded in any implementation.

9 Further Comments

The time taken by nag_1d_spline_fit_knots (e02bac) is approximately C � 2mþ �nþ 7ð Þ seconds,
where C is a machine-dependent constant.

Multiple knots are permitted as long as their multiplicity does not exceed 4, i.e., the complete set of
knots must satisfy �i < �iþ4, for i ¼ 1; 2; . . . ; �nþ 3, (see Section 6). At a knot of multiplicity one (the
usual case), s xð Þ and its first two derivatives are continuous. At a knot of multiplicity two, s xð Þ and its
first derivative are continuous. At a knot of multiplicity three, s xð Þ is continuous, and at a knot of
multiplicity four, s xð Þ is generally discontinuous.

The function can be used efficiently for cubic spline interpolation, i.e., if m ¼ �nþ 3. The abscissae
must then of course satisfy x1 < x2 < � � � < xm. Recommended values for the knots in this case are
�i ¼ xi�2, for i ¼ 5; 6; . . . ; �nþ 3.

10 Example

Determine a weighted least squares cubic spline approximation with five intervals (four interior knots)
to a set of 14 given data points. Tabulate the data and the corresponding values of the approximating
spline, together with the residual errors, and also the values of the approximating spline at points half-
way between each pair of adjacent data points.

The example program is written in a general form that will enable a cubic spline approximation with �n
intervals (�n� 1 interior knots) to be obtained to m data points, with arbitrary positive weights, and the
approximation to be tabulated. Note that nag_1d_spline_evaluate (e02bbc) is used to evaluate the
approximating spline. The program is self-starting in that any number of datasets can be supplied.
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10.1 Program Text

/* nag_1d_spline_fit_knots (e02bac) Example Program.
*
* NAGPRODCODE Version.
*
* Copyright 2016 Numerical Algorithms Group.
*
* Mark 26, 2016.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

int main(void)
{

Integer exit_status = 0, j, m, ncap, ncap7, r, wght;
NagError fail;
Nag_Spline spline;
double fit, ss, *weights = 0, *x = 0, xarg, *y = 0;

INIT_FAIL(fail);

/* Initialize spline */
spline.lamda = 0;
spline.c = 0;

printf("nag_1d_spline_fit_knots (e02bac) Example Program Results\n");
#ifdef _WIN32

scanf_s("%*[^\n]"); /* Skip heading in data file */
#else

scanf("%*[^\n]"); /* Skip heading in data file */
#endif
#ifdef _WIN32

while (scanf_s("%" NAG_IFMT "", &m) != EOF)
#else

while (scanf("%" NAG_IFMT "", &m) != EOF)
#endif

{
if (m >= 4) {

if (!(weights = NAG_ALLOC(m, double)) ||
!(x = NAG_ALLOC(m, double)) || !(y = NAG_ALLOC(m, double))

)
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
}
else {

printf("Invalid m.\n");
exit_status = 1;
goto END;

}
#ifdef _WIN32

scanf_s("%" NAG_IFMT "%" NAG_IFMT "", &ncap, &wght);
#else

scanf("%" NAG_IFMT "%" NAG_IFMT "", &ncap, &wght);
#endif

if (ncap > 0) {
ncap7 = ncap + 7;
spline.n = ncap7;
if (!(spline.lamda = NAG_ALLOC(ncap7, double)))
{

printf("Allocation failure\n");
exit_status = -1;
goto END;

}
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}
else {

printf("Invalid ncap.\n");
exit_status = 1;
goto END;

}
for (j = 4; j < ncap + 3; ++j)

#ifdef _WIN32
scanf_s("%lf", &(spline.lamda[j]));

#else
scanf("%lf", &(spline.lamda[j]));

#endif
for (r = 0; r < m; ++r) {

if (wght == 1) {
#ifdef _WIN32

scanf_s("%lf%lf", &x[r], &y[r]);
#else

scanf("%lf%lf", &x[r], &y[r]);
#endif

weights[r] = 1.0;
}
else

#ifdef _WIN32
scanf_s("%lf%lf%lf", &x[r], &y[r], &weights[r]);

#else
scanf("%lf%lf%lf", &x[r], &y[r], &weights[r]);

#endif
}
/* nag_1d_spline_fit_knots (e02bac).
* Least squares curve cubic spline fit (including
* interpolation), one variable
*/

nag_1d_spline_fit_knots(m, x, y, weights, &ss, &spline, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_1d_spline_fit_knots (e02bac).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("\nNumber of distinct knots = %" NAG_IFMT "\n\n", ncap + 1);
printf("Distinct knots located at \n\n");
for (j = 3; j < ncap + 4; j++)

printf("%8.4f%s", spline.lamda[j],
(j - 3) % 6 == 5 || j == ncap + 3 ? "\n" : " ");

printf("\n\n J B-spline coeff c\n\n");
for (j = 0; j < ncap + 3; ++j)

printf(" %" NAG_IFMT " %13.4f\n", j + 1, spline.c[j]);
printf("\nResidual sum of squares = ");
printf("%11.2e\n\n", ss);
printf("Cubic spline approximation and residuals\n");
printf(" r Abscissa Weight Ordinate"

" Spline Residual\n\n");
for (r = 0; r < m; ++r) {

/* nag_1d_spline_evaluate (e02bbc).
* Evaluation of fitted cubic spline, function only
*/

nag_1d_spline_evaluate(x[r], &fit, &spline, &fail);
if (fail.code != NE_NOERROR) {

printf("Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",
fail.message);

exit_status = 1;
goto END;

}

printf("%3" NAG_IFMT " %11.4f %11.4f %11.4f %11.4f"
" %10.1e\n", r + 1, x[r], weights[r], y[r], fit, fit - y[r]);

if (r < m - 1) {
xarg = (x[r] + x[r + 1]) * 0.5;
/* nag_1d_spline_evaluate (e02bbc), see above. */
nag_1d_spline_evaluate(xarg, &fit, &spline, &fail);
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if (fail.code != NE_NOERROR) {
printf("Error from nag_1d_spline_evaluate (e02bbc).\n%s\n",

fail.message);
exit_status = 1;
goto END;

}
printf(" %14.4f %33.4f\n", xarg, fit);

}
}
/* Free memory used by spline */
NAG_FREE(spline.lamda);
NAG_FREE(spline.c);

END:
NAG_FREE(weights);
NAG_FREE(x);
NAG_FREE(y);

}
return exit_status;

}

10.2 Program Data

nag_1d_spline_fit_knots (e02bac) Example Program Data
14
5 2

1.50
2.60
4.00
8.00
0.20 0.00 0.20
0.47 2.00 0.20
0.74 4.00 0.30
1.09 6.00 0.70
1.60 8.00 0.90
1.90 8.62 1.00
2.60 9.10 1.00
3.10 8.90 1.00
4.00 8.15 0.80
5.15 7.00 0.50
6.17 6.00 0.70
8.00 4.54 1.00

10.00 3.39 1.00
12.00 2.56 1.00

10.3 Program Results

nag_1d_spline_fit_knots (e02bac) Example Program Results

Number of distinct knots = 6

Distinct knots located at

0.2000 1.5000 2.6000 4.0000 8.0000 12.0000

J B-spline coeff c

1 -0.0465
2 3.6150
3 8.5724
4 9.4261
5 7.2716
6 4.1207
7 3.0822
8 2.5597

Residual sum of squares = 1.78e-03

Cubic spline approximation and residuals
r Abscissa Weight Ordinate Spline Residual
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1 0.2000 0.2000 0.0000 -0.0465 -4.7e-02
0.3350 1.0622

2 0.4700 0.2000 2.0000 2.1057 1.1e-01
0.6050 3.0817

3 0.7400 0.3000 4.0000 3.9880 -1.2e-02
0.9150 5.0558

4 1.0900 0.7000 6.0000 5.9983 -1.7e-03
1.3450 7.1376

5 1.6000 0.9000 8.0000 7.9872 -1.3e-02
1.7500 8.3544

6 1.9000 1.0000 8.6200 8.6348 1.5e-02
2.2500 9.0076

7 2.6000 1.0000 9.1000 9.0896 -1.0e-02
2.8500 9.0353

8 3.1000 1.0000 8.9000 8.9125 1.2e-02
3.5500 8.5660

9 4.0000 0.8000 8.1500 8.1321 -1.8e-02
4.5750 7.5592

10 5.1500 0.5000 7.0000 6.9925 -7.5e-03
5.6600 6.5010

11 6.1700 0.7000 6.0000 6.0255 2.6e-02
7.0850 5.2292

12 8.0000 1.0000 4.5400 4.5315 -8.5e-03
9.0000 3.9045

13 10.0000 1.0000 3.3900 3.3928 2.8e-03
11.0000 2.9574

14 12.0000 1.0000 2.5600 2.5597 -3.5e-04
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