
NAG Library Chapter Introduction

f08 – Least Squares and Eigenvalue Problems (LAPACK)

Contents

1 Scope of the Chapter . 3

2 Background to the Problems. 3

2.1 Linear Least Squares Problems . 3

2.2 Orthogonal Factorizations and Least Squares Problems . 4

2.2.1 QR factorization . 4
2.2.2 LQ factorization . 5
2.2.3 QR factorization with column pivoting . 5
2.2.4 Complete orthogonal factorization . 6
2.2.5 Updating a QR factorization. 6
2.2.6 Other factorizations . 7

2.3 The Singular Value Decomposition . 7

2.4 The Singular Value Decomposition and Least Squares Problems 7

2.5 Generalized Linear Least Squares Problems. 8

2.6 Generalized Orthogonal Factorization and
Generalized Linear Least Squares Problems. 8

2.6.1 Generalized QR Factorization. 8
2.6.2 Generalized RQ Factorization. 9
2.6.3 Generalized Singular Value Decomposition (GSVD) . 11
2.6.4 The Full CS Decomposition of Orthogonal Matrices . 12

2.7 Symmetric Eigenvalue Problems . 13

2.8 Generalized Symmetric-definite Eigenvalue Problems. 14

2.9 Packed Storage for Symmetric Matrices . 14

2.10 Band Matrices. 14

2.11 Nonsymmetric Eigenvalue Problems . 15

2.12 Generalized Nonsymmetric Eigenvalue Problem . 16

2.13 The Sylvester Equation and the Generalized Sylvester Equation 17

2.14 Error and Perturbation Bounds and Condition Numbers. 17

2.14.1 Least squares problems . 18
2.14.2 The singular value decomposition. 19
2.14.3 The symmetric eigenproblem . 20
2.14.4 The generalized symmetric-definite eigenproblem. 21
2.14.5 The nonsymmetric eigenproblem . 21
2.14.6Balancing and condition for the nonsymmetric eigenproblem 22
2.14.7 The generalized nonsymmetric eigenvalue problem . 22
2.14.8Balancing the generalized eigenvalue problem . 23
2.14.9Other problems . 23

2.15 Block Partitioned Algorithms . 23

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.1

3 Recommendations on Choice and Use of Available Functions 24

3.1 Available Functions . 24

3.1.1 Driver functions . 24
3.1.1.1 Linear least squares problems (LLS) . 24
3.1.1.2 Generalized linear least squares problems (LSE and GLM) 24
3.1.1.3 Symmetric eigenvalue problems (SEP) . 24
3.1.1.4 Nonsymmetric eigenvalue problem (NEP) . 25
3.1.1.5 Singular value decomposition (SVD). 25
3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP) 25
3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP) 26
3.1.1.8 Generalized singular value decomposition (GSVD) 26

3.1.2 Computational functions . 26
3.1.2.1 Orthogonal factorizations . 26
3.1.2.2 Generalized orthogonal factorizations . 27
3.1.2.3 Singular value problems. 27
3.1.2.4 Generalized singular value decomposition . 28
3.1.2.5 Symmetric eigenvalue problems. 28
3.1.2.6 Generalized symmetric-definite eigenvalue problems 30
3.1.2.7 Nonsymmetric eigenvalue problems. 31
3.1.2.8 Generalized nonsymmetric eigenvalue problems . 32
3.1.2.9 The Sylvester equation and the generalized Sylvester equation. 33

3.2 NAG Names and LAPACK Names . 34

3.3 Matrix Storage Schemes . 35

3.3.1 Conventional storage. 35
3.3.2 Packed storage . 35
3.3.3 Band storage . 35
3.3.4 Tridiagonal and bidiagonal matrices . 35
3.3.5 Real diagonal elements of complex matrices . 35
3.3.6 Representation of orthogonal or unitary matrices . 36

3.4 Argument Conventions . 36

3.4.1 Option Arguments . 36
3.4.2 Problem dimensions . 36

3.5 Normalizing Output Vectors . 36

4 Decision Trees . 38

4.1 General Purpose Functions (eigenvalues and eigenvectors) . 38

4.2 General Purpose Functions (singular value decomposition) . 43

5 Functionality Index . 43

6 Auxiliary Functions Associated with Library Function Arguments 51

7 Functions Withdrawn or Scheduled for Withdrawal . 51

8 References . 51

Introduction – f08 NAG Library Manual

f08.2 Mark 26.1

1 Scope of the Chapter

This chapter provides functions for the solution of linear least squares problems, eigenvalue problems
and singular value problems, as well as associated computations. It provides functions for:

solution of linear least squares problems

solution of symmetric eigenvalue problems

solution of nonsymmetric eigenvalue problems

solution of singular value problems

solution of generalized linear least squares problems

solution of generalized symmetric-definite eigenvalue problems

solution of generalized nonsymmetric eigenvalue problems

solution of generalized singular value problems

matrix factorizations associated with the above problems

estimating condition numbers of eigenvalue and eigenvector problems

estimating the numerical rank of a matrix

solution of the Sylvester matrix equation

Functions are provided for both real and complex data.

For a general introduction to the solution of linear least squares problems, you should turn first to
Chapter f04. The decision trees, at the end of Chapter f04, direct you to the most appropriate functions
in Chapters f04 or f08. Chapters f04 and f08 contain Black Box (or driver) functions which enable
standard linear least squares problems to be solved by a call to a single function.

For a general introduction to eigenvalue and singular value problems, you should turn first to Chapter
f02. The decision trees, at the end of Chapter f02, direct you to the most appropriate functions in
Chapters f02 or f08. Chapters f02 and f08 contain Black Box (or driver) functions which enable
standard types of problem to be solved by a call to a single function. Often functions in Chapter f02 call
Chapter f08 functions to perform the necessary computational tasks.

The functions in this chapter (Chapter f08) handle only dense, band, tridiagonal and Hessenberg
matrices (not matrices with more specialised structures, or general sparse matrices). The tables in
Section 3 and the decision trees in Section 4 direct you to the most appropriate functions in Chapter
f08.

The functions in this chapter have all been derived from the LAPACK project (see Anderson et al.
(1999)). They have been designed to be efficient on a wide range of high-performance computers,
without compromising efficiency on conventional serial machines.

2 Background to the Problems

This section is only a brief introduction to the numerical solution of linear least squares problems,
eigenvalue and singular value problems. Consult a standard textbook for a more thorough discussion,
for example Golub and Van Loan (2012).

2.1 Linear Least Squares Problems

The linear least squares problem is

minimize
x

b�Axk k2; ð1Þ

where A is an m by n matrix, b is a given m element vector and x is an n-element solution vector.

In the most usual case m � n and rank Að Þ ¼ n, so that A has full rank and in this case the solution to
problem (1) is unique; the problem is also referred to as finding a least squares solution to an
overdetermined system of linear equations.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.3

When m < n and rank Að Þ ¼ m, there are an infinite number of solutions x which exactly satisfy
b�Ax ¼ 0. In this case it is often useful to find the unique solution x which minimizes xk k2, and the
problem is referred to as finding a minimum norm solution to an underdetermined system of linear
equations.

In the general case when we may have rank Að Þ < min m;nð Þ – in other words, A may be rank-deficient
– we seek the minimum norm least squares solution x which minimizes both xk k2 and b�Axk k2.
This chapter (Chapter f08) contains driver functions to solve these problems with a single call, as well
as computational functions that can be combined with functions in Chapter f07 to solve these linear
least squares problems. The next two sections discuss the factorizations that can be used in the solution
of linear least squares problems.

2.2 Orthogonal Factorizations and Least Squares Problems

A number of functions are provided for factorizing a general rectangular m by n matrix A, as the
product of an orthogonal matrix (unitary if complex) and a triangular (or possibly trapezoidal) matrix.

A real matrix Q is orthogonal if QTQ ¼ I; a complex matrix Q is unitary if QHQ ¼ I. Orthogonal or
unitary matrices have the important property that they leave the 2-norm of a vector invariant, so that

xk k2 ¼ Qxk k2;
if Q is orthogonal or unitary. They usually help to maintain numerical stability because they do not
amplify rounding errors.

Orthogonal factorizations are used in the solution of linear least squares problems. They may also be
used to perform preliminary steps in the solution of eigenvalue or singular value problems, and are
useful tools in the solution of a number of other problems.

2.2.1 QR factorization

The most common, and best known, of the factorizations is the QR factorization given by

A ¼ Q
R
0

� �
; if m � n;

where R is an n by n upper triangular matrix and Q is an m by m orthogonal (or unitary) matrix. If A
is of full rank n, then R is nonsingular. It is sometimes convenient to write the factorization as

A ¼ Q1Q2ð Þ R
0

� �

which reduces to

A ¼ Q1R;

where Q1 consists of the first n columns of Q, and Q2 the remaining m� n columns.

If m < n, R is trapezoidal, and the factorization can be written

A ¼ Q R1R2ð Þ; if m < n;

where R1 is upper triangular and R2 is rectangular.

The QR factorization can be used to solve the linear least squares problem (1) when m � n and A is of
full rank, since

b�Axk k2 ¼ QTb�QTAx
�� ��

2
¼ c1 �Rx

c2

� �����
����
2

;

where

c � c1
c2

� �
¼

QT
1b

QT
2b

0
@

1
A ¼ QTb;

Introduction – f08 NAG Library Manual

f08.4 Mark 26.1

and c1 is an n-element vector. Then x is the solution of the upper triangular system

Rx ¼ c1:

The residual vector r is given by

r ¼ b� Ax ¼ Q
0
c2

� �
:

The residual sum of squares rk k22 may be computed without forming r explicitly, since

rk k2 ¼ b�Axk k2 ¼ c2k k2:

2.2.2 LQ factorization

The LQ factorization is given by

A ¼ L 0ð ÞQ ¼ L 0ð Þ Q1
Q2

� �
¼ LQ1; if m � n;

where L is m by m lower triangular, Q is n by n orthogonal (or unitary), Q1 consists of the first m
rows of Q, and Q2 the remaining n�m rows.

The LQ factorization of A is essentially the same as the QR factorization of AT (AH if A is complex),
since

A ¼ L 0ð ÞQ , AT ¼ QT LT

0

� �
:

The LQ factorization may be used to find a minimum norm solution of an underdetermined system of
linear equations Ax ¼ b where A is m by n with m < n and has rank m. The solution is given by

x ¼ QT L�1b
0

� �
:

2.2.3 QR factorization with column pivoting

To solve a linear least squares problem (1) when A is not of full rank, or the rank of A is in doubt, we
can perform either a QR factorization with column pivoting or a singular value decomposition.

The QR factorization with column pivoting is given by

A ¼ Q
R
0

� �
PT; m � n;

where Q and R are as before and P is a (real) permutation matrix, chosen (in general) so that

r11j j � r22j j � � � � � rnnj j
and moreover, for each k,

rkkj j � Rk:j;j

�� ��
2
; j ¼ kþ 1; . . . ; n:

If we put

R ¼ R11 R12
0 R22

� �

where R11 is the leading k by k upper triangular sub-matrix of R then, in exact arithmetic, if
rank Að Þ ¼ k, the whole of the sub-matrix R22 in rows and columns kþ 1 to n would be zero. In
numerical computation, the aim must be to determine an index k, such that the leading sub-matrix R11

is well-conditioned, and R22 is negligible, so that

R ¼ R11 R12
0 R22

� �
’ R11 R12

0 0

� �
:

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.5

Then k is the effective rank of A. See Golub and Van Loan (2012) for a further discussion of numerical
rank determination.

The so-called basic solution to the linear least squares problem (1) can be obtained from this
factorization as

x ¼ P
R�1

11 ĉ1
0

� �
;

where ĉ1 consists of just the first k elements of c ¼ QTb.

2.2.4 Complete orthogonal factorization

The QR factorization with column pivoting does not enable us to compute a minimum norm solution to
a rank-deficient linear least squares problem, unless R12 ¼ 0. However, by applying for further
orthogonal (or unitary) transformations from the right to the upper trapezoidal matrix R11 R12

� �
, R12

can be eliminated:

R11 R12

� �
Z ¼ T11 0

� �
:

This gives the complete orthogonal factorization

AP ¼ Q
T11 0
0 0

� �
ZT

from which the minimum norm solution can be obtained as

x ¼ PZ
T�1
11 ĉ1
0

� �
:

2.2.5 Updating a QR factorization

Section 2.2.1 gave the forms of the QR factorization of an m by n matrix A for the two cases m � n
and m < n. Taking first the case m � n, the least squares solution of

Ax ¼ b ¼
��

n b1
m� n b2

is the solution of

Rx ¼ QT
1b:

If the original system is now augmented by the addition of p rows so that we require the solution of

A
B

� �
x ¼

��
m b
p b3

where B is p by n, then this is equivalent to finding the least squares solution of

Âx ¼
�� n

n R
p B

x ¼ QT
1b
b3

� �
¼ b̂:

This now requires the QR factorization of the nþ p by n triangular-rectangular matrix Â.

For the case m < n � mþ p, the least squares solution of the augmented system reduces to

Âx ¼ B
R1 R2

� �
x ¼ b3

QTb

� �
¼ b̂;

where Â is pentagonal.

In both cases Â can be written as a special case of a triangular-pentagonal matrix consisting of an upper
triangular part on top of a rectangular part which is itself on top of a trapezoidal part. In the first case

Introduction – f08 NAG Library Manual

f08.6 Mark 26.1

there is no trapezoidal part, in the second case a zero upper triangular part can be added, and more
generally the two cases can be combined.

2.2.6 Other factorizations

The QL and RQ factorizations are given by

A ¼ Q
0
L

� �
; if m � n;

and

A ¼ 0 R
� �

Q; if m � n:

The factorizations are less commonly used than either the QR or LQ factorizations described above,
but have applications in, for example, the computation of generalized QR factorizations.

2.3 The Singular Value Decomposition

The singular value decomposition (SVD) of an m by n matrix A is given by

A ¼ U�V T; A ¼ U�V Hin the complex case
� �

where U and V are orthogonal (unitary) and � is an m by n diagonal matrix with real diagonal
elements, �i, such that

�1 � �2 � � � � � �min m;nð Þ � 0:

The �i are the singular values of A and the first min m;nð Þ columns of U and V are the left and right
singular vectors of A. The singular values and singular vectors satisfy

Avi ¼ �iui and ATui ¼ �ivi or AHui ¼ �ivi
� �

where ui and vi are the ith columns of U and V respectively.

The computation proceeds in the following stages.

1. The matrix A is reduced to bidiagonal form A ¼ U1BV
T
1 if A is real (A ¼ U1BV

H
1 if A is

complex), where U1 and V1 are orthogonal (unitary if A is complex), and B is real and upper
bidiagonal when m � n and lower bidiagonal when m < n, so that B is nonzero only on the main
diagonal and either on the first superdiagonal (if m � n) or the first subdiagonal (if m < n).

2. The SVD of the bidiagonal matrix B is computed as B ¼ U2�V T
2 , where U2 and V2 are orthogonal

and � is diagonal as described above. The singular vectors of A are then U ¼ U1U2 and V ¼ V1V2.

If m � n, it may be more efficient to first perform a QR factorization of A, and then compute the SVD
of the n by n matrix R, since if A ¼ QR and R ¼ U�V T, then the SVD of A is given by
A ¼ QUð Þ�V T.

Similarly, if m � n, it may be more efficient to first perform an LQ factorization of A.

This chapter supports two primary algorithms for computing the SVD of a bidiagonal matrix. They are:

(i) the divide and conquer algorithm;

(ii) the QR algorithm.

The divide and conquer algorithm is much faster than the QR algorithm if singular vectors of large
matrices are required.

2.4 The Singular Value Decomposition and Least Squares Problems

The SVD may be used to find a minimum norm solution to a (possibly) rank-deficient linear least
squares problem (1). The effective rank, k, of A can be determined as the number of singular values
which exceed a suitable threshold. Let �̂ be the leading k by k sub-matrix of �, and V̂ be the matrix
consisting of the first k columns of V . Then the solution is given by

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.7

x ¼ V̂ �̂�1ĉ1;

where ĉ1 consists of the first k elements of c ¼ UTb ¼ UT
2 U

T
1 b.

2.5 Generalized Linear Least Squares Problems

The simple type of linear least squares problem described in Section 2.1 can be generalized in various
ways.

1. Linear least squares problems with equality constraints:

find x to minimize S ¼ c�Axk k22 subject to Bx ¼ d;

where A is m by n and B is p by n, with p � n � mþ p. The equations Bx ¼ d may be regarded
as a set of equality constraints on the problem of minimizing S. Alternatively the problem may be
regarded as solving an overdetermined system of equations

A
B

� �
x ¼ c

d

� �
;

where some of the equations (those involving B) are to be solved exactly, and the others (those
involving A) are to be solved in a least squares sense. The problem has a unique solution on the

assumptions that B has full row rank p and the matrix A
B

� �
has full column rank n. (For linear

least squares problems with inequality constraints, refer to Chapter e04.)

2. General Gauss–Markov linear model problems:

minimize yk k2 subject to d ¼ AxþBy;

where A is m by n and B is m by p, with n � m � nþ p. When B ¼ I, the problem reduces to an
ordinary linear least squares problem. When B is square and nonsingular, it is equivalent to a
weighted linear least squares problem:

find x to minimize B�1 d�Axð Þ�� ��
2
:

The problem has a unique solution on the assumptions that A has full column rank n, and the
matrix A;Bð Þ has full row rank m. Unless B is diagonal, for numerical stability it is generally
preferable to solve a weighted linear least squares problem as a general Gauss–Markov linear
model problem.

2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares
Problems

2.6.1 Generalized QR Factorization

The generalized QR (GQR) factorization of an n by m matrix A and an n by p matrix B is given by
the pair of factorizations

A ¼ QR and B ¼ QTZ;

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B
are complex). R has the form

R ¼
�� m

m R11
n�m 0

; if n � m;

or

R ¼
�� n m� n

n R11 R12 ; if n < m;

Introduction – f08 NAG Library Manual

f08.8 Mark 26.1

where R11 is upper triangular. T has the form

T ¼
�� p� n n

n 0 T12 ; if n � p;

or

T ¼
�� p

n� p T11
p T21

; if n > p;

where T12 or T21 is upper triangular.

Note that if B is square and nonsingular, the GQR factorization of A and B implicitly gives the QR
factorization of the matrix B�1A:

B�1A ¼ ZT T�1R
� �

without explicitly computing the matrix inverse B�1 or the product B�1A (remembering that the inverse
of an invertible upper triangular matrix and the product of two upper triangular matrices is an upper
triangular matrix).

The GQR factorization can be used to solve the general (Gauss–Markov) linear model problem (GLM)
(see Section 2.5, but note that A and B are dimensioned differently there as m by n and p by n
respectively). Using the GQR factorization of A and B, we rewrite the equation d ¼ AxþBy as

QTd ¼ QTAxþQTBy
¼ Rxþ TZy:

We partition this as

d1
d2

� �
¼

�� m

m R11
n�m 0

xþ
�� p� nþm n�m

m T11 T12
n�m 0 T22

y1
y2

� �

where

d1
d2

� �
� QTd; and y1

y2

� �
� Zy:

The GLM problem is solved by setting

y1 ¼ 0 and y2 ¼ T�1
22 d2

from which we obtain the desired solutions

x ¼ R�1
11 d1 � T12y2ð Þ and y ¼ ZT 0

y2

� �
:

2.6.2 Generalized RQ Factorization

The generalized RQ (GRQ) factorization of an m by n matrix A and a p by n matrix B is given by
the pair of factorizations

A ¼ RQ; B ¼ ZTQ

where Q and Z are respectively n by n and p by p orthogonal matrices (or unitary matrices if A and B
are complex). R has the form

R ¼
��n�m m

m 0 R12 ; if m � n;

or

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.9

R ¼
�� n

m� n R11
n R21

; if m > n;

where R12 or R21 is upper triangular. T has the form

T ¼
�� n

n T11
p� n 0

; if p � n;

or

T ¼
�� p n� p

p T11 T12 ; if p < n;

where T11 is upper triangular.

Note that if B is square and nonsingular, the GRQ factorization of A and B implicitly gives the RQ
factorization of the matrix AB�1:

AB�1 ¼ RT�1
� �

ZT

without explicitly computing the matrix B�1 or the product AB�1 (remembering that the inverse of an
invertible upper triangular matrix and the product of two upper triangular matrices is an upper
triangular matrix).

The GRQ factorization can be used to solve the linear equality-constrained least squares problem (LSE)
(see Section 2.5). We use the GRQ factorization of B and A (note that B and A have swapped roles),
written as

B ¼ TQ and A ¼ ZRQ:

We write the linear equality constraints Bx ¼ d as

TQx ¼ d;

which we partition as:

��n� p p

p 0 T12
x1
x2

� �
¼ d where x1

x2

� �
� Qx:

Therefore x2 is the solution of the upper triangular system

T12x2 ¼ d:

Furthermore,

Ax� ck k2 ¼ ZTAx� ZTck k2¼ RQx� ZTck k2
:

We partition this expression as:

��n� p p

n� p R11 R12
pþm� n 0 R22

x1
x2

� �
� c1

c2

� �
;

where c1
c2

� �
� ZTc.

To solve the LSE problem, we set

R11x1 þ R12x2 � c1 ¼ 0

which gives x1 as the solution of the upper triangular system

R11x1 ¼ c1 �R12x2:

Introduction – f08 NAG Library Manual

f08.10 Mark 26.1

Finally, the desired solution is given by

x ¼ QT x1
x2

� �
:

2.6.3 Generalized Singular Value Decomposition (GSVD)

The generalized (or quotient) singular value decomposition of an m by n matrix A and a p by n
matrix B is given by the pair of factorizations

A ¼ U�1 0; R½ 	QT and B ¼ V�2 0; R½ 	QT:

The matrices in these factorizations have the following properties:

– U is m by m, V is p by p, Q is n by n, and all three matrices are orthogonal. If A and B are
complex, these matrices are unitary instead of orthogonal, and QT should be replaced by QH in the
pair of factorizations.

– R is r by r, upper triangular and nonsingular. 0; R½ 	 is r by n (in other words, the 0 is an r by n� r

zero matrix). The integer r is the rank of A
B

� �
, and satisfies r � n.

– �1 is m by r, �2 is p by r, both are real, non-negative and diagonal, and �T
1�1 þ�T

2�2 ¼ I. Write
�T

1�1 ¼ diag �2
1; . . . ; �

2
r

� �
and �T

2�2 ¼ diag �2
1; . . . ; �

2
r

� �
, where �i and �i lie in the interval from 0

to 1. The ratios �1=�1; . . . ; �r=�r are called the generalized singular values of the pair A, B. If
�i ¼ 0, then the generalized singular value �i=�i is infinite.

�1 and �2 have the following detailed structures, depending on whether m � r or m < r. In the first
case, m � r, then

�1 ¼
1
A

0
@

k l

k I 0
l 0 C

m� k� l 0 0
and �2 ¼

�� k l

l 0 S
p� l 0 0

:

Here l is the rank of B, k ¼ r� l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I, and S is
nonsingular. We may also identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii, for i ¼ 1; 2; . . . ; l, �1 ¼ � � � ¼ �k ¼ 0,
and �kþi ¼ sii, for i ¼ 1; 2; . . . ; l. Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are
infinite, and the remaining l generalized singular values are finite.

In the second case, when m < r,

�1 ¼
�� k m� k kþ l�m

k I 0 0
m� k 0 C 0

and

�2 ¼
1
A

0
@

k m� k kþ l�m

m� k 0 S 0
kþ l�m 0 0 I

p� l 0 0 0
:

Again, l is the rank of B, k ¼ r� l, C and S are diagonal matrices satisfying C2 þ S2 ¼ I, and S is
nonsingular, and we may identify �1 ¼ � � � ¼ �k ¼ 1, �kþi ¼ cii, for i ¼ 1; 2; . . . ;m� k,
�mþ1 ¼ � � � ¼ �r ¼ 0, �1 ¼ � � � ¼ �k ¼ 0, �kþi ¼ sii, for i ¼ 1; 2; . . . ;m� k and �mþ1 ¼ � � � ¼ �r ¼ 1.
Thus, the first k generalized singular values �1=�1; . . . ; �k=�k are infinite, and the remaining l
generalized singular values are finite.

Here are some important special cases of the generalized singular value decomposition. First, if B is
square and nonsingular, then r ¼ n and the generalized singular value decomposition of A and B is
equivalent to the singular value decomposition of AB�1, where the singular values of AB�1 are equal
to the generalized singular values of the pair A, B:

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.11

AB�1 ¼ U�1RQ
T

� �
V �2RQ

T
� ��1 ¼ U �1�

�1
2

� �
V T:

Second, for the matrix C, where

C � A
B

� �

if the columns of C are orthonormal, then r ¼ n, R ¼ I and the generalized singular value
decomposition of A and B is equivalent to the CS (Cosine–Sine) decomposition of C:

A
B

� �
¼ U 0

0 V

� �
�1
�2

� �
QT:

Third, the generalized eigenvalues and eigenvectors of ATA� �BTB can be expressed in terms of the
generalized singular value decomposition: Let

X ¼ Q
I 0
0 R�1

� �
:

Then

XTATAX ¼ 0 0
0 �T

1�1

� �
and XTBTBX ¼ 0 0

0 �T
2�2

� �
:

Therefore, the columns of X are the eigenvectors of ATA� �BTB, and ‘nontrivial’ eigenvalues are the
squares of the generalized singular values (see also Section 2.8). ‘Trivial’ eigenvalues are those
corresponding to the leading n� r columns of X, which span the common null space of ATA and BTB.
The ‘trivial eigenvalues’ are not well defined.

2.6.4 The Full CS Decomposition of Orthogonal Matrices

In Section 2.6.3 the CS (Cosine-Sine) decomposition of an orthogonal matrix partitioned into two
submatrices A and B was given by

A
B

� �
¼ U 0

0 V

� �
�1
�2

� �
QT:

The full CS decomposition of an m by m orthogonal matrix X partitions X into four submatrices and
factorizes as

X11 X12
X21 X22

� �
¼ U1 0

0 U2

� �
�11 ��12
�21 �22

� �
V1 0
0 V2

� �T

where, X11 is a p by q submatrix (which implies the dimensions of X12, X21 and X22); U1, U2, V1 and
V2 are orthogonal matrices of dimensions p, m� p, q and m� q respectively; �11 is the p by q single-
diagonal matrix

�11 ¼
1
A

0
@

k11 � r r q � k11
k11 � r I 0 0

r 0 C 0
p� k11 0 0

; k11 ¼ min p; qð Þ

�12 is the p by m� q single-diagonal matrix

�12 ¼
1
A

0
@

m� q � k12 r k12 � r

p� k12 0 0
r 0 S 0

k12 � r 0 0 I

; k12 ¼ min p;m� qð Þ;

�21 is the m� p by q single-diagonal matrix

Introduction – f08 NAG Library Manual

f08.12 Mark 26.1

�21 ¼
1
A

0
@

q � k21 r k21 � r

m� p� k21 0 0
r 0 S 0

k21 � r 0 0 I

; k21 ¼ min m� p; qð Þ;

and, �21 is the m� p by q single-diagonal matrix

�22 ¼
1
A

0
@

k22 � r r m� q � k22
k22 � r I 0 0

r 0 C 0
m� p� k22 0 0

; k22 ¼ min m� p;m� qð Þ

where r ¼ min p;m� p; q;m� qð Þ and the missing zeros remind us that either the column or the row is
missing. The r by r diagonal matrices C and S are such that C2 þ S2 ¼ I.

This is equivalent to the simultaneous singular value decomposition of the four submatrices X11, X12,
X21 and X22.

2.7 Symmetric Eigenvalue Problems

The symmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors, z 6¼ 0,
such that

Az ¼ �z; A ¼ AT; where A is real:

For the Hermitian eigenvalue problem we have

Az ¼ �z; A ¼ AH; where A is complex:

For both problems the eigenvalues � are real.

When all eigenvalues and eigenvectors have been computed, we write

A ¼ Z�ZT or A ¼ Z�ZH if complex
� �

;

where � is a diagonal matrix whose diagonal elements are the eigenvalues, and Z is an orthogonal (or
unitary) matrix whose columns are the eigenvectors. This is the classical spectral factorization of A.

The basic task of the symmetric eigenproblem functions is to compute values of � and, optionally,
corresponding vectors z for a given matrix A. This computation proceeds in the following stages.

1. The real symmetric or complex Hermitian matrix A is reduced to real tridiagonal form T . If A is
real symmetric this decomposition is A ¼ QTQT with Q orthogonal and T symmetric tridiagonal.
If A is complex Hermitian, the decomposition is A ¼ QTQH with Q unitary and T , as before, real
symmetric tridiagonal.

2. Eigenvalues and eigenvectors of the real symmetric tridiagonal matrix T are computed. If all
eigenvalues and eigenvectors are computed, this is equivalent to factorizing T as T ¼ S�ST, where
S is orthogonal and � is diagonal. The diagonal entries of � are the eigenvalues of T , which are
also the eigenvalues of A, and the columns of S are the eigenvectors of T ; the eigenvectors of A
are the columns of Z ¼ QS, so that A ¼ Z�ZT (Z�ZH when A is complex Hermitian).

This chapter supports four primary algorithms for computing eigenvalues and eigenvectors of real
symmetric matrices and complex Hermitian matrices. They are:

(i) the divide-and-conquer algorithm;

(ii) the QR algorithm;

(iii) bisection followed by inverse iteration;

(iv) the Relatively Robust Representation (RRR).

The divide-and-conquer algorithm is generally more efficient than the traditional QR algorithm for
computing all eigenvalues and eigenvectors, but the RRR algorithm tends to be fastest of all. For
further information and references see Anderson et al. (1999).

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.13

2.8 Generalized Symmetric-definite Eigenvalue Problems

This section is concerned with the solution of the generalized eigenvalue problems Az ¼ �Bz,
ABz ¼ �z, and BAz ¼ �z, where A and B are real symmetric or complex Hermitian and B is positive
definite. Each of these problems can be reduced to a standard symmetric eigenvalue problem, using a
Cholesky factorization of B as either B ¼ LLT or B ¼ UTU (LLH or UHU in the Hermitian case).

With B ¼ LLT, we have

Az ¼ �Bz) L�1AL�T
� �

LTz
� � ¼ � LTz

� �
:

Hence the eigenvalues of Az ¼ �Bz are those of Cy ¼ �y, where C is the symmetric matrix
C ¼ L�1AL�T and y ¼ LTz. In the complex case C is Hermitian with C ¼ L�1AL�H and y ¼ LHz.

Table 1 summarises how each of the three types of problem may be reduced to standard form Cy ¼ �y,
and how the eigenvectors z of the original problem may be recovered from the eigenvectors y of the
reduced problem. The table applies to real problems; for complex problems, transposed matrices must
be replaced by conjugate-transposes.

Type of problem Factorization of B Reduction Recovery of eigenvectors

1. Az ¼ �Bz B ¼ LLT,
B ¼ UTU

C ¼ L�1AL�T,
C ¼ U�TAU�1

z ¼ L�Ty,
z ¼ U�1y

2. ABz ¼ �z B ¼ LLT,
B ¼ UTU

C ¼ LTAL,
C ¼ UAUT

z ¼ L�Ty,
z ¼ U�1y

3. BAz ¼ �z B ¼ LLT,
B ¼ UTU

C ¼ LTAL,
C ¼ UAUT

z ¼ Ly,
z ¼ UTy

Table 1
Reduction of generalized symmetric-definite eigenproblems to standard problems

When the generalized symmetric-definite problem has been reduced to the corresponding standard
problem Cy ¼ �y, this may then be solved using the functions described in the previous section. No
special functions are needed to recover the eigenvectors z of the generalized problem from the
eigenvectors y of the standard problem, because these computations are simple applications of Level 2
or Level 3 BLAS (see Chapter f16).

2.9 Packed Storage for Symmetric Matrices

Functions which handle symmetric matrices are usually designed so that they use either the upper or
lower triangle of the matrix; it is not necessary to store the whole matrix. If either the upper or lower
triangle is stored conventionally in the upper or lower triangle of a two-dimensional array, the
remaining elements of the array can be used to store other useful data. However, that is not always
convenient, and if it is important to economize on storage, the upper or lower triangle can be stored in a
one-dimensional array of length n nþ 1ð Þ=2; that is, the storage is almost halved.

This storage format is referred to as packed storage; it is described in Section 3.3.2 in the f07 Chapter
Introduction.

Functions designed for packed storage are usually less efficient, especially on high-performance
computers, so there is a trade-off between storage and efficiency.

2.10 Band Matrices

A band matrix is one whose elements are confined to a relatively small number of subdiagonals or
superdiagonals on either side of the main diagonal. Algorithms can take advantage of bandedness to
reduce the amount of work and storage required. The storage scheme for band matrices is described in
Section 3.3.4 in the f07 Chapter Introduction.

Introduction – f08 NAG Library Manual

f08.14 Mark 26.1

If the problem is the generalized symmetric definite eigenvalue problem Az ¼ �Bz and the matrices A
and B are additionally banded, the matrix C as defined in Section 2.8 is, in general, full. We can reduce
the problem to a banded standard problem by modifying the definition of C thus:

C ¼ XTAX; where X ¼ U�1Q or L�TQ;

where Q is an orthogonal matrix chosen to ensure that C has bandwidth no greater than that of A.

A further refinement is possible when A and B are banded, which halves the amount of work required
to form C. Instead of the standard Cholesky factorization of B as UTU or LLT, we use a split Cholesky
factorization B ¼ STS, where

S ¼ U11
M21 L22

� �

with U11 upper triangular and L22 lower triangular of order approximately n=2; S has the same
bandwidth as B.

2.11 Nonsymmetric Eigenvalue Problems

The nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding eigenvectors,
v 6¼ 0, such that

Av ¼ �v:

More precisely, a vector v as just defined is called a right eigenvector of A, and a vector u 6¼ 0
satisfying

uTA ¼ �uT uHA ¼ �uH when u is complex
� �

is called a left eigenvector of A.

A real matrix A may have complex eigenvalues, occurring as complex conjugate pairs.

This problem can be solved via the Schur factorization of A, defined in the real case as

A ¼ ZTZT;

where Z is an orthogonal matrix and T is an upper quasi-triangular matrix with 1 by 1 and 2 by 2
diagonal blocks, the 2 by 2 blocks corresponding to complex conjugate pairs of eigenvalues of A. In the
complex case, the Schur factorization is

A ¼ ZTZH;

where Z is unitary and T is a complex upper triangular matrix.

The columns of Z are called the Schur vectors. For each k (1 � k � n), the first k columns of Z form
an orthonormal basis for the invariant subspace corresponding to the first k eigenvalues on the diagonal
of T . Because this basis is orthonormal, it is preferable in many applications to compute Schur vectors
rather than eigenvectors. It is possible to order the Schur factorization so that any desired set of k
eigenvalues occupy the k leading positions on the diagonal of T .

The two basic tasks of the nonsymmetric eigenvalue functions are to compute, for a given matrix A, all
n values of � and, if desired, their associated right eigenvectors v and/or left eigenvectors u, and the
Schur factorization.

These two basic tasks can be performed in the following stages.

1. A general matrix A is reduced to upper Hessenberg form H which is zero below the first
subdiagonal. The reduction may be written A ¼ QHQT with Q orthogonal if A is real, or
A ¼ QHQH with Q unitary if A is complex.

2. The upper Hessenberg matrix H is reduced to Schur form T , giving the Schur factorization
H ¼ STST (for H real) or H ¼ STSH (for H complex). The matrix S (the Schur vectors of H)
may optionally be computed as well. Alternatively S may be postmultiplied into the matrix Q
determined in stage 1, to give the matrix Z ¼ QS, the Schur vectors of A. The eigenvalues are
obtained from the diagonal elements or diagonal blocks of T .

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.15

3. Given the eigenvalues, the eigenvectors may be computed in two different ways. Inverse iteration
can be performed on H to compute the eigenvectors of H, and then the eigenvectors can be
multiplied by the matrix Q in order to transform them to eigenvectors of A. Alternatively the
eigenvectors of T can be computed, and optionally transformed to those of H or A if the matrix S
or Z is supplied.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix.
This is discussed further in Section 2.14.6 below.

2.12 Generalized Nonsymmetric Eigenvalue Problem

The generalized nonsymmetric eigenvalue problem is to find the eigenvalues, �, and corresponding
eigenvectors, v 6¼ 0, such that

Av ¼ �Bv:

More precisely, a vector v as just defined is called a right eigenvector of the matrix pair A;Bð Þ, and a
vector u 6¼ 0 satisfying

uTA ¼ �uTB uHA ¼ �uHB when u is complex
� �

is called a left eigenvector of the matrix pair A;Bð Þ.
If B is singular then the problem has one or more infinite eigenvalues � ¼ 1, corresponding to Bv ¼ 0.
Note that if A is nonsingular, then the equivalent problem �Av ¼ Bv is perfectly well defined and an
infinite eigenvalue corresponds to � ¼ 0. To deal with both finite (including zero) and infinite
eigenvalues, the functions in this chapter do not compute � explicitly, but rather return a pair of
numbers �; �ð Þ such that if � 6¼ 0

� ¼ �=�

and if � 6¼ 0 and � ¼ 0 then � ¼ 1. � is always returned as real and non-negative. Of course,
computationally an infinite eigenvalue may correspond to a small � rather than an exact zero.

For a given pair A;Bð Þ the set of all the matrices of the form A� �Bð Þ is called a matrix pencil and �
and v are said to be an eigenvalue and eigenvector of the pencil A� �Bð Þ. If A and B are both singular
and share a common null space then

det A� �Bð Þ � 0

so that the pencil A� �Bð Þ is singular for all �. In other words any � can be regarded as an
eigenvalue. In exact arithmetic a singular pencil will have � ¼ � ¼ 0 for some �; �ð Þ. Computationally
if some pair �; �ð Þ is small then the pencil is singular, or nearly singular, and no reliance can be placed
on any of the computed eigenvalues. Singular pencils can also manifest themselves in other ways; see,
in particular, Sections 2.3.5.2 and 4.11.1.4 of Anderson et al. (1999) for further details.

The generalized eigenvalue problem can be solved via the generalized Schur factorization of the pair
A;Bð Þ defined in the real case as

A ¼ QSZT; B ¼ QTZT;

where Q and Z are orthogonal, T is upper triangular with non-negative diagonal elements and S is
upper quasi-triangular with 1 by 1 and 2 by 2 diagonal blocks, the 2 by 2 blocks corresponding to
complex conjugate pairs of eigenvalues. In the complex case, the generalized Schur factorization is

A ¼ QSZH; B ¼ QTZH;

where Q and Z are unitary and S and T are upper triangular, with T having real non-negative diagonal
elements. The columns of Q and Z are called respectively the left and right generalized Schur vectors
and span pairs of deflating subspaces of A and B, which are a generalization of invariant subspaces.

It is possible to order the generalized Schur factorization so that any desired set of k eigenvalues
correspond to the k leading positions on the diagonals of the pair S; Tð Þ.

Introduction – f08 NAG Library Manual

f08.16 Mark 26.1

The two basic tasks of the generalized nonsymmetric eigenvalue functions are to compute, for a given
pair A;Bð Þ, all n values of � and, if desired, their associated right eigenvectors v and/or left
eigenvectors u, and the generalized Schur factorization.

These two basic tasks can be performed in the following stages.

1. The matrix pair A;Bð Þ is reduced to generalized upper Hessenberg form H;Rð Þ, where H is upper
Hessenberg (zero below the first subdiagonal) and R is upper triangular. The reduction may be
written as A ¼ Q1HZT

1 ; B ¼ Q1RZ
T
1 in the real case with Q1 and Z1 orthogonal, and

A ¼ Q1HZH
1 ; B ¼ Q1RZ

H
1 in the complex case with Q1 and Z1 unitary.

2. The generalized upper Hessenberg form H;Rð Þ is reduced to the generalized Schur form S; Tð Þ
using the generalized Schur factorization H ¼ Q2SZ

T
2 , R ¼ Q2TZ

T
2 in the real case with Q2 and

Z2 orthogonal, and H ¼ Q2SZ
H
2 ; R ¼ Q2TZ

H
2 in the complex case. The generalized Schur vectors

of A;Bð Þ are given by Q ¼ Q1Q2, Z ¼ Z1Z2. The eigenvalues are obtained from the diagonal
elements (or blocks) of the pair S; Tð Þ.

3. Given the eigenvalues, the eigenvectors of the pair S; Tð Þ can be computed, and optionally
transformed to those of H;Rð Þ or A;Bð Þ.

The accuracy with which eigenvalues can be obtained can often be improved by balancing a matrix
pair. This is discussed further in Section 2.14.8 below.

2.13 The Sylvester Equation and the Generalized Sylvester Equation

The Sylvester equation is a matrix equation of the form

AX þXB ¼ C;

where A, B, and C are given matrices with A being m by m, B an n by n matrix and C, and the
solution matrix X, m by n matrices. The solution of a special case of this equation occurs in the
computation of the condition number for an invariant subspace, but a combination of functions in this
chapter allows the solution of the general Sylvester equation.

Functions are also provided for solving a special case of the generalized Sylvester equations

AR� LB ¼ C; DR� LE ¼ F;

where A;Dð Þ, B;Eð Þ and C; Fð Þ are given matrix pairs, and R and L are the solution matrices.

2.14 Error and Perturbation Bounds and Condition Numbers

In this section we discuss the effects of rounding errors in the solution process and the effects of
uncertainties in the data, on the solution to the problem. A number of the functions in this chapter
return information, such as condition numbers, that allow these effects to be assessed. First we discuss
some notation used in the error bounds of later sections.

The bounds usually contain the factor p nð Þ (or p m; nð Þ), which grows as a function of the matrix
dimension n (or matrix dimensions m and n). It measures how errors can grow as a function of the
matrix dimension, and represents a potentially different function for each problem. In practice, it
usually grows just linearly; p nð Þ � 10n is often true, although generally only much weaker bounds can
be actually proved. We normally describe p nð Þ as a ‘modestly growing’ function of n. For detailed
derivations of various p nð Þ, see Golub and Van Loan (2012) and Wilkinson (1965).

For linear equation (see Chapter f07) and least squares solvers, we consider bounds on the relative error
x� x̂k k= xk k in the computed solution x̂, where x is the true solution. For eigenvalue problems we
consider bounds on the error �i � �̂i

		 		 in the ith computed eigenvalue �̂i, where �i is the true ith
eigenvalue. For singular value problems we similarly consider bounds �i � �̂ij j.
Bounding the error in computed eigenvectors and singular vectors v̂i is more subtle because these
vectors are not unique: even though we restrict v̂ik k2 ¼ 1 and vik k2 ¼ 1, we may still multiply them by
arbitrary constants of absolute value 1. So to avoid ambiguity we bound the angular difference between
v̂i and the true vector vi, so that

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.17

	 vi; v̂ið Þ ¼ acute angle between vi and v̂i
¼ arccos vHi v̂i

		 		: ð2Þ

Here arccos 	ð Þ is in the standard range: 0 � arccos 	ð Þ <
. When 	 vi; v̂ið Þ is small, we can choose a
constant � with absolute value 1 so that �vi � v̂ik k2
 	 vi; v̂ið Þ.
In addition to bounds for individual eigenvectors, bounds can be obtained for the spaces spanned by
collections of eigenvectors. These may be much more accurately determined than the individual
eigenvectors which span them. These spaces are called invariant subspaces in the case of eigenvectors,
because if v is any vector in the space, Av is also in the space, where A is the matrix. Again, we will
use angle to measure the difference between a computed space Ŝ and the true space S:

	 S; Ŝ
� �

¼ acute angle between S and Ŝ

¼ max
s2S
s6¼0

min
ŝ2Ŝ
ŝ6¼0

	 s; ŝð Þ or max
ŝ2Ŝ
ŝ6¼0

min
s2S
s6¼0

	 s; ŝð Þ ð3Þ

	 S; Ŝ
� �

may be computed as follows. Let S be a matrix whose columns are orthonormal and spanS.

Similarly let Ŝ be an orthonormal matrix with columns spanning Ŝ. Then

	 S; Ŝ
� �

¼ arccos�min SHŜ
� �

:

Finally, we remark on the accuracy of the bounds when they are large. Relative errors like x̂� xk k= xk k
and angular errors like 	 v̂i; við Þ are only of interest when they are much less than 1. Some stated bounds
are not strictly true when they are close to 1, but rigorous bounds are much more complicated and
supply little extra information in the interesting case of small errors. These bounds are indicated by
using the symbol �< , or ‘approximately less than’, instead of the usual �. Thus, when these bounds are
close to 1 or greater, they indicate that the computed answer may have no significant digits at all, but do
not otherwise bound the error.

A number of functions in this chapter return error estimates and/or condition number estimates directly.
In other cases Anderson et al. (1999) gives code fragments to illustrate the computation of these
estimates, and a number of the Chapter f08 example programs, for the driver functions, implement these
code fragments.

2.14.1Least squares problems

The conventional error analysis of linear least squares problems goes as follows. The problem is to find
the x minimizing Ax� bk k2. Let x̂ be the solution computed using one of the methods described above.
We discuss the most common case, where A is overdetermined (i.e., has more rows than columns) and
has full rank.

Then the computed solution x̂ has a small normwise backward error. In other words x̂ minimizes
Aþ Eð Þx̂� bþ fð Þk k2, where

max
Ek k2
Ak k2

;
fk k2
bk k2

� �
� p nð Þ�

and p nð Þ is a modestly growing function of n and � is the machine precision. Let
�2 Að Þ ¼ �max Að Þ=�min Að Þ,
 ¼ Ax� bk k2, and sin 	ð Þ ¼
= bk k2. Then if p nð Þ� is small enough, the
error x̂� x is bounded by

x� x̂k k2
xk k2 �< p nð Þ� 2�2 Að Þ

cos 	ð Þ þ tan 	ð Þ�2
2 Að Þ

 �
:

If A is rank-deficient, the problem can be regularized by treating all singular values less than a user-
specified threshold as exactly zero. See Golub and Van Loan (2012) for error bounds in this case, as
well as for the underdetermined case.

The solution of the overdetermined, full-rank problem may also be characterised as the solution of the
linear system of equations

Introduction – f08 NAG Library Manual

f08.18 Mark 26.1

I A
AT 0

� �
r
x

� �
¼ b

0

� �
:

By solving this linear system (see Chapter f07) component-wise error bounds can also be obtained (see
Arioli et al. (1989)).

2.14.2The singular value decomposition

The usual error analysis of the SVD algorithm is as follows (see Golub and Van Loan (2012)).

The computed SVD, Û�̂V̂ T, is nearly the exact SVD of Aþ E, i.e., Aþ E ¼ Û þ �Û
� �

�̂ V̂ þ �V̂
� �

is

the true SVD, so that Û þ �Û and V̂ þ �V̂ are both orthogonal, where Ek k2= Ak k2 � p m; nð Þ�,
�Û

�� �� � p m; nð Þ�, and �V̂
�� �� � p m; nð Þ�. Here p m; nð Þ is a modestly growing function of m and n and

� is the machine precision. Each computed singular value �̂i differs from the true �i by an amount
satisfying the bound

�̂i � �ij j � p m; nð Þ��1:

Thus large singular values (those near �1) are computed to high relative accuracy and small ones may
not be.

The angular difference between the computed left singular vector ûi and the true ui satisfies the
approximate bound

	 ûi; uið Þ �<
p m; nð Þ� Ak k2

gapi

where

gapi ¼ min
j 6¼i

�i � �j

		 		
is the absolute gap between �i and the nearest other singular value. Thus, if �i is close to other singular
values, its corresponding singular vector ui may be inaccurate. The same bound applies to the computed
right singular vector v̂i and the true vector vi. The gaps may be easily obtained from the computed
singular values.

Let Ŝ be the space spanned by a collection of computed left singular vectors ûi; i 2 If g, where I is a
subset of the integers from 1 to n. Let S be the corresponding true space. Then

	 Ŝ; S
� �

�<
p m; nð Þ� Ak k2

gapI
:

where

gapI ¼ min �i � �j

		 		 for i 2 I; j =2 I
�

is the absolute gap between the singular values in I and the nearest other singular value. Thus, a cluster
of close singular values which is far away from any other singular value may have a well determined
space Ŝ even if its individual singular vectors are ill-conditioned. The same bound applies to a set of
right singular vectors v̂i; i 2 If g.
In the special case of bidiagonal matrices, the singular values and singular vectors may be computed
much more accurately (see Demmel and Kahan (1990)). A bidiagonal matrix B has nonzero entries only
on the main diagonal and the diagonal immediately above it (or immediately below it). Reduction of a
dense matrix to bidiagonal form B can introduce additional errors, so the following bounds for the
bidiagonal case do not apply to the dense case.

Using the functions in this chapter, each computed singular value of a bidiagonal matrix is accurate to
nearly full relative accuracy, no matter how tiny it is, so that

�̂i � �ij j � p m; nð Þ��i:

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.19

The computed left singular vector ûi has an angular error at most about

	 ûi; uið Þ �<
p m; nð Þ�
relgapi

where

relgapi ¼ min
j6¼i

�i � �j

		 		= �i þ �j

� �

is the relative gap between �i and the nearest other singular value. The same bound applies to the right
singular vector v̂i and vi. Since the relative gap may be much larger than the absolute gap, this error
bound may be much smaller than the previous one. The relative gaps may be easily obtained from the
computed singular values.

2.14.3The symmetric eigenproblem

The usual error analysis of the symmetric eigenproblem is as follows (see Parlett (1998)).

The computed eigendecomposition Ẑ�̂ẐT is nearly the exact eigendecomposition of Aþ E, i.e.,

Aþ E ¼ Ẑ þ �Ẑ
� �

�̂ Ẑ þ �Ẑ
� �T

is the true eigendecomposition so that Ẑ þ �Ẑ is orthogonal, where

Ek k2= Ak k2 � p nð Þ� and �Ẑ
�� ��

2
� p nð Þ� and p nð Þ is a modestly growing function of n and � is the

machine precision. Each computed eigenvalue �̂i differs from the true �i by an amount satisfying the
bound

�̂i � �i

		 		 � p nð Þ� Ak k2:
Thus large eigenvalues (those near max

i
�ij j ¼ Ak k2) are computed to high relative accuracy and small

ones may not be.

The angular difference between the computed unit eigenvector ẑi and the true zi satisfies the
approximate bound

	 ẑi; zið Þ �<
p nð Þ� Ak k2

gapi

if p nð Þ� is small enough, where

gapi ¼ min
j 6¼i

�i � �j

		 		
is the absolute gap between �i and the nearest other eigenvalue. Thus, if �i is close to other
eigenvalues, its corresponding eigenvector zi may be inaccurate. The gaps may be easily obtained from
the computed eigenvalues.

Let Ŝ be the invariant subspace spanned by a collection of eigenvectors ẑi; i 2 If g, where I is a subset
of the integers from 1 to n. Let S be the corresponding true subspace. Then

	 Ŝ; S
� �

�<
p nð Þ� Ak k2

gapI

where

gapI ¼ min �i � �j

		 		 for i 2 I; j =2 I
�

is the absolute gap between the eigenvalues in I and the nearest other eigenvalue. Thus, a cluster of
close eigenvalues which is far away from any other eigenvalue may have a well determined invariant
subspace Ŝ even if its individual eigenvectors are ill-conditioned.

In the special case of a real symmetric tridiagonal matrix T , functions in this chapter can compute the
eigenvalues and eigenvectors much more accurately. See Anderson et al. (1999) for further details.

Introduction – f08 NAG Library Manual

f08.20 Mark 26.1

2.14.4The generalized symmetric-definite eigenproblem

The three types of problem to be considered are A� �B, AB� �I and BA� �I. In each case A and B
are real symmetric (or complex Hermitian) and B is positive definite. We consider each case in turn,
assuming that functions in this chapter are used to transform the generalized problem to the standard
symmetric problem, followed by the solution of the symmetric problem. In all cases

gapi ¼ min
j 6¼i

�i � �j

		 		
is the absolute gap between �i and the nearest other eigenvalue.

1. A� �B. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an amount

�̂i � �i

		 		 �< p nð Þ� B�1
�� ��

2
Ak k2:

The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

	 ẑi; zið Þ �<
p nð Þ� B�1

�� ��
2
Ak k2 �2 Bð Þð Þ1=2

gapi
:

2. AB� �I or BA� �I. The computed eigenvalues �̂i can differ from the true eigenvalues �i by an
amount

�̂i � �i

		 		 �< p nð Þ� Bk k2 Ak k2:
The angular difference between the computed eigenvector ẑi and the true eigenvector zi is

	 ẑi; zið Þ �<
p nð Þ� Bk k2 Ak k2 �2 Bð Þð Þ1=2

gapi
:

These error bounds are large when B is ill-conditioned with respect to inversion (�2 Bð Þ is large). It is
often the case that the eigenvalues and eigenvectors are much better conditioned than indicated here.
One way to get tighter bounds is effective when the diagonal entries of B differ widely in magnitude, as
for example with a graded matrix.

1. A� �B. Let D ¼ diag b
�1=2
11 ; . . . ; b�1=2

nn

� �
be a diagonal matrix. Then replace B by DBD and A by

DAD in the above bounds.

2. AB� �I or BA� �I. Let D ¼ diag b
�1=2
11 ; . . . ; b�1=2

nn

� �
be a diagonal matrix. Then replace B by

DBD and A by D�1AD�1 in the above bounds.

Further details can be found in Anderson et al. (1999).

2.14.5The nonsymmetric eigenproblem

The nonsymmetric eigenvalue problem is more complicated than the symmetric eigenvalue problem. In
this section, we just summarise the bounds. Further details can be found in Anderson et al. (1999).

We let �̂i be the ith computed eigenvalue and �i the ith true eigenvalue. Let v̂i be the corresponding
computed right eigenvector, and vi the true right eigenvector (so Avi ¼ �ivi). If I is a subset of the

integers from 1 to n, we let �I denote the average of the selected eigenvalues: �I ¼
P
i2I

�i

� �
=

P
i2I

1

� �
,

and similarly for �̂I. We also let SI denote the subspace spanned by vi; i 2 If g; it is called a right
invariant subspace because if v is any vector in SI then Av is also in SI . ŜI is the corresponding
computed subspace.

The algorithms for the nonsymmetric eigenproblem are normwise backward stable: they compute the
exact eigenvalues, eigenvectors and invariant subspaces of slightly perturbed matrices Aþ Eð Þ, where
Ek k � p nð Þ� Ak k. Some of the bounds are stated in terms of Ek k2 and others in terms of Ek kF ; one
may use p nð Þ� for either quantity.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.21

Functions are provided so that, for each (�̂i; v̂i) pair the two values si and sepi, or for a selected subset
I of eigenvalues the values sI and sepI can be obtained, for which the error bounds in Table 2 are true
for sufficiently small Ek k, (which is why they are called asymptotic):

Simple eigenvalue �̂i � �i

		 		 �< Ek k2=si

Eigenvalue cluster �̂I � �I

		 		 �< Ek k2=sI

Eigenvector 	 v̂i; við Þ �< Ek kF=sepi

Invariant subspace 	 ŜI ; SI

� �
�< Ek kF=sepI

Table 2
Asymptotic error bounds for the nonsymmetric

eigenproblem

If the problem is ill-conditioned, the asymptotic bounds may only hold for extremely small Ek k. The
global error bounds of Table 3 are guaranteed to hold for all Ek kF < s� sep=4:

Simple
eigenvalue

�̂i � �i

		 		 � n Ek k2=si Holds for all E

Eigenvalue
cluster

�̂I � �I

		 		 � 2 Ek k2=sI Requires Ek kF < sI � sepI=4

Eigenvector 	 v̂i; við Þ � arctan 2 Ek kF= sepi � 4 Ek kF=si
� �� �

Requires Ek kF < si � sepi=4

Invariant
subspace

	 ŜI ; SI

� �
� arctan 2 Ek kF= sepI � 4 Ek kF=sI

� �� � Requires Ek kF < sI � sepI=4

Table 3
Global error bounds for the nonsymmetric eigenproblem

2.14.6Balancing and condition for the nonsymmetric eigenproblem

There are two preprocessing steps one may perform on a matrix A in order to make its eigenproblem
easier. The first is permutation, or reordering the rows and columns to make A more nearly upper
triangular (closer to Schur form): A0 ¼ PAPT, where P is a permutation matrix. If A0 is permutable to
upper triangular form (or close to it), then no floating-point operations (or very few) are needed to
reduce it to Schur form. The second is scaling by a diagonal matrix D to make the rows and columns of
A0 more nearly equal in norm: A00 ¼ DA0D�1. Scaling can make the matrix norm smaller with respect
to the eigenvalues, and so possibly reduce the inaccuracy contributed by roundoff (see Chapter 11 of
Wilkinson and Reinsch (1971)). We refer to these two operations as balancing.

Permuting has no effect on the condition numbers or their interpretation as described previously.
Scaling, however, does change their interpretation and further details can be found in Anderson et al.
(1999).

2.14.7The generalized nonsymmetric eigenvalue problem

The algorithms for the generalized nonsymmetric eigenvalue problem are normwise backward stable:
they compute the exact eigenvalues (as the pairs �; �ð Þ), eigenvectors and deflating subspaces of
slightly perturbed pairs Aþ E;Bþ Fð Þ, where

E;Fð Þk kF � p nð Þ� A;Bð Þk kF :

Introduction – f08 NAG Library Manual

f08.22 Mark 26.1

Asymptotic and global error bounds can be obtained, which are generalizations of those given in
Tables 2 and 3. See Section 4.11 of Anderson et al. (1999) for details. Functions are provided to
compute estimates of reciprocal conditions numbers for eigenvalues and eigenspaces.

2.14.8Balancing the generalized eigenvalue problem

As with the standard nonsymmetric eigenvalue problem, there are two preprocessing steps one may
perform on a matrix pair A;Bð Þ in order to make its eigenproblem easier; permutation and scaling,
which together are referred to as balancing, as indicated in the following two steps.

1. The balancing function first attempts to permute A and B to block upper triangular form by a
similarity transformation:

PAPT ¼ F ¼
F11 F12 F13

F22 F23
F33

0
@

1
A;

PBPT ¼ G ¼
G11 G12 G13

G22 G23
G33

0
@

1
A;

where P is a permutation matrix, F11, F33, G11 and G33 are upper triangular. Then the diagonal
elements of the matrix F11; G11ð Þ and G33; H33ð Þ are generalized eigenvalues of A;Bð Þ. The rest of
the generalized eigenvalues are given by the matrix pair F22; G22ð Þ. Subsequent operations to
compute the eigenvalues of A;Bð Þ need only be applied to the matrix F22; G22ð Þ; this can save a
significant amount of work if F22; G22ð Þ is smaller than the original matrix pair A;Bð Þ. If no
suitable permutation exists (as is often the case), then there is no gain in efficiency or accuracy.

2. The balancing function applies a diagonal similarity transformation to F;Gð Þ, to make the rows
and columns of F22; G22ð Þ as close as possible in the norm:

DFD�1 ¼
I

D22
I

0
@

1
A F11 F12 F13

F22 F23
F33

0
@

1
A I

D�1
22

I

0
@

1
A;

DGD�1 ¼
I

D22
I

0
@

1
A G11 G12 G13

G22 G23
G33

0
@

1
A I

D�1
22

I

0
@

1
A:

This transformation usually improves the accuracy of computed generalized eigenvalues and
eigenvectors. However, there are exceptional occasions when this transformation increases the
norm of the pencil; in this case accuracy could be lower with diagonal balancing.

See Anderson et al. (1999) for further details.

2.14.9Other problems

Error bounds for other problems such as the generalized linear least squares problem and generalized
singular value decomposition can be found in Anderson et al. (1999).

2.15 Block Partitioned Algorithms

A number of the functions in this chapter use what is termed a block partitioned algorithm. This means
that at each major step of the algorithm a block of rows or columns is updated, and much of the
computation is performed by matrix-matrix operations on these blocks. These matrix-matrix operations
make efficient use of computer memory and are key to achieving high performance. See Golub and Van
Loan (2012) or Anderson et al. (1999) for more about block partitioned algorithms.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.23

The performance of a block partitioned algorithm varies to some extent with the block size – that is, the
number of rows or columns per block. This is a machine-dependent constant, which is set to a suitable
value when the library is implemented on each range of machines.

3 Recommendations on Choice and Use of Available Functions

3.1 Available Functions

The tables in the following sub-sections show the functions which are provided for performing different
computations on different types of matrices. Each entry in the table gives the NAG function short name.

Black box (or driver) functions are provided for the solution of most problems. In a number of cases
there are simple drivers, which just return the solution to the problem, as well as expert drivers, which
return additional information, such as condition number estimates, and may offer additional facilities
such as balancing. The following sub-sections give tables for the driver functions.

3.1.1 Driver functions

3.1.1.1 Linear least squares problems (LLS)

Operation real complex

solve LLS using QR or LQ factorization
solve LLS using complete orthogonal factorization
solve LLS using SVD
solve LLS using divide-and-conquer SVD

f08aac
f08bac
f08kac
f08kcc

f08anc
f08bnc
f08knc
f08kqc

3.1.1.2 Generalized linear least squares problems (LSE and GLM)

Operation real complex

solve LSE problem using GRQ
solve GLM problem using GQR

f08zac
f08zbc

f08znc
f08zpc

3.1.1.3 Symmetric eigenvalue problems (SEP)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
expert driver
RRR driver

f08fac
f08fcc
f08fbc
f08fdc

f08fnc
f08fqc
f08fpc
f08frc

packed storage
simple driver
divide-and-conquer driver
expert driver

f08gac
f08gcc
f08gbc

f08gnc
f08gqc
f08gpc

Introduction – f08 NAG Library Manual

f08.24 Mark 26.1

band matrix
simple driver
divide-and-conquer driver
expert driver

f08hac
f08hcc
f08hbc

f08hnc
f08hqc
f08hpc

tridiagonal matrix
simple driver
divide-and-conquer driver
expert driver
RRR driver

f08jac
f08jcc
f08jbc
f08jdc

3.1.1.4 Nonsymmetric eigenvalue problem (NEP)

Function and storage scheme real complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

f08pac
f08pbc
f08nac
f08nbc

f08pnc
f08ppc
f08nnc
f08npc

3.1.1.5 Singular value decomposition (SVD)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
simple driver for one-sided Jacobi SVD
expert driver for one-sided Jacobi SVD

f08kbc
f08kdc
f08kjc
f08khc

f08kpc
f08krc

3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)

Function and storage scheme real complex

simple driver
divide-and-conquer driver
expert driver

f08sac
f08scc
f08sbc

f08snc
f08sqc
f08spc

packed storage
simple driver
divide-and-conquer driver
expert driver

f08tac
f08tcc
f08tbc

f08tnc
f08tqc
f08tpc

band matrix
simple driver
divide-and-conquer driver
expert driver

f08uac
f08ucc
f08ubc

f08unc
f08uqc
f08upc

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.25

3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)

Function and storage scheme real complex

simple driver for Schur factorization
expert driver for Schur factorization
simple driver for eigenvalues/vectors
expert driver for eigenvalues/vectors

f08xcc
f08xbc
f08wcc
f08wbc

f08xqc
f08xpc
f08wqc
f08wpc

3.1.1.8 Generalized singular value decomposition (GSVD)

Function and storage scheme real complex

singular values/vectors f08vcc f08vqc

3.1.2 Computational functions

It is possible to solve problems by calling two or more functions in sequence. Some common sequences
of functions are indicated in the tables in the following sub-sections; an asterisk (
) against a function
name means that the sequence of calls is illustrated in the example program for that function.

3.1.2.1 Orthogonal factorizations

Functions are provided for QR factorization (with and without column pivoting), and for LQ, QL and
RQ factorizations (without pivoting only), of a general real or complex rectangular matrix. A function
is also provided for the RQ factorization of a real or complex upper trapezoidal matrix. (LAPACK
refers to this as the RZ factorization.)

The factorization functions do not form the matrix Q explicitly, but represent it as a product of
elementary reflectors (see Section 3.3.6). Additional functions are provided to generate all or part of Q
explicitly if it is required, or to apply Q in its factored form to another matrix (specifically to compute
one of the matrix products QC, QTC, CQ or CQT with QT replaced by QH if C and Q are complex).

Factorize
without
pivoting

Factorize
with
pivoting

Factorize
(blocked)

Generate
matrix Q

Apply
matrix Q

Apply
Q (blocked)

QR factorization,
real matrices

f08aec f08bfc f08abc f08afc f08agc f08acc

QR factorization,
real triangular-pentagonal

f08bbc f08bcc

LQ factorization,
real matrices

f08ahc f08ajc f08akc

QL factorization,
real matrices

f08cec f08cfc f08cgc

RQ factorization,
real matrices

f08chc f08cjc f08ckc

RQ factorization,
real upper trapezoidal matrices

f08bhc f08bkc

QR factorization,
complex matrices

f08asc f08btc f08apc f08atc f08auc f08aqc

QR factorization,
complex triangular-pentagonal

f08bpc f08bqc

LQ factorization,
complex matrices

f08avc f08awc f08axc

QL factorization,
complex matrices

f08csc f08ctc f08cuc

Introduction – f08 NAG Library Manual

f08.26 Mark 26.1

RQ factorization,
complex matrices

f08cvc f08cwc f08cxc

RQ factorization,
complex upper trapezoidal matrices

f08bvc f08bxc

To solve linear least squares problems, as described in Sections 2.2.1 or 2.2.3, functions based on the
QR factorization can be used:

real data, full-rank problem f08aac, f08aec and f08agc,
f08abc and f08acc, f16yjc

complex data, full-rank problem f08anc, f08asc and f08auc,
f08apc and f08aqc, f16zjc

real data, rank-deficient problem f08bfc*, f16yjc, f08agc
complex data, rank-deficient problem f08btc*, f16zjc, f08auc

To find the minimum norm solution of under-determined systems of linear equations, as described in
Section 2.2.2, functions based on the LQ factorization can be used:

real data, full-rank problem f08ahc*, f16yjc, f08akc
complex data, full-rank problem f08avc*, f16zjc, f08axc

3.1.2.2 Generalized orthogonal factorizations

Functions are provided for the generalized QR and RQ factorizations of real and complex matrix pairs.

Factorize

Generalized QR factorization, real matrices f08zec

Generalized RQ factorization, real matrices f08zfc

Generalized QR factorization, complex matrices f08zsc

Generalized RQ factorization, complex matrices f08ztc

3.1.2.3 Singular value problems

Functions are provided to reduce a general real or complex rectangular matrix A to real bidiagonal form
B by an orthogonal transformation A ¼ QBPT (or by a unitary transformation A ¼ QBPH if A is
complex). Different functions allow a full matrix A to be stored conventionally (see Section 3.3.1), or a
band matrix to use band storage (see Section 3.3.4 in the f07 Chapter Introduction).

The functions for reducing full matrices do not form the matrix Q or P explicitly; additional functions
are provided to generate all or part of them, or to apply them to another matrix, as with the functions
for orthogonal factorizations. Explicit generation of Q or P is required before using the bidiagonal QR
algorithm to compute left or right singular vectors of A.

The functions for reducing band matrices have options to generate Q or P if required.

Further functions are provided to compute all or part of the singular value decomposition of a real
bidiagonal matrix; the same functions can be used to compute the singular value decomposition of a
real or complex matrix that has been reduced to bidiagonal form.

Reduce to
bidiagonal
form

Generate
matrix Q
or PT

Apply
matrix Q
or P

Reduce band
matrix to
bidiagonal
form

SVD of
bidiagonal
form (QR

algorithm)

SVD of
bidiagonal
form (divide and
conquer)

real matrices f08kec f08kfc f08kgc f08lec f08mec f08mdc

complex matrices f08ksc f08ktc f08kuc f08lsc f08msc

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.27

Given the singular values, f08flc is provided to compute the reciprocal condition numbers for the left or
right singular vectors of a real or complex matrix.

To compute the singular values and vectors of a rectangular matrix, as described in Section 2.3, use the
following sequence of calls:

Rectangular matrix (standard storage)

real matrix, singular values and vectors f08kec, f08kfc*, f08mec
complex matrix, singular values and vectors f08ksc, f08ktc*, f08msc

Rectangular matrix (banded)

real matrix, singular values and vectors f08lec, f08kfc, f08mec
complex matrix, singular values and vectors f08lsc, f08ktc, f08msc

To use the singular value decomposition to solve a linear least squares problem, as described in
Section 2.4, the following functions are required:

real data f16yac, f08kec, f08kfc,
f08kgc, f08mec

complex data f16zac, f08ksc, f08ktc,
f08kuc, f08msc

3.1.2.4 Generalized singular value decomposition

Functions are provided to compute the generalized SVD of a real or complex matrix pair A;Bð Þ in
upper trapezoidal form. Functions are also provided to reduce a general real or complex matrix pair to
the required upper trapezoidal form.

Reduce to
trapezoidal form

Generalized SVD
of trapezoidal form

real matrices f08vgc f08yec

complex matrices f08vuc f08ysc

Functions are provided for the full CS decomposition of orthogonal and unitary matrices expressed as 2
by 2 partitions of submatrices. For real orthogonal matrices the CS decomposition is performed by
f08rac, while for unitary matrices the equivalent function is f08rnc.

3.1.2.5 Symmetric eigenvalue problems

Functions are provided to reduce a real symmetric or complex Hermitian matrix A to real tridiagonal
form T by an orthogonal similarity transformation A ¼ QTQT (or by a unitary transformation
A ¼ QTQH if A is complex). Different functions allow a full matrix A to be stored conventionally (see
Section 3.3.1 in the f07 Chapter Introduction) or in packed storage (see Section 3.3.2 in the f07 Chapter
Introduction); or a band matrix to use band storage (see Section 3.3.4 in the f07 Chapter Introduction).

The functions for reducing full matrices do not form the matrix Q explicitly; additional functions are
provided to generate Q, or to apply it to another matrix, as with the functions for orthogonal
factorizations. Explicit generation of Q is required before using the QR algorithm to find all the
eigenvectors of A; application of Q to another matrix is required after eigenvectors of T have been
found by inverse iteration, in order to transform them to eigenvectors of A.

The functions for reducing band matrices have an option to generate Q if required.

Introduction – f08 NAG Library Manual

f08.28 Mark 26.1

Reduce to
tridiagonal
form

Generate
matrix Q

Apply
matrix Q

real symmetric matrices f08fec f08ffc f08fgc

real symmetric matrices (packed storage) f08gec f08gfc f08ggc

real symmetric band matrices f08hec

complex Hermitian
matrices

f08fsc f08ftc f08fuc

complex Hermitian matrices (packed storage) f08gsc f08gtc f08guc

complex Hermitian band matrices f08hsc

Given the eigenvalues, f08flc is provided to compute the reciprocal condition numbers for the
eigenvectors of a real symmetric or complex Hermitian matrix.

A variety of functions are provided to compute eigenvalues and eigenvectors of the real symmetric
tridiagonal matrix T , some computing all eigenvalues and eigenvectors, some computing selected
eigenvalues and eigenvectors. The same functions can be used to compute eigenvalues and eigenvectors
of a real symmetric or complex Hermitian matrix which has been reduced to tridiagonal form.

Eigenvalues and eigenvectors of real symmetric tridiagonal matrices:

The original (non-reduced) matrix is Real Symmetric or Complex Hermitian

all eigenvalues (root-free QR algorithm) f08jfc
all eigenvalues (root-free QR algorithm called by divide-and-conquer) f08jcc or f08jhc
selected eigenvalues (bisection) f08jjc
selected eigenvalues (RRR) f08jlc

The original (non-reduced) matrix is Real Symmetric

all eigenvalues and eigenvectors (QR algorithm) f08jec
all eigenvalues and eigenvectors (divide-and-conquer) f08jcc or f08jhc
all eigenvalues and eigenvectors (positive definite case) f08jgc
selected eigenvectors (inverse iteration) f08jkc
selected eigenvalues and eigenvectors (RRR) f08jlc

The original (non-reduced) matrix is Complex Hermitian

all eigenvalues and eigenvectors (QR algorithm) f08jsc
all eigenvalues and eigenvectors (divide and conquer) f08jvc
all eigenvalues and eigenvectors (positive definite case) f08juc
selected eigenvectors (inverse iteration) f08jxc
selected eigenvalues and eigenvectors (RRR) f08jyc

The following sequences of calls may be used to compute various combinations of eigenvalues and
eigenvectors, as described in Section 2.7.

Sequences for computing eigenvalues and eigenvectors

Real Symmetric matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08fcc
all eigenvalues and eigenvectors (using QR algorithm) f08fec, f08ffc*, f08jec

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.29

selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fec, f08fgc, f08jjc,
f08jkc*

selected eigenvalues and eigenvectors (RRR) f08fec, f08fgc, f08jlc

Real Symmetric matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08gcc
all eigenvalues and eigenvectors (using QR algorithm) f08gec, f08gfc and f08jec
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08gec, f08ggc, f08jjc,

f08jkc*
selected eigenvalues and eigenvectors (RRR) f08gec, f08ggc, f08jlc

Real Symmetric banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) f08hcc
all eigenvalues and eigenvectors (using QR algorithm) f08hec*, f08jec

Complex Hermitian matrix (standard storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08fqc
all eigenvalues and eigenvectors (using QR algorithm) f08fsc, f08ftc*, f08jsc
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08fsc, f08fuc, f08jjc,

f08jxc*
selected eigenvalues and eigenvectors (RRR) f08fsc, f08fuc, f08jyc

Complex Hermitian matrix (packed storage)

all eigenvalues and eigenvectors (using divide-and-conquer) f08gqc
all eigenvalues and eigenvectors (using QR algorithm) f08gsc, f08gtc*, f08jsc
selected eigenvalues and eigenvectors (bisection and inverse iteration) f08gsc, f08guc, f08jjc,

f08jxc*
selected eigenvalues and eigenvectors (RRR) f08gsc, f08guc and f08jyc

Complex Hermitian banded matrix

all eigenvalues and eigenvectors (using divide-and-conquer) f08hqc
all eigenvalues and eigenvectors (using QR algorithm) f08hsc*, f08jsc

3.1.2.6 Generalized symmetric-definite eigenvalue problems

Functions are provided for reducing each of the problems Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x to an
equivalent standard eigenvalue problem Cy ¼ �y. Different functions allow the matrices to be stored
either conventionally or in packed storage. The positive definite matrix B must first be factorized using
a function from Chapter f07. There is also a function which reduces the problem Ax ¼ �Bx where A
and B are banded, to an equivalent banded standard eigenvalue problem; this uses a split Cholesky
factorization for which a function in Chapter f08 is provided.

Reduce to
standard problem

Reduce to
standard problem
(packed storage)

Reduce to
standard problem
(band matrices)

real symmetric matrices f08sec f08tec f08uec

complex Hermitian matrices f08ssc f08tsc f08usc

The equivalent standard problem can then be solved using the functions discussed in Section 3.1.2.5.
For example, to compute all the eigenvalues, the following functions must be called:

Introduction – f08 NAG Library Manual

f08.30 Mark 26.1

real symmetric-definite problem f07fdc, f08sec*, f08fec,
f08jfc

real symmetric-definite problem, packed storage f07gdc, f08tec*, f08gec,
f08jfc

real symmetric-definite banded problem f08ufc*, f08uec*, f08hec,
f08jfc

complex Hermitian-definite problem f07frc, f08ssc*, f08fsc, f08jfc
complex Hermitian-definite problem, packed storage f07grc, f08tsc*, f08gsc,

f08jfc
complex Hermitian-definite banded problem f08utc*, f08usc*, f08hsc,

f08jfc

If eigenvectors are computed, the eigenvectors of the equivalent standard problem must be transformed
back to those of the original generalized problem, as indicated in Section 2.8; functions from Chapter
f16 may be used for this.

3.1.2.7 Nonsymmetric eigenvalue problems

Functions are provided to reduce a general real or complex matrix A to upper Hessenberg form H by an
orthogonal similarity transformation A ¼ QHQT (or by a unitary transformation A ¼ QHQH if A is
complex).

These functions do not form the matrix Q explicitly; additional functions are provided to generate Q, or
to apply it to another matrix, as with the functions for orthogonal factorizations. Explicit generation of
Q is required before using the QR algorithm on H to compute the Schur vectors; application of Q to
another matrix is needed after eigenvectors of H have been computed by inverse iteration, in order to
transform them to eigenvectors of A.

Functions are also provided to balance the matrix before reducing it to Hessenberg form, as described in
Section 2.14.6. Companion functions are required to transform Schur vectors or eigenvectors of the
balanced matrix to those of the original matrix.

Reduce to
Hessenberg
form

Generate
matrix Q

Apply
matrix Q

Balance Back-
transform
vectors after
balancing

real matrices f08nec f08nfc f08ngc f08nhc f08njc

complex matrices f08nsc f08ntc f08nuc f08nvc f08nwc

Functions are provided to compute the eigenvalues and all or part of the Schur factorization of an upper
Hessenberg matrix. Eigenvectors may be computed either from the upper Hessenberg form by inverse
iteration, or from the Schur form by back-substitution; these approaches are equally satisfactory for
computing individual eigenvectors, but the latter may provide a more accurate basis for a subspace
spanned by several eigenvectors.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors, as discussed
in Section 2.14.5.

Eigenvalues and
Schur factorization
(QR algorithm)

Eigenvectors from
Hessenberg form
(inverse iteration)

Eigenvectors from
Schur factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices f08pec f08pkc f08qkc f08qlc

complex matrices f08psc f08pxc f08qxc f08qyc

Finally functions are provided for reordering the Schur factorization, so that eigenvalues appear in any
desired order on the diagonal of the Schur form. The functions f08qfc and f08qtc simply swap two
diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order. The

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.31

functions f08qgc and f08quc perform the whole reordering process for the important special case where
a specified cluster of eigenvalues is to appear at the top of the Schur form; if the Schur vectors are
reordered at the same time, they yield an orthonormal basis for the invariant subspace corresponding to
the specified cluster of eigenvalues. These functions can also compute the sensitivities of the cluster of
eigenvalues and the invariant subspace.

Reorder
Schur factorization

Reorder
Schur factorization,
find basis for invariant
subspace and estimate
sensitivities

real matrices f08qfc f08qgc

complex matrices f08qtc f08quc

The following sequences of calls may be used to compute various combinations of eigenvalues, Schur
vectors and eigenvectors, as described in Section 2.11:

real matrix, all eigenvalues and Schur factorization f08nec, f08nfc*, f08pec
real matrix, all eigenvalues and selected eigenvectors f08nec, f08ngc, f08pec,

f08pkc
real matrix, all eigenvalues and eigenvectors (with balancing) f08nhc*, f08nec, f08nfc,

f08njc, f08pec, f08pkc
complex matrix, all eigenvalues and Schur factorization f08nsc, f08ntc*, f08psc
complex matrix, all eigenvalues and selected eigenvectors f08nsc, f08nuc, f08psc,

f08pxc*
complex matrix, all eigenvalues and eigenvectors (with balancing) f08nvc*, f08nsc, f08ntc,

f08nwc, f08psc, f08pxc

3.1.2.8 Generalized nonsymmetric eigenvalue problems

Functions are provided to reduce a real or complex matrix pair A1; R1ð Þ, where A1 is general and R1 is
upper triangular, to generalized upper Hessenberg form by orthogonal transformations A1 ¼ Q1HZT

1 ,
R1 ¼ Q1RZT

1 , (or by unitary transformations A1 ¼ Q1HZH
1 , R ¼ Q1R1Z

H
1 , in the complex case). These

functions can optionally return Q1 and/or Z1. Note that to transform a general matrix pair A;Bð Þ to the
form A1; R1ð Þ a QR factorization of B (B ¼ ~QR1) should first be performed and the matrix A1 obtained
as A1 ¼ ~QTA (see Section 3.1.2.1 above).

Functions are also provided to balance a general matrix pair before reducing it to generalized
Hessenberg form, as described in Section 2.14.8. Companion functions are provided to transform
vectors of the balanced pair to those of the original matrix pair.

Reduce to
generalized
Hessenberg form

Balance Backtransform
vectors after
balancing

real matrices f08wfc f08whc f08wjc

complex matrices f08wtc f08wvc f08wwc

Functions are provided to compute the eigenvalues (as the pairs �; �ð Þ) and all or part of the
generalized Schur factorization of a generalized upper Hessenberg matrix pair. Eigenvectors may be
computed from the generalized Schur form by back-substitution.

Additional functions estimate the sensitivities of computed eigenvalues and eigenvectors.

Introduction – f08 NAG Library Manual

f08.32 Mark 26.1

Eigenvalues and
generalized Schur
factorization
(QZ algorithm)

Eigenvectors from
generalized Schur
factorization

Sensitivities of
eigenvalues and
eigenvectors

real matrices f08xec f08ykc f08ylc

complex matrices f08xsc f08yxc f08yyc

Finally, functions are provided for reordering the generalized Schur factorization so that eigenvalues
appear in any desired order on the diagonal of the generalized Schur form. f08yfc and f08ytc simply
swap two diagonal elements or blocks, and may need to be called repeatedly to achieve a desired order.
f08ygc and f08yuc perform the whole reordering process for the important special case where a
specified cluster of eigenvalues is to appear at the top of the generalized Schur form; if the Schur
vectors are reordered at the same time, they yield an orthonormal basis for the deflating subspace
corresponding to the specified cluster of eigenvalues. These functions can also compute the sensitivities
of the cluster of eigenvalues and the deflating subspace.

Reorder generalized Schur
factorization

Reorder generalized Schur
factorization, find basis for
deflating subspace and
estimate sensitivites

real matrices f08yfc f08ygc

complex matrices f08ytc f08yuc

The following sequences of calls may be used to compute various combinations of eigenvalues,
generalized Schur vectors and eigenvectors

real matrix pair, all eigenvalues (with balancing) f08aec, f08agc (or f08abc,
f08acc), f08wfc, f08whc,
f08xec*

real matrix pair, all eigenvalues and generalized Schur factorization f08aec, f08afc, f08agc (or
f08abc, f08acc), f08wfc,
f08xec

real matrix pair, all eigenvalues and eigenvectors (with balancing) f16qfc, f16qhc, f08aec,
f08afc, f08agc (or f08abc,
f08acc), f08wfc, f08whc,
f08xec, f08ykc*, f08wjc

complex matrix pair, all eigenvalues (with balancing) f08asc, f08auc (or f08apc,
f08aqc), f08wtc, f08wvc,
f08xsc*

complex matrix pair, all eigenvalues and generalized Schur factoriza-
tion

f08asc, f08atc, f08auc (or
f08apc, f08aqc), f08wtc,
f08xsc

complex matrix pair, all eigenvalues and eigenvectors (with balancing) f16tfc, f16thc, f08asc, f08atc,
f08auc (or f08apc, f08aqc),
f08wtc, f08wvc, f08xsc,
f08yxc*, f08wwc

3.1.2.9 The Sylvester equation and the generalized Sylvester equation

Functions are provided to solve the real or complex Sylvester equation AX �XB ¼ C, where A and B
are upper quasi-triangular if real, or upper triangular if complex. To solve the general form of the
Sylvester equation in which A and B are general square matrices, A and B must be reduced to upper
(quasi-) triangular form by the Schur factorization, using functions described in Section 3.1.2.7. For
more details, see the documents for the functions listed below.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.33

Solve the Sylvester equation

real matrices f08qhc

complex matrices f08qvc

Functions are also provided to solve the real or complex generalized Sylvester equations

AR� LB ¼ C; DR� LE ¼ F;

where the pairs A;Dð Þ and B;Eð Þ are in generalized Schur form. To solve the general form of the
generalized Sylvester equation in which A;Dð Þ and B;Eð Þ are general matrix pairs, A;Dð Þ and B;Eð Þ
must first be reduced to generalized Schur form.

Solve the generalized Sylvester equation

real matrices f08yhc

complex matrices f08yvc

3.2 NAG Names and LAPACK Names

The functions may be called either by their NAG short names or by their NAG long names which
contain their double precision LAPACK names.

References to Chapter f08 functions in the manual normally include the LAPACK double precision
names, for example nag_dgeqrf (f08aec). The LAPACK routine names follow a simple scheme. Each
name has the structure xyyzzz, where the components have the following meanings:

– the initial letter x indicates the data type (real or complex) and precision:

s – real, single precision

d – real, double precision

c – complex, single precision

z – complex, double precision

– the second and third letters yy indicate the type of the matrix A or matrix pair A;Bð Þ (and in some
cases the storage scheme):

bd – bidiagonal

di – diagonal

gb – general band

ge – general

gg – general pair (B may be triangular)

hb – (complex) Hermitian band

he – Hermitian

hg – generalized upper Hessenberg

hp – Hermitian (packed storage)

hs – upper Hessenberg

op – (real) orthogonal (packed storage)

or – (real) orthogonal

pt – symmetric or Hermitian positive definite tridiagonal

Introduction – f08 NAG Library Manual

f08.34 Mark 26.1

sb – (real) symmetric band

sp – symmetric (packed storage)

st – (real) symmetric tridiagonal

sy – symmetric

tg – triangular pair (one may be quasi-triangular)

tp – triangular-pentagonal

tr – triangular (or quasi-triangular)

un – (complex) unitary

up – (complex) unitary (packed storage)

– the last three letters zzz indicate the computation performed. For example, qrf is a QR factorization.

Thus the function nag_dgeqrf performs a QR factorization of a real general matrix; the corresponding
function for a complex general matrix is nag_zgeqrf.

3.3 Matrix Storage Schemes

In this chapter the following storage schemes are used for matrices:

– conventional storage in a two-dimensional array;

– packed storage for symmetric or Hermitian matrices;

– packed storage for orthogonal or unitary matrices;

– band storage for general, symmetric or Hermitian band matrices;

– storage of bidiagonal, symmetric or Hermitian tridiagonal matrices in two one-dimensional
arrays.

These storage schemes are compatible with those used in Chapters f07 and f16, but different schemes
for packed, band and tridiagonal storage are used in a few older functions in Chapters f01, f02, f03 and
f04.

3.3.1 Conventional storage

Please see Section 3.3.1 in the f07 Chapter Introduction for full details.

3.3.2 Packed storage

Please see Section 3.3.2 in the f07 Chapter Introduction for full details.

3.3.3 Band storage

Please see Section 3.3.4 in the f07 Chapter Introduction for full details.

3.3.4 Tridiagonal and bidiagonal matrices

A symmetric tridiagonal or bidiagonal matrix is stored in two one-dimensional arrays, one of length n
containing the diagonal elements, and one of length n� 1 containing the off-diagonal elements. (Older
functions in Chapter f02 store the off-diagonal elements in elements 2 : n of a vector of length n.)

3.3.5 Real diagonal elements of complex matrices

Please see Section 3.3.6 in the f07 Chapter Introduction for full details.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.35

3.3.6 Representation of orthogonal or unitary matrices

A real orthogonal or complex unitary matrix (usually denoted Q) is often represented in the NAG C
Library as a product of elementary reflectors – also referred to as elementary Householder matrices
(usually denoted Hi). For example,

Q ¼ H1H2 � � �Hk:

You need not be aware of the details, because functions are provided to work with this representation,
either to generate all or part of Q explicitly, or to multiply a given matrix by Q or QT (QH in the
complex case) without forming Q explicitly.

Nevertheless, the following further details may occasionally be useful.

An elementary reflector (or elementary Householder matrix) H of order n is a unitary matrix of the
form

H ¼ I � �vvH ð4Þ
where � is a scalar, and v is an n-element vector, with �j j2 vk k22 ¼ 2� Re �ð Þ; v is often referred to as the
Householder vector. Often v has several leading or trailing zero elements, but for the purpose of this
discussion assume that H has no such special structure.

There is some redundancy in the representation 4ð Þ, which can be removed in various ways. The
representation used in Chapter f08 and in LAPACK (which differs from those used in some of the
functions in Chapters f01, f02 and f04) sets v1 ¼ 1; hence v1 need not be stored. In real arithmetic,
1 � � � 2, except that � ¼ 0 implies H ¼ I.

In complex arithmetic, � may be complex, and satisfies 1 � Re �ð Þ � 2 and � � 1j j � 1. Thus a complex
H is not Hermitian (as it is in other representations), but it is unitary, which is the important property.
The advantage of allowing � to be complex is that, given an arbitrary complex vector x;H can be
computed so that

HHx ¼ � 1; 0; . . . ; 0ð ÞT

with real �. This is useful, for example, when reducing a complex Hermitian matrix to real symmetric
tridiagonal form, or a complex rectangular matrix to real bidiagonal form.

3.4 Argument Conventions

3.4.1 Option Arguments

In addition to the order argument of type Nag_OrderType, most functions in this Chapter have one or
more option arguments of various types; only options of the correct type may be supplied.

For example,

nnaagg__ddssyyttrrdd(Nag_RowMajor,Nag_Upper,...)

3.4.2 Problem dimensions

It is permissible for the problem dimensions (for example, m or n) to be passed as zero, in which case
the computation (or part of it) is skipped. Negative dimensions are regarded as an error.

3.5 Normalizing Output Vectors

In cases where a function computes a set of orthogonal or unitary vectors, e.g., eigenvectors or an
orthogonal matrix factorization, it is possible for these vectors to differ between implementations, but
still be correct. Under a strict normalization that enforces uniqueness of solution, these different
solutions can be shown to be the same under that normalization. For example, an eigenvector v is
computed such that vj j2 ¼ 1. However, the vector �v, where � is a scalar such that �j j2 ¼ 1, is also an
eigenvector. So for symmetric eigenproblems where eigenvectors are real valued, � ¼ 1, or �1; and for
complex eigenvectors, � can lie anywhere on the unit circle on the complex plane, � ¼ exp i	ð Þ.
Another example is in the computation of the singular valued decomposition of a matrix. Consider the
factorization

Introduction – f08 NAG Library Manual

f08.36 Mark 26.1

A ¼ UK�KHV H;

where K is a diagonal matrix with elements on the unit circle. Then UK and VK are corresponding left
and right singular vectors of A for any such choice of K.

The example programs for functions in Chapter f08 take care to perform post-processing
normalizations, in such cases as those highlighted above, so that a unique set of results can be
displayed over many implementations of the NAG Library (see Section 10 in nag_ztgevc (f08yxc)).
Similar care should be taken to obtain unique vectors and matrices when calling functions in Chapter
f08, particularly when these are used in equivalence tests.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.37

4 Decision Trees

The following decision trees are principally for the computation (general purpose) functions.

4.1 General Purpose Functions (eigenvalues and eigenvectors)

Tree 1: Real Symmetric Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Is A tridiagonal?
yes

f08jcc or f08jfc

no

Is A band matrix?
yes

(f08hec and f08jfc) or
f08hcc

no

Is one triangle of A stored
as a linear array? yes

(f08gec and f08jfc) or
f08gcc

no

(f08fec and f08jfc) or f08fac
or f08fcc

no

Is A tridiagonal?
yes

f08jjc

no

Is A a band matrix?
yes

f08hec and f08jjc

no

Is one triangle of A stored
as a linear array? yes

f08gec and f08jjc

no

(f08fec and f08jjc) or f08fbc

no

Are all eigenvalues and
eigenvectors required? yes

Is A tridiagonal?
yes

f08jec, f08jcc, f08jhc or
f08jlc

no

Is A a band matrix?
yes

(f08hec and f08jec) or
f08hcc

no

Is one triangle of A stored
as a linear array? yes

(f08gec, f08gfc and f08jec)
or f08gcc

no

(f08fec, f08ffc and f08jec)
or f08fac or f08fcc

no

Is A tridiagonal?
yes

f08jjc, f08jkc or f08jlc

no

Is one triangle of A stored
as a linear array? yes

f08gec, f08jjc, f08jkc and
f08ggc

no

(f08fec, f08jjc, f08jkc and
f08fgc) or f08fbc

Introduction – f08 NAG Library Manual

f08.38 Mark 26.1

Tree 2: Real Generalized Symmetric-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Are A and B band matrices?
yes

f08ufc, f08uec, f08hec and
f08jfc

no

Are A and B stored with
one triangle as a linear
array?

yes
f07gdc, f08tec, f08gec and

f08jfc

no

f07fdc, f08sec, f08fec and
f08jfc

no

Are A and B band matrices?
yes

f08ufc, f08uec, f08hec and
f08jjc

no

Are A and B stored with
one triangle as a linear
array?

yes
f07gdc, f08tec, f08gec and

f08jjc

no

f07fdc, f08sec, f08gec and
f08jjc

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes
f07gdc, f08tec, f08gec,

f08gfc, f08jec and f16plc

no

f07fdc, f08sec, f08fec,
f08ffc, f08jec and f16yjc

no

Are A and B band matrices?
yes

f08ufc, f08uec, f08hec,
f08jkc and f16yjc

no

Are A and B stored with
one triangle as a linear
array?

yes

f07gdc, f08tec, f08gec,
f08jjc, f08jkc, f08ggc and

f16plc

no

f07fdc, f08sec, f08fec,
f08jjc, f08jkc, f08fgc and

f16yjc

Note: the functions for band matrices only handle the problem Ax ¼ �Bx; the other functions handle
all three types of problems (Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x) except that, if the problem is
BAx ¼ �x and eigenvectors are required, f16phc must be used instead of f16plc and f16yfc instead of
f16yjc.

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.39

Tree 3: Real Nonsymmetric Eigenvalue Problems

Are eigenvalues required?
yes

Is A an upper Hessenberg matrix?
yes

f08pec

no

f08nac or f08nbc or (f08nhc, f08nec and
f08pec)

no

Is the Schur factorization of A required?
yes

Is A an upper Hessenberg matrix?
yes

f08pec

no

f08nbc or (f08nec, f08nfc, f08pec or
f08njc)

no

Are all eigenvectors required?
yes

Is A an upper Hessenberg matrix?
yes

f08pec or f08qkc

no

f08nac or f08nbc or (f08nhc, f08nec,
f08nfc, f08pec, f08qkc or f08njc)

no

Is A an upper Hessenberg matrix?
yes

f08pec or f08pkc

no

f08nhc, f08nec, f08pec, f08pkc, f08ngc
or f08njc

Tree 4: Real Generalized Nonsymmetric Eigenvalue Problems

Are eigenvalues only required?
yes

Are A and B in generalized upper
Hessenberg form? yes

f08xec

no

f08wbc, or f08whc and f08wcc

no

Is the generalized Schur factorization of
A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

f08xec

no

f08xbc or f08xcc

no

Are A and B in generalized upper
Hessenberg form? yes

f08xec and f08ykc

no

f08wbc, or f08whc, f08wcc and f08wjc

Introduction – f08 NAG Library Manual

f08.40 Mark 26.1

Tree 5: Complex Hermitian Eigenvalue Problems

Are eigenvalues only
required? yes

Are all the eigenvalues
required? yes

Is A a band matrix?
yes

(f08hsc and f08jfc) or
f08hqc

no

Is one triangle of A stored
as a linear array? yes

(f08gsc and f08jfc) or
f08gqc

no

(f08fsc and f08jfc) or f08fqc

no

Is A a band matrix?
yes

f08hsc and f08jjc

no

Is one triangle of A stored
as a linear array? yes

f08gsc and f08jjc

no

f08fsc and f08jjc

no

Are all eigenvalues and
eigenvectors required? yes

Is A a band matrix?
yes

(f08hsc and f08jsc) or
f08hqc

no

Is one triangle of A stored
as a linear array? yes

(f08gsc, f08gtc and f08jsc)
or f08gqc

no

(f08fsc, f08ftc and f08jsc) or
f08fqc

no

Is one triangle of A stored
as a linear array? yes

f08gsc, f08jjc, f08jxc and
f08guc

no

f08fsc, f08jjc, f08jxc and
f08fuc

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.41

Tree 6: Complex Generalized Hermitian-definite Eigenvalue Problems

Are eigenvalues only
required? yes

Are all eigenvalues
required? yes

Are A and B stored with
one triangle as a linear
array?

yes
f07grc, f08tsc, f08gsc and

f08jfc

no

f07frc, f08ssc, f08fsc and
f08jfc

no

Are A and B stored with
one triangle as a linear
array?

yes
f07grc, f08tsc, f08gsc and

f08jjc

no

f07frc, f08ssc, f08gsc and
f08jjc

no

Are all eigenvalues and
eigenvectors required? yes

Are A and B stored with
one triangle as a linear
array?

yes
f07grc, f08tsc, f08gsc,
f08gtc and f16psc

no

f07frc, f08ssc, f08fsc,
f08ftc, f08jsc and f16zjc

no

Are A and B stored with
one triangle as a linear
array?

yes

f07grc, f08tsc, f08gsc,
f08jjc, f08jxc, f08guc and

f16slc

no

f07frc, f08ssc, f08fsc, f08jjc,
f08jxc, f08fuc and f16zjc

Tree 7: Complex non-Hermitian Eigenvalue Problems

Are eigenvalues only required?
yes

Is A an upper Hessenberg matrix?
yes

f08psc

no

f08nvc, f08nsc and f08psc

no

Is the Schur factorization of A required?
yes

Is A an upper Hessenberg matrix?
yes

f08psc

no

f08nsc, f08ntc, f08psc and f08nwc

no

Are all eigenvectors required?
yes

Is A an upper Hessenberg matrix?
yes

f08psc and f08qxc

no

f08nvc, f08nsc, f08ntc, f08psc, f08qxc
and f08nwc

no

Is A an upper Hessenberg matrix?
yes

f08psc and f08pxc

no

f08nvc, f08nsc, f08psc, f08pxc, f08nuc
and f08nwc

Introduction – f08 NAG Library Manual

f08.42 Mark 26.1

Tree 8: Complex Generalized non-Hermitian Eigenvalue Problems

Are eigenvalues only required?
yes

Are A and B in generalized upper
Hessenberg form? yes

f08xsc

no

f08wpc, or f08wqc and f08wvc

no

Is the generalized Schur factorization of
A and B required? yes

Are A and B in generalized upper
Hessenberg form? yes

f08xsc

no

f08xpc or f08xqc

no

Are A and B in generalized upper
Hessenberg form? yes

f08xsc and f08yxc

no

f08wpc, or f08wvc, f08wqc and f08wwc

4.2 General Purpose Functions (singular value decomposition)

Tree 9: Singular Value Decomposition of a Matrix

Is A a complex matrix?
yes

Is A banded?
yes

f08lsc and f08msc

no

Are singular values only required?
yes

f08ksc and f08msc

no

f08ksc, f08ktc and f08msc

no

Is A bidiagonal?
yes

f08mec

no

Is A banded?
yes

f08lec and f08mec

no

Are singular values only required?
yes

f08kec and f08mec

no

f08kec, f08kfc and f08mec

Tree 10: Singular Value Decompositon of a Matrix Pair

Are A and B complex matrices?
yes

f08vqc

no

f08vcc

5 Functionality Index

Backtransformation of eigenvectors from those of balanced forms,
complex matrix .. nag_zgebak (f08nwc)
real matrix ... nag_dgebak (f08njc)

Backtransformation of generalized eigenvectors from those of balanced forms,
complex matrix ... nag_zggbak (f08wwc)
real matrix .. nag_dggbak (f08wjc)

Balancing,
complex general matrix ... nag_zgebal (f08nvc)
complex general matrix pair .. nag_zggbal (f08wvc)
real general matrix .. nag_dgebal (f08nhc)
real general matrix pair ... nag_dggbal (f08whc)

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.43

Eigenvalue problems for condensed forms of matrices,
complex Hermitian matrix,

eigenvalues and eigenvectors,
band matrix,

all/selected eigenvalues and eigenvectors by root-free QR algorithm
..... nag_zhbevx (f08hpc)

all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
..... nag_zhbevd (f08hqc)

all eigenvalues and eigenvectors by root-free QR algorithm nag_zhbev (f08hnc)
general matrix,

all/selected eigenvalues and eigenvectors by root-free QR algorithm
..... nag_zheevx (f08fpc)

all/selected eigenvalues and eigenvectors by root-free QR algorithm, using packed storage
..... nag_zhpevx (f08gpc)

all/selected eigenvalues and eigenvectors using Relatively Robust Representations
..... nag_zheevr (f08frc)

all eigenvalues and eigenvectors by a divide-and-conquer algorithm
..... nag_zheevd (f08fqc)

all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage
..... nag_zhpevd (f08gqc)

all eigenvalues and eigenvectors by root-free QR algorithm nag_zheev (f08fnc)
all eigenvalues and eigenvectors by root-free QR algorithm, using packed storage

..... nag_zhpev (f08gnc)
eigenvalues only,

band matrix,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_zhbevx (f08hpc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_zhbev (f08hnc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm, using
packed storage .. nag_zhbevd (f08hqc)

general matrix,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_zheevx (f08fpc)
all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm,
using packed storage .. nag_zhpevx (f08gpc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_zheev (f08fnc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm, using
packed storage .. nag_zhpev (f08gnc)

complex upper Hessenberg matrix, reduced from complex general matrix,
eigenvalues and Schur factorization .. nag_zhseqr (f08psc)
selected right and/or left eigenvectors by inverse iteration nag_zhsein (f08pxc)

real bidiagonal matrix,
singular value decomposition,

after reduction from complex general matrix ... nag_zbdsqr (f08msc)
after reduction from real general matrix .. nag_dbdsqr (f08mec)
after reduction from real general matrix, using divide-and-conquer nag_dbdsdc (f08mdc)

real symmetric matrix,
eigenvalues and eigenvectors,

band matrix,
all/selected eigenvalues and eigenvectors by root-free QR algorithm

..... nag_dsbevx (f08hbc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm

..... nag_dsbevd (f08hcc)
all eigenvalues and eigenvectors by root-free QR algorithm nag_dsbev (f08hac)

Introduction – f08 NAG Library Manual

f08.44 Mark 26.1

general matrix,
all/selected eigenvalues and eigenvectors by root-free QR algorithm

..... nag_dsyevx (f08fbc)
all/selected eigenvalues and eigenvectors by root-free QR algorithm, using packed storage

..... nag_dspevx (f08gbc)
all/selected eigenvalues and eigenvectors using Relatively Robust Representations

..... nag_dsyevr (f08fdc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm

..... nag_dsyevd (f08fcc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, using packed storage

..... nag_dspevd (f08gcc)
all eigenvalues and eigenvectors by root-free QR algorithm nag_dsyev (f08fac)
all eigenvalues and eigenvectors by root-free QR algorithm, using packed storage

..... nag_dspev (f08gac)
eigenvalues only,

band matrix,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_dsbevx (f08hbc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_dsbev (f08hac)
general matrix,

all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm
..... nag_dsyevx (f08fbc)

all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm,
using packed storage .. nag_dspevx (f08gbc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_dsyev (f08fac)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm, using
packed storage ... nag_dspev (f08gac)

real symmetric tridiagonal matrix,
eigenvalues and eigenvectors,

after reduction from complex Hermitian matrix,
all/selected eigenvalues and eigenvectors, using Relatively Robust Representations

..... nag_zstegr (f08jyc)
all eigenvalues and eigenvectors ... nag_zsteqr (f08jsc)
all eigenvalues and eigenvectors, positive definite matrix nag_zpteqr (f08juc)
all eigenvalues and eigenvectors, using divide-and-conquer nag_zstedc (f08jvc)
selected eigenvectors by inverse iteration .. nag_zstein (f08jxc)

all/selected eigenvalues and eigenvectors, using Relatively Robust Representations
..... nag_dstegr (f08jlc)

all/selected eigenvalues and eigenvectors by root-free QR algorithm nag_dstevx (f08jbc)
all/selected eigenvalues and eigenvectors using Relatively Robust Representations

..... nag_dstevr (f08jdc)
all eigenvalues and eigenvectors .. nag_dsteqr (f08jec)
all eigenvalues and eigenvectors, by divide-and-conquer nag_dstedc (f08jhc)
all eigenvalues and eigenvectors, positive definite matrix nag_dpteqr (f08jgc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dstevd (f08jcc)
all eigenvalues and eigenvectors by root-free QR algorithm nag_dstev (f08jac)
selected eigenvectors by inverse iteration ... nag_dstein (f08jkc)

eigenvalues only,
all/selected eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_dstevx (f08jbc)
all eigenvalues by root-free QR algorithm .. nag_dsterf (f08jfc)
all eigenvalues by the Pal–Walker–Kahan variant of the QL or QR algorithm

..... nag_dstev (f08jac)
selected eigenvalues only ... nag_dstebz (f08jjc)

real upper Hessenberg matrix, reduced from real general matrix,
eigenvalues and Schur factorization .. nag_dhseqr (f08pec)
selected right and/or left eigenvectors by inverse iteration nag_dhsein (f08pkc)

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.45

Eigenvalue problems for nonsymmetric matrices,
complex matrix,

all eigenvalues, Schur form, Schur vectors and reciprocal condition numbers
..... nag_zgeesx (f08ppc)

all eigenvalues, Schur form and Schur vectors .. nag_zgees (f08pnc)
all eigenvalues and left/right eigenvectors ... nag_zgeev (f08nnc)
all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition
numbers ... nag_zgeevx (f08npc)

real matrix,
all eigenvalues, real Schur form, Schur vectors and reciprocal condition numbers

..... nag_dgeesx (f08pbc)
all eigenvalues, real Schur form and Schur vectors nag_dgees (f08pac)
all eigenvalues and left/right eigenvectors ... nag_dgeev (f08nac)
all eigenvalues and left/right eigenvectors, plus balancing transformation and reciprocal condition
numbers ... nag_dgeevx (f08nbc)

Eigenvalues and generalized Schur factorization,
complex generalized upper Hessenberg form .. nag_zhgeqz (f08xsc)
real generalized upper Hessenberg form ... nag_dhgeqz (f08xec)

General Gauss–Markov linear model,
solves a complex general Gauss–Markov linear model problem nag_zggglm (f08zpc)
solves a real general Gauss–Markov linear model problem nag_dggglm (f08zbc)

Generalized eigenvalue problems for condensed forms of matrices,
complex Hermitian-definite eigenproblems,

banded matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_zhbgvd (f08uqc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_zhbgv (f08unc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form

..... nag_zhbgvx (f08upc)
general matrices,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_zhegvd (f08sqc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format

..... nag_zhpgvd (f08tqc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_zhegv (f08snc)
all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format

..... nag_zhpgv (f08tnc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form

..... nag_zhegvx (f08spc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format

..... nag_zhpgvx (f08tpc)
real symmetric-definite eigenproblems,

banded matrices,
all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsbgvd (f08ucc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_dsbgv (f08uac)
selected eigenvalues and eigenvectors by reduction to tridiagonal form

..... nag_dsbgvx (f08ubc)
general matrices,

all eigenvalues and eigenvectors by a divide-and-conquer algorithm nag_dsygvd (f08scc)
all eigenvalues and eigenvectors by a divide-and-conquer algorithm, packed storage format

..... nag_dspgvd (f08tcc)
all eigenvalues and eigenvectors by reduction to tridiagonal form nag_dsygv (f08sac)
all eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format

..... nag_dspgv (f08tac)
selected eigenvalues and eigenvectors by reduction to tridiagonal form

..... nag_dsygvx (f08sbc)
selected eigenvalues and eigenvectors by reduction to tridiagonal form, packed storage format

..... nag_dspgvx (f08tbc)

Introduction – f08 NAG Library Manual

f08.46 Mark 26.1

Generalized eigenvalue problems for nonsymmetric matrix pairs,
complex nonsymmetric matrix pairs,

all eigenvalues, generalized Schur form, Schur vectors and reciprocal condition numbers
..... nag_zggesx (f08xpc)

all eigenvalues, generalized Schur form and Schur vectors, deprecated nag_zgges (f08xnc)
all eigenvalues, generalized Schur form and Schur vectors, using level 3 BLAS

..... nag_zgges3 (f08xqc)
all eigenvalues and left/right eigenvectors, deprecated nag_zggev (f08wnc)
all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal
condition numbers .. nag_zggevx (f08wpc)
all eigenvalues and left/right eigenvectors, using level 3 BLAS nag_zggev3 (f08wqc)

real nonsymmetric matrix pairs,
all eigenvalues, generalized real Schur form and left/right Schur vectors, deprecated

..... nag_dgges (f08xac)
all eigenvalues, generalized real Schur form and left/right Schur vectors, plus reciprocal
condition numbers ... nag_dggesx (f08xbc)
all eigenvalues, generalized real Schur form and left/right Schur vectors, using level 3 BLAS

..... nag_dgges3 (f08xcc)
all eigenvalues and left/right eigenvectors, deprecated nag_dggev (f08wac)
all eigenvalues and left/right eigenvectors, plus the balancing transformation and reciprocal
condition numbers .. nag_dggevx (f08wbc)
all eigenvalues and left/right eigenvectors, using level 3 BLAS nag_dggev3 (f08wcc)

Generalized QR factorization,
complex matrices ... nag_zggqrf (f08zsc)
real matrices .. nag_dggqrf (f08zec)

Generalized RQ factorization,
complex matrices .. nag_zggrqf (f08ztc)
real matrices ... nag_dggrqf (f08zfc)

Generalized singular value decomposition,
after reduction from complex general matrix,

complex triangular or trapezoidal matrix pair .. nag_ztgsja (f08ysc)
after reduction from real general matrix,

real triangular or trapezoidal matrix pair ... nag_dtgsja (f08yec)
complex matrix pair, deprecated .. nag_zggsvd (f08vnc)
complex matrix pair, using level 3 BLAS .. nag_zggsvd3 (f08vqc)
partitioned orthogonal matrix (CS decomposition) ... nag_dorcsd (f08rac)
partitioned unitary matrix (CS decomposition) .. nag_zuncsd (f08rnc)
real matrix pair, deprecated ... nag_dggsvd (f08vac)
real matrix pair, using level 3 BLAS .. nag_dggsvd3 (f08vcc)
reduction of a pair of general matrices to triangular or trapezoidal form,

complex matrices, deprecated ... nag_zggsvp (f08vsc)
complex matrices, using level 3 BLAS ... nag_zggsvp3 (f08vuc)
real matrices, deprecated ... nag_dggsvp (f08vec)
real matrices, using level 3 BLAS ... nag_dggsvp3 (f08vgc)

least squares problems,
complex matrices,

apply orthogonal matrix ... nag_zunmrz (f08bxc)
minimum norm solution using a complete orthogonal factorization nag_zgelsy (f08bnc)
minimum norm solution using the singular value decomposition nag_zgelss (f08knc)
minimum norm solution using the singular value decomposition (divide-and-conquer)

..... nag_zgelsd (f08kqc)
reduction of upper trapezoidal matrix to upper triangular form nag_ztzrzf (f08bvc)

real matrices,
apply orthogonal matrix .. nag_dormrz (f08bkc)
minimum norm solution using a complete orthogonal factorization nag_dgelsy (f08bac)
minimum norm solution using the singular value decomposition nag_dgelss (f08kac)

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.47

minimum norm solution using the singular value decomposition (divide-and-conquer)
..... nag_dgelsd (f08kcc)

reduction of upper trapezoidal matrix to upper triangular form nag_dtzrzf (f08bhc)

least squares problems with linear equality constraints,
complex matrices,

minimum norm solution subject to linear equality constraints using a generalized RQ
factorization .. nag_zgglse (f08znc)

real matrices,
minimum norm solution subject to linear equality constraints using a generalized RQ
factorization .. nag_dgglse (f08zac)

Left and right eigenvectors of a pair of matrices,
complex upper triangular matrices ... nag_ztgevc (f08yxc)
real quasi-triangular matrices .. nag_dtgevc (f08ykc)

LQ factorization and related operations,
complex matrices,

apply unitary matrix ... nag_zunmlq (f08axc)
factorization ... nag_zgelqf (f08avc)
form all or part of unitary matrix .. nag_zunglq (f08awc)

real matrices,
apply orthogonal matrix .. nag_dormlq (f08akc)
factorization .. nag_dgelqf (f08ahc)
form all or part of orthogonal matrix .. nag_dorglq (f08ajc)

Operations on eigenvectors of a real symmetric or complex Hermitian matrix, or singular vectors of a
general matrix,

estimate condition numbers .. nag_ddisna (f08flc)

Operations on generalized Schur factorization of a general matrix pair,
complex matrix,

estimate condition numbers of eigenvalues and/or eigenvectors nag_ztgsna (f08yyc)
re-order Schur factorization .. nag_ztgexc (f08ytc)
re-order Schur factorization, compute generalized eigenvalues and condition numbers

..... nag_ztgsen (f08yuc)
real matrix,

estimate condition numbers of eigenvalues and/or eigenvectors nag_dtgsna (f08ylc)
re-order Schur factorization ... nag_dtgexc (f08yfc)
re-order Schur factorization, compute generalized eigenvalues and condition numbers

..... nag_dtgsen (f08ygc)

Operations on Schur factorization of a general matrix,
complex matrix,

compute left and/or right eigenvectors .. nag_ztrevc (f08qxc)
estimate sensitivities of eigenvalues and/or eigenvectors nag_ztrsna (f08qyc)
re-order Schur factorization .. nag_ztrexc (f08qtc)
re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities

..... nag_ztrsen (f08quc)
real matrix,

compute left and/or right eigenvectors .. nag_dtrevc (f08qkc)
estimate sensitivities of eigenvalues and/or eigenvectors nag_dtrsna (f08qlc)
re-order Schur factorization .. nag_dtrexc (f08qfc)
re-order Schur factorization, compute basis of invariant subspace, and estimate sensitivities

..... nag_dtrsen (f08qgc)

Overdetermined and underdetermined linear systems,
complex matrices,

solves an overdetermined or undetermined complex linear system nag_zgels (f08anc)
real matrices,

solves an overdetermined or undetermined real linear system nag_dgels (f08aac)

Introduction – f08 NAG Library Manual

f08.48 Mark 26.1

Performs a reduction of eigenvalue problems to condensed forms, and related operations,
real rectangular band matrix to upper bidiagonal form nag_dgbbrd (f08lec)

QL factorization and related operations,
complex matrices,

apply unitary matrix ... nag_zunmql (f08cuc)
factorization ... nag_zgeqlf (f08csc)
form all or part of unitary matrix .. nag_zungql (f08ctc)

real matrices,
apply orthogonal matrix .. nag_dormql (f08cgc)
factorization ... nag_dgeqlf (f08cec)
form all or part of orthogonal matrix .. nag_dorgql (f08cfc)

QR factorization and related operations,
complex matrices,

general matrices,
apply unitary matrix .. nag_zunmqr (f08auc)
apply unitary matrix, explicitly blocked .. nag_zgemqrt (f08aqc)
factorization .. nag_zgeqrf (f08asc)
factorization,

with column pivoting, using BLAS-3 .. nag_zgeqp3 (f08btc)
factorization, explicitly blocked .. nag_zgeqrt (f08apc)
factorization, with column pivoting ... nag_zgeqpf (f08bsc)
form all or part of unitary matrix .. nag_zungqr (f08atc)

triangular-pentagonal matrices,
apply unitary matrix ... nag_ztpmqrt (f08bqc)
factorization .. nag_ztpqrt (f08bpc)

real matrices,
general matrices,

apply orthogonal matrix .. nag_dormqr (f08agc)
apply orthogonal matrix, explicitly blocked .. nag_dgemqrt (f08acc)
factorization,

with column pivoting, using BLAS-3 .. nag_dgeqp3 (f08bfc)
factorization, orthogonal matrix .. nag_dgeqrf (f08aec)
factorization, with column pivoting ... nag_dgeqpf (f08bec)
factorization, with explicit blocking ... nag_dgeqrt (f08abc)
form all or part of orthogonal matrix .. nag_dorgqr (f08afc)

triangular-pentagonal matrices,
apply orthogonal matrix .. nag_dtpqrt (f08bbc)
factorization ... nag_dtpmqrt (f08bcc)

Reduction of a pair of general matrices to generalized upper Hessenberg form,
orthogonal reduction, real matrices, deprecated ... nag_dgghrd (f08wec)
orthogonal reduction, real matrices, using level 3 BLAS nag_dgghd3 (f08wfc)
unitary reduction, complex matrices, deprecated .. nag_zgghrd (f08wsc)
unitary reduction, complex matrices, using level 3 BLAS nag_zgghd3 (f08wtc)

Reduction of eigenvalue problems to condensed forms, and related operations,
complex general matrix to upper Hessenberg form,

apply orthogonal matrix ... nag_zunmhr (f08nuc)
form orthogonal matrix .. nag_zunghr (f08ntc)
reduce to Hessenberg form .. nag_zgehrd (f08nsc)

complex Hermitian band matrix to real symmetric tridiagonal form nag_zhbtrd (f08hsc)
complex Hermitian matrix to real symmetric tridiagonal form,

apply unitary matrix .. nag_zunmtr (f08fuc)
apply unitary matrix, packed storage ... nag_zupmtr (f08guc)
form unitary matrix ... nag_zungtr (f08ftc)
form unitary matrix, packed storage .. nag_zupgtr (f08gtc)
reduce to tridiagonal form .. nag_zhetrd (f08fsc)
reduce to tridiagonal form, packed storage ... nag_zhptrd (f08gsc)

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.49

complex rectangular band matrix to real upper bidiagonal form nag_zgbbrd (f08lsc)
complex rectangular matrix to real bidiagonal form,

apply unitary matrix ... nag_zunmbr (f08kuc)
form unitary matrix .. nag_zungbr (f08ktc)
reduce to bidiagonal form ... nag_zgebrd (f08ksc)

real general matrix to upper Hessenberg form,
apply orthogonal matrix ... nag_dormhr (f08ngc)
form orthogonal matrix .. nag_dorghr (f08nfc)
reduce to Hessenberg form ... nag_dgehrd (f08nec)

real rectangular matrix to bidiagonal form,
apply orthogonal matrix ... nag_dormbr (f08kgc)
form orthogonal matrix .. nag_dorgbr (f08kfc)
reduce to bidiagonal form ... nag_dgebrd (f08kec)

real symmetric band matrix to symmetric tridiagonal form nag_dsbtrd (f08hec)
real symmetric matrix to symmetric tridiagonal form,

apply orthogonal matrix ... nag_dormtr (f08fgc)
apply orthogonal matrix, packed storage ... nag_dopmtr (f08ggc)
form orthogonal matrix .. nag_dorgtr (f08ffc)
form orthogonal matrix, packed storage .. nag_dopgtr (f08gfc)
reduce to tridiagonal form .. nag_dsytrd (f08fec)
reduce to tridiagonal form, packed storage ... nag_dsptrd (f08gec)

Reduction of generalized eigenproblems to standard eigenproblems,
complex Hermitian-definite banded generalized eigenproblem Ax ¼ �Bx nag_zhbgst (f08usc)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x

..... nag_zhegst (f08ssc)
complex Hermitian-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x, packed
storage ... nag_zhpgst (f08tsc)
real symmetric-definite banded generalized eigenproblem Ax ¼ �Bx nag_dsbgst (f08uec)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x

..... nag_dsygst (f08sec)
real symmetric-definite generalized eigenproblem Ax ¼ �Bx, ABx ¼ �x or BAx ¼ �x, packed
storage ... nag_dspgst (f08tec)

RQ factorization and related operations,
complex matrices,

apply unitary matrix ... nag_zunmrq (f08cxc)
factorization .. nag_zgerqf (f08cvc)
form all or part of unitary matrix .. nag_zungrq (f08cwc)

real matrices,
apply orthogonal matrix .. nag_dormrq (f08ckc)
factorization .. nag_dgerqf (f08chc)
form all or part of orthogonal matrix .. nag_dorgrq (f08cjc)

Singular value decomposition,
complex matrix,

using a divide-and-conquer algorithm ... nag_zgesdd (f08krc)
using bidiagonal QR iteration .. nag_zgesvd (f08kpc)

real matrix,
preconditioned Jacobi SVD using fast scaled rotations and de Rijks pivoting

..... nag_dgejsv (f08khc)
using a divide-and-conquer algorithm .. nag_dgesdd (f08kdc)
using bidiagonal QR iteration .. nag_dgesvd (f08kbc)
using fast scaled rotation and de Rijks pivoting ... nag_dgesvj (f08kjc)

Solve generalized Sylvester equation,
complex matrices .. nag_ztgsyl (f08yvc)
real matrices ... nag_dtgsyl (f08yhc)

Solve reduced form of Sylvester matrix equation,
complex matrices .. nag_ztrsyl (f08qvc)

Introduction – f08 NAG Library Manual

f08.50 Mark 26.1

real matrices .. nag_dtrsyl (f08qhc)

Split Cholesky factorization,
complex Hermitian positive definite band matrix ... nag_zpbstf (f08utc)
real symmetric positive definite band matrix .. nag_dpbstf (f08ufc)

6 Auxiliary Functions Associated with Library Function Arguments

None.

7 Functions Withdrawn or Scheduled for Withdrawal

None.

8 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM,
Philadelphia

Arioli M, Duff I S and de Rijk P P M (1989) On the augmented system approach to sparse least squares
problems Numer. Math. 55 667–684

Demmel J W and Kahan W (1990) Accurate singular values of bidiagonal matrices SIAM J. Sci. Statist.
Comput. 11 873–912

Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University
Press, Baltimore

Moler C B and Stewart G W (1973) An algorithm for generalized matrix eigenproblems SIAM J.
Numer. Anal. 10 241–256

Parlett B N (1998) The Symmetric Eigenvalue Problem SIAM, Philadelphia

Stewart G W and Sun J-G (1990) Matrix Perturbation Theory Academic Press, London

Ward R C (1981) Balancing the generalized eigenvalue problem SIAM J. Sci. Stat. Comp. 2 141–152

Wilkinson J H (1965) The Algebraic Eigenvalue Problem Oxford University Press, Oxford

Wilkinson J H and Reinsch C (1971) Handbook for Automatic Computation II, Linear Algebra
Springer–Verlag

f08 – Least-squares and Eigenvalue Problems (LAPACK) Introduction – f08

Mark 26.1 f08.51 (last)

	f08 - Least Squares and Eigenvalue Problems (LAPACK), Chapter Introduction
	1 Scope of the Chapter
	2 Background to the Problems
	2.1 Linear Least Squares Problems
	2.2 Orthogonal Factorizations and Least Squares Problems
	2.2.1 QR factorization
	2.2.2 LQ factorization
	2.2.3 QR factorization with column pivoting
	2.2.4 Complete orthogonal factorization
	2.2.5 Updating a QR factorization
	2.2.6 Other factorizations

	2.3 The Singular Value Decomposition
	2.4 The Singular Value Decomposition and Least Squares Problems
	2.5 Generalized Linear Least Squares Problems
	2.6 Generalized Orthogonal Factorization and Generalized Linear Least Squares Problems
	2.6.1 Generalized QR Factorization
	2.6.2 Generalized RQ Factorization
	2.6.3 Generalized Singular Value Decomposition (GSVD)
	2.6.4 The Full CS Decomposition of Orthogonal Matrices

	2.7 Symmetric Eigenvalue Problems
	2.8 Generalized Symmetric-definite Eigenvalue Problems
	2.9 Packed Storage for Symmetric Matrices
	2.10 Band Matrices
	2.11 Nonsymmetric Eigenvalue Problems
	2.12 Generalized Nonsymmetric Eigenvalue Problem
	2.13 The Sylvester Equation and the Generalized Sylvester Equation
	2.14 Error and Perturbation Bounds and Condition Numbers
	2.14.1 Least squares problems
	2.14.2 The singular value decomposition
	2.14.3 The symmetric eigenproblem
	2.14.4 The generalized symmetric-definite eigenproblem
	2.14.5 The nonsymmetric eigenproblem
	2.14.6 Balancing and condition for the nonsymmetric eigenproblem
	2.14.7 The generalized nonsymmetric eigenvalue problem
	2.14.8 Balancing the generalized eigenvalue problem
	2.14.9 Other problems

	2.15 Block Partitioned Algorithms

	3 Recommendations on Choice and Use of Available Functions
	3.1 Available Functions
	3.1.1 Driver functions
	3.1.1.1 Linear least squares problems (LLS)
	3.1.1.2 Generalized linear least squares problems (LSE and GLM)
	3.1.1.3 Symmetric eigenvalue problems (SEP)
	3.1.1.4 Nonsymmetric eigenvalue problem (NEP)
	3.1.1.5 Singular value decomposition (SVD)
	3.1.1.6 Generalized symmetric definite eigenvalue problems (GSEP)
	3.1.1.7 Generalized nonsymmetric eigenvalue problem (GNEP)
	3.1.1.8 Generalized singular value decomposition (GSVD)

	3.1.2 Computational functions
	3.1.2.1 Orthogonal factorizations
	3.1.2.2 Generalized orthogonal factorizations
	3.1.2.3 Singular value problems
	3.1.2.4 Generalized singular value decomposition
	3.1.2.5 Symmetric eigenvalue problems
	3.1.2.6 Generalized symmetric-definite eigenvalue problems
	3.1.2.7 Nonsymmetric eigenvalue problems
	3.1.2.8 Generalized nonsymmetric eigenvalue problems
	3.1.2.9 The Sylvester equation and the generalized Sylvester equation

	3.2 NAG Names and LAPACK Names
	3.3 Matrix Storage Schemes
	3.3.1 Conventional storage
	3.3.2 Packed storage
	3.3.3 Band storage
	3.3.4 Tridiagonal and bidiagonal matrices
	3.3.5 Real diagonal elements of complex matrices
	3.3.6 Representation of orthogonal or unitary matrices

	3.4 Argument Conventions
	3.4.1 Option Arguments
	3.4.2 Problem dimensions

	3.5 Normalizing Output Vectors

	4 Decision Trees
	4.1 General Purpose Functions (eigenvalues and eigenvectors)
	Tree 1
	Tree 2
	Tree 3
	Tree 4
	Tree 5
	Tree 6
	Tree 7
	Tree 8
	4.2 General Purpose Functions (singular value decomposition)
	Tree 9
	Tree 10

	5 Functionality Index
	6 Auxiliary Functions Associated with Library Function Arguments
	7 Functions Withdrawn or Scheduled for Withdrawal
	8 References
	Anderson et al. (1999)
	Arioli et al. (1989)
	Demmel and Kahan (1990)
	Golub and Van Loan (2012)
	Moler and Stewart (1973)
	Parlett (1998)
	Stewart and Sun (1990)
	Ward (1981)
	Wilkinson (1965)
	Wilkinson and Reinsch (1971)

	NAG C Library Manual, Mark 26.1
	Copyright Statement
	Introduction
	How to Use the NAG Library and its Documentation
	NAG C Library News, Mark 26.1
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Functions
	Support from NAG
	Index

	Chapters of the Library
	a00 - Library Identification
	a00 Chapter Contents
	a00 Chapter Introduction

	a02 - Complex Arithmetic
	a02 Chapter Contents
	a02 Chapter Introduction

	c02 - Zeros of Polynomials
	c02 Chapter Contents
	c02 Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	c05 Chapter Contents
	c05 Chapter Introduction

	c06 - Fourier Transforms
	c06 Chapter Contents
	c06 Chapter Introduction

	c09 - Wavelet Transforms
	c09 Chapter Contents
	c09 Chapter Introduction

	d01 - Quadrature
	d01 Chapter Contents
	d01 Chapter Introduction

	d02 - Ordinary Differential Equations
	d02 Chapter Contents
	d02 Chapter Introduction
	d02M-N Sub-chapter Introduction

	d03 - Partial Differential Equations
	d03 Chapter Contents
	d03 Chapter Introduction

	d04 - Numerical Differentiation
	d04 Chapter Contents
	d04 Chapter Introduction

	d05 - Integral Equations
	d05 Chapter Contents
	d05 Chapter Introduction

	d06 - Mesh Generation
	d06 Chapter Contents
	d06 Chapter Introduction

	e01 - Interpolation
	e01 Chapter Contents
	e01 Chapter Introduction

	e02 - Curve and Surface Fitting
	e02 Chapter Contents
	e02 Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	e04 Chapter Contents
	e04 Chapter Introduction

	e05 - Global Optimization of a Function
	e05 Chapter Contents
	e05 Chapter Introduction

	f - Linear Algebra
	f Chapter Contents
	f Chapter Introduction

	f01 - Matrix Operations, Including Inversion
	f01 Chapter Contents
	f01 Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	f02 Chapter Contents
	f02 Chapter Introduction

	f03 - Determinants
	f03 Chapter Contents
	f03 Chapter Introduction

	f04 - Simultaneous Linear Equations
	f04 Chapter Contents
	f04 Chapter Introduction

	f06 - Linear Algebra Support Functions
	f06 Chapter Contents
	f06 Chapter Introduction

	f07 - Linear Equations (LAPACK)
	f07 Chapter Contents
	f07 Chapter Introduction

	f08 - Least Squares and Eigenvalue Problems (LAPACK)
	f08 Chapter Contents
	f08 Chapter Introduction

	f11 - Large Scale Linear Systems
	f11 Chapter Contents
	f11 Chapter Introduction

	f12 - Large Scale Eigenproblems
	f12 Chapter Contents
	f12 Chapter Introduction

	f16 - NAG Interface to BLAS
	f16 Chapter Contents
	f16 Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	g01 Chapter Contents
	g01 Chapter Introduction

	g02 - Correlation and Regression Analysis
	g02 Chapter Contents
	g02 Chapter Introduction

	g03 - Multivariate Methods
	g03 Chapter Contents
	g03 Chapter Introduction

	g04 - Analysis of Variance
	g04 Chapter Contents
	g04 Chapter Introduction

	g05 - Random Number Generators
	g05 Chapter Contents
	g05 Chapter Introduction

	g07 - Univariate Estimation
	g07 Chapter Contents
	g07 Chapter Introduction

	g08 - Nonparametric Statistics
	g08 Chapter Contents
	g08 Chapter Introduction

	g10 - Smoothing in Statistics
	g10 Chapter Contents
	g10 Chapter Introduction

	g11 - Contingency Table Analysis
	g11 Chapter Contents
	g11 Chapter Introduction

	g12 - Survival Analysis
	g12 Chapter Contents
	g12 Chapter Introduction

	g13 - Time Series Analysis
	g13 Chapter Contents
	g13 Chapter Introduction

	g22 - Linear Model Specification
	g22 Chapter Contents
	g22 Chapter Introduction

	h - Operations Research
	h Chapter Contents
	h Chapter Introduction

	m01 - Sorting and Searching
	m01 Chapter Contents
	m01 Chapter Introduction

	s - Approximations of Special Functions
	s Chapter Contents
	s Chapter Introduction

	x01 - Mathematical Constants
	x01 Chapter Contents
	x01 Chapter Introduction

	x02 - Machine Constants
	x02 Chapter Contents
	x02 Chapter Introduction

	x04 - Input/Output Utilities
	x04 Chapter Contents
	x04 Chapter Introduction

	x06 - OpenMP Utilities
	x06 Chapter Contents
	x06 Chapter Introduction

	x07 - IEEE Arithmetic
	x07 Chapter Contents
	x07 Chapter Introduction

