NAG Fortran Library

Advice on Replacement Calls for Withdrawn/Superseded Routines

The following list gives the names of replacement routines for those routines that have been withdrawn or superseded. For routines that have been withdrawn or superseded since Mark 13 replacement calls are also given. The list indicates the minimum change necessary, but many of the replacement routines have additional flexibility and users may wish to take advantage of new features. It is strongly recommended that users consult the routine documents.

Files containing the replacement call information are provided as part of the distribution materials and can be found in the directory examples/replaced.

C02 – Zeros of Polynomials

C02ADF
Withdrawn at Mark 15
Replaced by C02AFF

Old: CALL C02ADF(AR,AC,N,REZ,IMZ,TOL,IFAIL)
New: CALL C02AFF(A,N-1,SCALE,Z,W,IFAIL)

The coefficients are stored in the double precision array A of dimension $(2,N+1)$ rather than in the arrays AR and AC, the zeros are returned in the double precision array Z of dimension $(2,N)$ rather than in the arrays REZ and IMZ, and W is a double precision work array of dimension $(4 \times (N+1))$.

C02AEF
Withdrawn at Mark 16
Replaced by C02AGF

Old: CALL C02AEF(A,N,REZ,IMZ,TOL,IFAIL)
New: CALL C02AGF(A,N-1,SCALE,Z,W,IFAIL)

The zeros are returned in the double precision array Z of dimension $(2,N)$ rather than in the arrays REZ and IMZ, and W is a double precision work array of dimension $(2 \times (N+1))$.

C05 – Roots of One or More Transcendental Equations

C05AAF
Withdrawn at Mark 9
Replaced by C05ADF

C05ABF
Withdrawn at Mark 9
Replaced by C05ADF

C05ACF
Withdrawn at Mark 9
Replaced by C05ADF

C05NAF
Withdrawn at Mark 10
Replaced by C05NBF or C05NCF

C05PAF
Withdrawn at Mark 8
Replaced by C05PBF or C05PCF
C06 – Summation of Series

C06AAF
Withdrawn at Mark 9
Replaced by C06ECF or C06FRF

C06ABF
Withdrawn at Mark 9
Replaced by C06EAF or C06FPF

C06ACF
Withdrawn at Mark 12
Replaced by C06EKF or C06FKF

C06ADF
Withdrawn at Mark 12
Replaced by C06FFF

D01 – Quadrature

D01AAF
Withdrawn at Mark 8
Replaced by D01AJF

D01ABF
Withdrawn at Mark 8
Replaced by D01AJF

D01ACF
Withdrawn at Mark 9
Replaced by D01BDF

D01ADF
Withdrawn at Mark 8
Replaced by D01BAF or D01BBF

D01AEF
Withdrawn at Mark 8
Replaced by D01BAF or D01BBF

D01AFF
Withdrawn at Mark 8
Replaced by D01BAF or D01BBF

D01AGF
Withdrawn at Mark 9
Replaced by D01AJF

D01FAF
Withdrawn at Mark 11
Replaced by D01GBF
D02 – Ordinary Differential Equations

D02AAF
Withdrawn at Mark 8
Replaced by D02PDF and related routines

D02ABF
Withdrawn at Mark 8
Replaced by D02PCF and related routines

D02ADF
Withdrawn at Mark 9
Replaced by D02GAF or D02HAF

D02AFF
Withdrawn at Mark 9
Replaced by D02TGF

D02AHF
Withdrawn at Mark 8
Replaced by D02CJF or D02QFF

D02AJF
Withdrawn at Mark 8
Replaced by D02EJF and D02NBF and related routines

D02BAF
Withdrawn at Mark 18
Replaced by D02PCF and associated D02P routines

Old: CALL D02BAF(X,XEND,N,Y,TOL,FCN,W,IFAIL)
New: DO 10 L = 1,N
 THRES(L) = TOL
10 CONTINUE
 CALL D02PFV(N,X,Y,XEND,TOL,THRES,2,"usualtask",.FALSE., +
 0.0D0,W,20*N,IFAIL)
 CALL D02PCF(FCN,XEND,X,Y,YP,YMAX,W,IFAIL)

THRES, YP and YMAX are double precision arrays of length N and the length of array W needs extending to length 20 × N.

D02BBF
Withdrawn at Mark 18
Replaced by D02PCF and associated D02P routines

Old: CALL D02BBF(X,XEND,N,Y,TOL,IRELAB,FCN,OUTPUT,W,IFAIL)
New: CALL D02PFV(N,X,Y,XEND,TOL,THRES,2,"usualtask",.FALSE., +
 0.0D0,W,20*N,IFAIL)
... set XWANT ...
10 CONTINUE
 CALL D02PCF(FCN,XWANT,X,Y,YP,YMAX,W,IFAIL)
 IF (XWANT.LT.XEND) THEN
 ... reset XWANT ...
 GO TO 10
 ENDIF

THRES, YP and YMAX are double precision arrays of length N and the length of array W needs extending to length 20 × N.
D02BDF
Withdrawn at Mark 18
Replaced by D02PCF and associated D02P routines

Old: CALL D02BDF(X,XEND,N,Y,TOL,IRELAB,FCN,STIFF,YNORM,W,+IW,M,OUTPUT,IFAIL)
New: CALL D02PVF(N,X,Y,XEND,TOL,THRES,2,'usualtask',.TRUE.,+0.0D0,W,32*N,IFAIL)

... set XWANT ...
10 CONTINUE
CALL D02PCF(FCN,XWANT,X,Y,YP,YMAX,IFAIL)
IF (XWANT.LT.XEND) THEN
... reset XWANT ...
GO TO 10
ENDIF
CALL D02PZF(RMSERR,ERRMAX,TERRMX,W,IFAIL)

THRES, YP, YMAX and RMSERR are double precision arrays of length N and W is now a double precision one-dimensional array of length 32 × N.

D02CAF
Withdrawn at Mark 18
Replaced by D02CJF

Old: CALL D02CAF(X,XEND,N,Y,TOL,FCN,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,'M',D02CJX,D02CJW,W,IFAIL)

D02CJX is a subroutine provided in the NAG Fortran Library and D02CJW is a double precision function also provided. Both must be declared as EXTERNAL. The array W needs to be 5 elements greater in length.

D02CBF
Withdrawn at Mark 18
Replaced by D02CJF

Old: CALL D02CBF(X,XEND,N,Y,TOL,IRELAB,FCN,OUTPUT,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,RELABS,OUTPUT,D02CJW,W,IFAIL)

D02CJW is a double precision function provided in the NAG Fortran Library and must be declared as EXTERNAL. The array W needs to be 5 elements greater in length. The integer parameter IRELAB (which can take values 0, 1 or 2) is catered for by the new CHARACTER*1 argument RELABS (whose corresponding values are 'M', 'A' and 'R').

D02CGF
Withdrawn at Mark 18
Replaced by D02CJF

Old: CALL D02CGF(X,XEND,N,Y,TOL,HMAX,M,VAL,FCN,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,'M',D02CJX,G,W,IFAIL)

double precision FUNCTION G(X,Y)
double precision X,Y(*)
G = Y(M)-VAL
END

D02CJX is a subroutine provided in the NAG Fortran Library and should be declared as EXTERNAL. Note the functionality of HMAX is no longer available directly. Checking the value of Y(M) − VAL at intervals of length HMAX can be effected by a user-supplied procedure OUTPUT in place of D02CJX in the call described above. See the routine document for D02CJF for more details.
D02CHF
With withdrawn at Mark 18
Replaced by D02CJF

Old: CALL D02CHF(X, XEND, N, Y, TOL, IRELAB, HMAX, FCN, G, W, IFAIL)
New: CALL D02CJF(X, XEND, N, Y, FCN, TOL, RELABS, D02CJX, G, W, IFAIL)

D02CJX is a subroutine provided by the NAG Fortran Library and should be declared as EXTERNAL. The functionality of HMAX can be provided as described under the replacement call for D02CJF above. The relationship between the parameters IRELAB and RELABS is described under the replacement call for D02CBF.

D02EAF
With withdrawn at Mark 18
Replaced by D02EJF

Old: CALL D02EAF(X, XEND, N, Y, TOL, FCN, W, IW, IFAIL)
New: CALL D02EJF(X, XEND, N, Y, FCN, TOL, ‘M’, D02EJX, D02EJW, D02EJY, W, IW, + IFAIL)

D02EJY and D02EJX are subroutines provided in the NAG Fortran Library and D02EJW is a double precision function also provided. All must be declared as EXTERNAL.

D02EBF
With withdrawn at Mark 18
Replaced by D02EJF

Old: CALL D02EBF(X, XEND, N, Y, TOL, IRELAB, FCN, PEDERV, OUTPUT, W, IW, + IFAIL)
New: CALL D02EJF(X, XEND, N, Y, FCN, PEDERV, TOL, RELABS, OUTPUT, D02EJW, W, IW, + IFAIL)

D02EJW is a double precision function provided in the NAG Fortran Library and must be declared as EXTERNAL. The integer parameter IRELAB (which can take values 0, 1 or 2) is catered for by the new CHARACTER*1 argument RELABS (whose corresponding values are ‘M’, ‘A’ and ‘R’). If MPED = 0 in the call of D02EBF then PEDERV must be the routine D02EJY, which is supplied in the Library and should be declared as EXTERNAL.

D02EGF
With withdrawn at Mark 18
Replaced by D02EJF

Old: CALL D02EGF(X, XEND, N, Y, TOL, HMAX, M, VAL, FCN, W, IW, IFAIL)
New: CALL D02EJF(X, XEND, N, Y, FCN, D02EJY, TOL, ‘M’, D02EJX, G, W, IW, IFAIL)

D02EJY and D02EJX are subroutines provided in the NAG Fortran Library and should be declared as EXTERNAL. Note that the functionality of HMAX is no longer available directly. Checking the value of Y(M) - VAL at intervals of length HMAX can be effected by a user-supplied procedure OUTPUT in place of D02EJX in the call described above. See the routine document for D02EJF for more details.

D02EHF
With withdrawn at Mark 18
Replaced by D02EJF

Old: CALL D02EHF(X, XEND, N, Y, TOL, IRELAB, HMAX, MPED, PEDERV, FCN, W, IW, IFAIL)
New: CALL D02EJF(X, XEND, N, Y, FCN, PEDERV, TOL, RELABS, D02EJX, G, W, IW, IFAIL)

D02EJX is a subroutine provided by the NAG Fortran Library and should be declared as EXTERNAL. The functionality of HMAX can be provided as described under the replacement call for D02EGF above.

[NP3657/21] REPLACE.5
The relationship between the parameters IRELAB and RELABS is described under the replacement call for D02EBF. If MPED = 0 in the call of D02EHF then PEDERV must be the routine D02EJY, which is supplied in the Library and should be declared as EXTERNAL.

D02PAF
Withdrawn at Mark 18
Replaced by D02PDF and associated D02P routines

Existing programs should be modified to call D02PVF and D02PDF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02QAF
Withdrawn at Mark 14
Replaced by D02QFF, D02QWF and D02QXF

Existing programs should be modified to call D02QWF and D02QFF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02QBF
Withdrawn at Mark 13
Replaced by D02NBF and related routines

Existing programs should be modified to call D02NSF, D02NVF and D02NBF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02QDF
Withdrawn at Mark 17
Replaced by D02NBF or D02NCF

Existing programs should be modified to call D02NSF, D02NVF and D02NBF, or D02NTF, D02NVF and D02NCF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02QQF
Withdrawn at Mark 17
not needed except with D02QDF

Not needed except with D02QDF.

D02XAF
Withdrawn at Mark 18
Replaced by D02PXF and associated D02P routines

Not needed except with D02PAF. The equivalent routine is D02PXF.

D02XBF
Withdrawn at Mark 18
Replaced by D02PXF and associated D02P routines

Not needed except with D02PAF.

D02XGF
Withdrawn at Mark 14
Replaced by D02QZF

Not needed except with D02QAF. The equivalent routine is D02QZF.
D02XHF
Withdrawn at Mark 14
Replaced by D02QZF
Not needed except with D02QAF. The equivalent routine is D02QZF.

D02YAF
Withdrawn at Mark 18
Replaced by D02PDF and associated D02P routines
There is no precise equivalent to this routine. The closest alternative routine is D02PDF.

D03 – Partial Differential Equations

D03PAF
Withdrawn at Mark 17
Replaced by D03PCF
Existing programs should be modified to call D03PCF/D03PCA. The replacement routine is designed to solve a broader class of problems. Therefore it is not possible to give precise details of a replacement call. Please consult the appropriate routine documents.

D03PBF
Withdrawn at Mark 17
Replaced by D03PCF
Existing programs should be modified to call D03PCF/D03PCA. The replacement routine is designed to solve a broader class of problems. Therefore it is not possible to give precise details of a replacement call. Please consult the appropriate routine documents.

D03PGF
Withdrawn at Mark 17
Replaced by D03PCF
Existing programs should be modified to call D03PCF/D03PCA. The replacement routine is designed to solve a broader class of problems. Therefore it is not possible to give precise details of a replacement call. Please consult the appropriate routine documents.

E01 – Interpolation

E01ACF
Withdrawn at Mark 15
Replaced by E01DAF and E02DEF

Old: CALL E01ACF(A,B,X,Y,F,VAL,VALL,IFAIL,XX,WORK,AM,D,IG1,M1,N1)
New: CALL E01DAF(N1,M1,X,Y,F,PX,PY,LAMDA,MU,C,WRK,IFAIL)
A1(1) = A
B1(1) = B
M = 1
CALL E02DEF(M,PX,PY,A1,B1,LAMDA,MU,C,PP,WRK,IWRK,IFAIL)
VAL = FF(1)
VALL = VAL

where PX, PY and M are INTEGER variables, LAMDA is a double precision array of dimension (N1 + 4), MU is a double precision array of dimension (M1 + 4), C is a double precision array of dimension (N1 × M1), WRK is a double precision array of dimension ((N1 + 6) × (M1 + 6)), A1, B1 and FF are double precision arrays of dimension (1), and IWRK is an INTEGER array of dimension (M1).

The above new calls duplicate almost exactly the effect of the old call, except that the new routines produce a single interpolated value for each point, rather than the two alternative values VAL and VALL produced by the old routine. By attempting this duplication, however, efficiency is probably being sacrificed. In general it is preferable to evaluate the interpolating function provided by E01DAF at a set of
M points, supplied in arrays A1 and B1, rather than at a single point. In this case, A1, B1 and FF must be dimensioned of length M.

Note also that E01ACF uses natural splines, i.e., splines having zero second derivatives at the ends of the ranges. This is likely to be slightly unsatisfactory, and E01DAF does not have this problem. It does mean however that results produced by E01DAF may not be exactly the same as those produced by E01ACF.

E01ADF
Withdrawn at Mark 9
Replaced by E01BAF

E01SEF
Withdrawn at Mark 20
Replaced by E01SGF

Old: CALL E01SEF(M,X,Y,F,RNW,RNQ,NW,NQ,FNODES,MINNQ,WRK,IFAIL)
New: CALL E01SGF(M,X,Y,F,NW,NQ,IQ,LIQ,RQ,LRQ,IFAIL)

E01SEF has been superseded by E01SGF which gives improved accuracy, facilities for obtaining gradient values and a consistent interface with E01TGF for interpolation of scattered data in three dimensions.

The interpolant generated by the two routines will not be identical, but similar results may be obtained by using the same values of NW and NQ. Details of the interpolant are passed to the evaluator through the arrays IQ and RQ rather than FNODES and RNW.

E01SFF
Withdrawn at Mark 20
Replaced by E01SHF

Old: CALL E01SFF(M,X,Y,F,RNW,FNODES,PX,PY,PF,IFAIL)
New: CALL E01SHF(M,X,Y,F,IQ,LIQ,RQ,LRQ,1,PX,PY,PF,QX,QY,IFAIL)

The two calls will not produce identical results due to differences in the generation routines E01SEF and E01SGF. Details of the interpolant are passed from E01SGF through the arrays IQ and RQ rather than FNODES and RNW.

E01SHF also returns gradient values in QX and QY and allows evaluation at arrays of points rather than just single points.

E02 – Curve and Surface Fitting

E02DBF
Withdrawn at Mark 16
Replaced by E02DEF

Old: CALL E02DBF(M,PX,PY,X,Y,FF,LAMDA,MV,POINT,NPOINT,C,NC,IFAIL)
New: CALL E02DEF(M,PX,PY,X,Y,LAMDA,MU,C,FF,WRK,IWRK,IFAIL)

where WRK is a **double precision** array of dimension (PY – 4), and IWRK is an INTEGER array of dimension (PY – 4).

E04 – Minimizing or Maximizing a Function

E04AAF
Withdrawn at Mark 7
Replaced by E04ABF/E04ABA

E04BAF
Withdrawn at Mark 7
Replaced by E04BBF/E04BBA
Introduction

Replacement Calls

E04CDF
Withdrawn at Mark 7
Replaced by E04UCF/E04UCA

E04CEF
Withdrawn at Mark 7
Replaced by E04JAF

E04CFF
Withdrawn at Mark 8
Replaced by E04UCF/E04UCA

E04CGF
Withdrawn at Mark 13
Replaced by E04JAF

Old: CALL E04CGF(N,X,F,IW,LIW,W,LW,IFAIL)
New: CALL E04JAF(N,1,W(N+1),X,F,IW,LIW,W(2*N+1),LW-2*N,IFAIL)

E04DBF
Withdrawn at Mark 13
Replaced by E04DGF/E04DGA

Old: CALL E04DBF(N,X,F,G,XTOL,FEST,DUM,W,FUNCT,MONIT,MAXCAL,IFAIL)
New: CALL E04DGF(N,OBJFUN,ITER,F,G,X,WORK,IWORK,IUSER,USER,IFAIL)

The subroutine providing function and gradient values to E04DGF/E04DGA is OBJFUN; it has a different parameter list to FUNCT, but can be constructed simply as

```
SUBROUTINE OBJFUN(MODE,N,XC,FC,GC,NSTATE,IUSER,USER)  
INTEGER MODE, N, NSTATE, IUSER(*)  
double precision XC(N), FC, GC(N), USER(*)
C
CALL FUNCT(N,XC,FC,GC)
RETURN
END
```

The parameters IWORK and WORK are workspace parameters for E04DGF/E04DGA and must have lengths at least (N + 1) and (12 × N) respectively. IUSER and USER must be declared as arrays each of length at least (1).

There is no parameter MONIT to E04DGF/E04DGA, but monitoring output may be obtained by calling an option setting routine. Similarly, values for FEST and MAXCAL may be supplied by calling an option setting routine. See the routine document for further information.

E04DCF
Withdrawn at Mark 7
Replaced by E04KDF or E04UCF/E04UCA

E04DDF
Withdrawn at Mark 8
Replaced by E04KDF or E04UCF/E04UCA

E04DEF
Withdrawn at Mark 13
Replaced by E04KAF

Old: CALL E04DEF(N,X,F,G,IW,LIW,W,LW,IFAIL)
Replacement Calls

E04DFF
Withdrawn at Mark 13
Replaced by E04KCF

Old: CALL E04DFF(N,X,G,IW,W,LW,IFAIL)
New: CALL E04KCF(N,1,W(N+1),X,G,IW,W(2*N+1),LW-2*N,IFAIL)

E04EAF
Withdrawn at Mark 8
Replaced by E04LBF

E04EBF
Withdrawn at Mark 13
Replaced by E04LAF

Old: CALL E04EBF(N,X,G,IW,W,LW,IFAIL)
New: CALL E04LYF(N,1,FUNCT,HESS,W,W(N+1),X,G,IW,W(2*N+1),LW-2*N,+
+ IUSER,USER,IFAIL)

FUNCT and HESS appear in the parameter list instead of the fixed-name subroutines FUNCT2 and HESS2
of E04LAF. FUNCT and HESS must both be declared as EXTERNAL in the calling (sub)program. In
addition they have an extra two parameters, IUSER and USER, over and above those of FUNCT2 and
HESS2. They may be derived from FUNCT2 and HESS2 as follows:

```fortran
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
double precision XC(N), FC, GC(N), USER(*)
C
CALL FUNCT2(N,XC,FC,GC)
C
RETURN
END

SUBROUTINE HESS(N,XC,HESLC,LH,HESDC,IUSER,USER)
INTEGER N, LH, IUSER(*)
double precision XC(N), HESLC(LH), HESDC(N), USER(*)
C
CALL HESS2(N,XC,HESLC,LH,HESDC)
C
RETURN
END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as
IUSER(1) and USER(1), but will not need initialising.

E04FAF
Withdrawn at Mark 8
Replaced by E04FCF or E04FDF

E04FBF
Withdrawn at Mark 7
Replaced by E04FCF or E04FDF

E04FDF
Withdrawn at Mark 19
Replaced by E04FYF

Old: CALL E04FDF(M,N,X,FSUMSQ,IW,W,LW,IFAIL)
New: CALL E04FYF(M,N,LSFUN,X,FSUMSQ,W,LW,USER,IFAIL)
LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN1 of E04FDF. LSFUN must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN1. It may be derived from LSFUN1 as follows:

```fortran
SUBROUTINE LSFUN(M,N,XC,FVECC,IUSER,USER)
  INTEGER M, N, IUSER(*)
  double precision XC(N), FVECC(M), USER(*)
  CALL LSFUN1(M,N,XC,FVECC)
  RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04GAF
Withdrawn at Mark 8
Replaced by E04GBF, E04GCF, E04GDF or E04GEF

E04GCF
Withdrawn at Mark 19
Replaced by E04GYF

Old: CALL E04GCF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04GYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN2 of E04GCF. LSFUN must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN2. It may be derived from LSFUN2 as follows:

```fortran
SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
  INTEGER M, N, LJC, IUSER(*)
  double precision XC(N), FVECC(M), FJACC(LJC,N), USER(*)
  CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
  RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising. If however, the array IW was used to pass information through E04GCF into LSFUN2, or get information from LSFUN2, then the array IUSER should be declared appropriately and used for this purpose.

E04GEF
Withdrawn at Mark 19
Replaced by E04GZF

Old: CALL E04GEF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04GZF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN2 of E04GEF. LSFUN must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN2. It may be derived from LSFUN2 as follows:

```fortran
SUBROUTINE LSFUN(M,N,X,FVECC,FJACC,LJC,IUSER,USER)
  INTEGER M, N, LJC, IUSER(*)
  double precision XC(N), FVECC(M), FJACC(LJC,N), USER(*)
  CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
  RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising. If however, the array IW was used to pass information through E04GEF into LSFUN2, or get information from LSFUN2, then the array IUSER should be declared appropriately and used for this purpose.
through E04GEF into LSFUN2, or get information from LSFUN2, then the array IUSER should be
declared appropriately and used for this purpose.

E04HAF
Withdrawn at Mark 7
Replaced by E04UCF/E04UCA

E04HBF
Withdrawn at Mark 16
no longer required

E04HFF
Withdrawn at Mark 19
Replaced by E04HYF

Old: CALL E04HFF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04HYF(M,N,LSFUN,LSHES,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN and LSHES appear in the parameter list instead of the fixed-name subroutines LSFUN2 and
LSHES2 of E04HFF. LSFUN and LSHES must both be declared as EXTERNAL in the calling
(sub)program. In addition they have an extra two parameters, IUSER and USER, over and above those of
LSFUN2 and LSHES2. They may be derived from LSFUN2 and LSHES2 as follows:

```
SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
double precision XC(N), FVECC(M), FJACC(LJC,N), USER(*)
C
CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
C
RETURN
END
C
SUBROUTINE LSHES(M,N,FVECC,XC,B,LB,IUSER,USER)
INTEGER M, N, LB, IUSER(*)
double precision FVECC(M), XC(N), B(LB), USER(*)
C
CALL LSHES2(M,N,FVECC,XC,B,LB)
C
RETURN
END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as
IUSER(1) and USER(1), but will not need initialising. If, however, the array IW was used to pass
information through E04HFF into LSFUN2 or LSHES2, or to get information from LSFUN2, then the
array IUSER should be declared appropriately and used for this purpose.

E04JAF
Withdrawn at Mark 19
Replaced by E04JYF

Old: CALL E04JAF(N,INBOUND,BL,BU,X,F,IW,LIW,LW,IFAIL)
New: CALL E04JYF(N,INBOUND,FUNCT,BL,BU,X,F,IW,LIW,W,LW,IUSER,USER,IFAIL)

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT1 of E04JAF. FUNCT
must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters,
IUSER and USER, over and above those of FUNCT1. It may be derived from FUNCT1 as follows:

```
SUBROUTINE FUNCT(N,XC,FC,IUSER,USER)
INTEGER N, IUSER(*)
double precision XC(N), FC, USER(*)
C
CALL FUNCT1(N,XC,FC)
C
RETURN
END
```
The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04JBF
Withdrew at Mark 16
Replaced by E04UCF/E04UCA

No comparative calls are given between E04JBF and E04UCF/E04UCA since both routines have considerable flexibility and can be called with many different options. E04UCF/E04UCA allows some values to be passed to it, not through the parameter list, but as ‘optional parameters’, supplied through calls to E04UDF/E04UDA or E04UEF/E04UEA. Names of optional parameters are given here in bold type.

E04UCF/E04UCA is a more powerful routine than E04JBF, in that it allows for general linear and nonlinear constraints, and for some or all of the first derivatives to be supplied; however when replacing E04JBF, only the simple bound constraints are relevant, and only function values are assumed to be available.

Therefore E04UCF/E04UCA must be called with NCLIN = NCNLN = 0, with dummy arrays of size (1) supplied as the arguments A, C and CJAC, and with the name of the auxiliary routine E04UDM (UDME04 in some implementations) as the argument CONFUN. The optional parameter Derivative Level must be set to 0.

The subroutine providing function values to E04UCF/E04UCA is OBJFUN. It has a different parameter list to FUNCT, but can be constructed as follows:

```fortran
SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
INTEGER MODE, N, NSTATE, IUSER(*)
double precision X(N), OBJF, OBJGRD(N), USER(*)
INTEGER IFLAG,IW(1)
double precision W(1)
C
IFLAG = 0
CALL FUNCT(IFLAG,N,X,OBJF,OBJGRD,IW,1,W,1)
IF (IFLAG.LT.0) MODE = IFLAG
RETURN
END
```

This assumes that the arrays IW and W are not used to communicate between FUNCT and the calling program; E04UCF/E04UCA supplies the arrays IUSER and USER specifically for this purpose.

The functions of the parameters BL and BU are similar, but E04UCF/E04UCA has no parameter corresponding to IBOUND; all elements of BL and BU must be set (as when IBOUND = 0 in the call to E04JBF). The optional parameter Infinite bound size must be set to 1.0D+6 if there are any infinite bounds. The function of the parameter ISTATE is similar but the specification is slightly different. The parameters F and G are equivalent to OBJF and OBJGRD of E04UCF/E04UCA. It should also be noted that E04UCF/E04UCA does not allow a user-supplied routine MONIT, but intermediate output is provided by the routine, under the control of the optional parameters Major print level and Minor print level.

Most of the ‘tuning’ parameters in E04JBF have their counterparts as ‘optional parameters’ to E04UCF/E04UCA, as indicated in the following list, but the correspondence is not exact and the specifications must be read carefully.

- IPRINT Minor print level
- INTYPE Cold start/Warm start
- MAXCAL Minor iteration limit (note that this counts iterations rather than function calls)
- ETA Line search tolerance
- XTOL Optimality tolerance (note that this specifies the accuracy in F rather than the accuracy in X)
- STEPMX Step limit
- DELTA Difference interval
E04KAF
Withdrawn at Mark 19
Replaced by E04KYF

Old: CALL E04KAF(N, IBOUND, BL, BU, X, F, G, IW, LIW, W, LW, IFAIL)
New: CALL E04KYF(N, IBOUND, FUNCT, BL, BU, X, F, G, IW, LIW, W, LW, IUSER, USER, IFAIL)

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT2 of E04KAF. FUNCT must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT2. It may be derived from FUNCT2 as follows:

```fortran
SUBROUTINE FUNCT(N, XC, FC, GC, IUSER, USER)
   INTEGER N, IUSER(*)
   double precision XC(N), FC, GC(N), USER(*)
   CALL FUNCT2(N, XC, FC, GC)
   RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04KBF
Withdrawn at Mark 16
Replaced by E04UCF/E04UCA

No comparative calls are given between E04KBF and E04UCF/E04UCA since both routines have considerable flexibility and can be called with many different options. Most of the advice given for replacing E04JBF (see above) applies also to E04KBF, and only the differences are given here.

The optional parameter **Derivative Level** must be set to 1.

The subroutine providing both function and gradient values to E04UCF/E04UCA is OBJFUN. It has a different parameter list to FUNCT, but can be constructed as follows:

```fortran
SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, USER)
   INTEGER MODE, N, NSTATE, IUSER(*)
   double precision X(N), OBJF, OBJGRD(N), USER(*)
   INTEGER IW(1)
   double precision W(1)
   CALL FUNCT(MODE, N, X, OBJF, OBJGRD, IW(1), W(1))
   RETURN
END
```

E04KCF
Withdrawn at Mark 19
Replaced by E04KZF

Old: CALL E04KCF(N, IBOUND, BL, BU, X, F, G, IW, LIW, W, LW, IFAIL)
New: CALL E04KZF(N, IBOUND, FUNCT, BL, BU, X, F, G, IW, LIW, W, LW, IUSER, USER, IFAIL)

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT2 of E04KCF. FUNCT must be declared as EXTERNAL in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT2. It may be derived from FUNCT2 as follows:

```fortran
SUBROUTINE FUNCT(N, XC, FC, GC, IUSER, USER)
   INTEGER N, IUSER(*)
   double precision XC(N), FC, GC(N), USER(*)
   CALL FUNCT2(N, XC, FC, GC)
   RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

REPLACE.14
E04LAF
Withdrawn at Mark 19
Replaced by E04LYF

Old: CALL E04LAF(N, IBOUND, BL, BU, X, F, G, IW, LIW, W, LW, IFAIL)
New: CALL E04LYF(N, IBOUND, FUNCT, HESS, BL, BU, X, F, G, IW, LIW, W, LW, IUSER, USER,
+ IFAIL)

FUNCTION and HESS appear in the parameter list instead of the fixed-name subroutines FUNCT2 and HESS2 of E04LAF. FUNCTION and HESS must both be declared as EXTERNAL in the calling (sub)program. In addition they have an extra two parameters, IUSER and USER, over and above those of FUNCT2 and HESS2. They may be derived from FUNCT2 and HESS2 as follows:

```fortran
SUBROUTINE FUNCT(N, XC, FC, GC, IUSER, USER)
INTEGER N, IUSER(*)
DOUBLE PRECISION XC(N), FC, GC(N), USER(*)
CALL FUNCT2(N, XC, FC, GC)
RETURN
END

SUBROUTINE HESS(N, XC, HESLC, LH, HESDC, IUSER, USER)
INTEGER N, LH, IUSER(*)
DOUBLE PRECISION XC(N), HESLC(LH), HESDC(N), USER(*)
CALL HESS2(N, XC, HESLC, LH, HESDC)
RETURN
END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initialising.

E04MBF
Withdrawn at Mark 18
Replaced by E04MFF/E04MFA

Old: CALL E04MBF(ITMAX, MSGLVL, N, NCLIN, NCTOTL, NROWA, A, BL, BU, CVEC,
+ LINOBJ, X, ISTATE, OBJLP, CLAMDA, IWORK, LIWORK, WORK,
+ IFAIL)
New: CALL E04MFF(N, NCLIN, A, NROWA, BL, BU, CVEC, ISTATE, X, ITER, OBJLP,
+ AX, CLAMDA, IWORK, LIWORK, LWORK, IFAIL)

The parameter NCTOTL is no longer required. Values for ITMAX, MSGLVL and LINOBJ may be supplied by calling an option setting routine.

E04MFF/E04MFA contains two additional parameters as follows:

ITER – INTEGER.

AX(*) – DOUBLE PRECISION array of dimension at least max(1, NCLIN).

The minimum value of the parameter LIWORK must be increased from $2 \times N$ to $2 \times N + 3$. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04NAF
Withdrawn at Mark 18
Replaced by E04NFF/E04NFA

Old: CALL E04NAF(ITMAX, MSGLVL, N, NCLIN, NCTOTL, NROWA, NROWH, NCOLH,
+ BIGBND, A, BL, BU, CVEC, FEATOL, QPHESS, COLD, LP,
+ ORTHOG, X, ISTATE, ITER, OBJ, CLAMDA, IWORK, LIWORK,
+ WORK, IFAIL)
New: CALL E04NFF(N, NCLIN, A, NROWA, BL, BU, CVEC, HESS, NROWH, QPHESS,
+ ISTATE, X, ITER, OBJ, AX, CLAMDA, IWORK, LWORK, IFAIL)
The specification of the subroutine QPHESS must also be changed as follows:

Old: SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX)
 INTEGER N, NROWH, NCOLH, JTHCOL
 double precision HESS(NROWH,NCOLH), X(N), HX(N)
New: SUBROUTINE QPHESS(N,JTHCOL,HESS,NROWH,X,HX)
 INTEGER N, JTHCOL, NROWH
 double precision HESS(NROWH,*), X(N), HX(N)

The parameters NCTOTL, NCOLH and ORTHOG are no longer required. Values for ITMAX, MSGLEVEL, BIGBND, FEATOL, COLD and LP may be supplied by calling an option setting routine.

E04NFF/E04NFA contains one additional parameter as follows:

AX(*) – double precision array of dimension at least max(1,NCLIN).

The minimum value of the parameter LIWORK must be increased from 2 × N to 2 × N + 3. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04NKF
Scheduled for withdrawal at Mark 23
Replaced by E04NQF

Old: CALL E04NKF(N,M,NNZ,IOBJ,NCOLH,QPHX,A,HA,BL,BU,START,
 + NAMES,NNAME,CRNAME,NS,XS,ISTATE,MINIZ,MINZ,NINF,
 + SINF,OBJ,CLAMDA,I2,LENZ,Z,LENZ,IFAIL)
New: CALL E04NQF(START,QPHX,M,N,NE,NNAME,LENC,NCOLH,IOBJ,OBJADD,
 + PROB,ACOL,INDA,LOCA,BL,BU,C,NAMES,HELAST,HS,X,PI,RC,NS,
 + NINF,SINF,OBJ,CW,LENCW,LENIW,RW,LENRW,
 + CUSER,IUSER,RUSER,IFAIL)

where:
START has the same meaning in both calls
QPHX is a user-provided function supplying the matrix product Hx in both calls:

Old: SUBROUTINE QPHX(NSTATE,NCOLH,X,HX)
New: SUBROUTINE QPHX(NCOLH,X,HX,NSTATE,CUSER,IUSER,RUSER)

Here parameters with the same name have the same roles. The extra parameters CUSER, USER, USER are user workspace that may be used instead of COMMON to pass information into QPHX.

M has the same meaning, the number of linear constraints.
N has the same meaning, the number of variables.
NE has the same meaning as NNZ in E04NKF.
NNAME has the same meaning in both calls.
LENC is unique to E04NQF.
NCOLH has the same meaning in both calls.
IOBJ has the same meaning in both calls.
OBJADD is unique to E04NQF.
PROB is unique to E04NQF, but see NAME(1) of E04NKF.
ACOL is A in the call to E04NKF.
INDA is HA in the call to E04NKF.
LOCA is KA in the call to E04NKF.
BL has the same meaning in both calls.
BU has the same meaning in both calls.
C is unique to E04NQF.
NAMES corresponds to CRNAME of E04NKF - NOT to NAMES of E04NKF.

HELAST is unique to E04NQF.

HS corresponds to ISTATE in E04NQF.

X is XS in the call to E04NKF.

PI is unique to E04NQF.

RC is CLAMDA in the call to E04NKF.

NS has the same meaning in both calls.

NINF has the same meaning in both calls.

SINF has the same meaning in both calls.

OBJ has the same meaning in both calls.

CW is unique to E04NQF.

LENCW is unique to E04NQF.

IW corresponds (roughly) to IZ in the call to E04NKF.

LENIW corresponds to LENIZ in the call to E04NKF.

RW corresponds (roughly) to Z in the call to E04NKF.

LENRW corresponds to LENZ in the call to E04NKF.

CUSER is unique to E04NQF.

IUSER is unique to E04NQF.

RUSER is unique to E04NQF.

IFAIL has the same meaning in both calls.

E04NLF

Scheduled for withdrawal at Mark 23

Replaced by E04NRF

Old: CALL E04NLF(IOPTNS,INFORM)

New: CALL E04NPF(CW,LENCW,IW,LENIW,RW,LENRW,IFAIL) !initialisation

IF (IFAIL.EQ.0) THEN

INFORM=1

CALL E04NRF(IOPTNS,CW,IW,RW,INFORM) !set options

etc ...

E04NMF

Scheduled for withdrawal at Mark 23

Replaced by E04NSF, E04NTF and E04NUF

Old: CALL E04NMF(string)

New: CALL E04NPF(CW,LENCW,IW,LENIW,RW,LENRW,IFAIL) !initialisation

IF (IFAIL.EQ.0) THEN

INFORM=0

CALL E04NSF(string,CW,IW,RW,INFORM) !set options

etc ...

Or to set an integer value:

Old: CALL E04NMF(’option = n’)

New: CALL E04NPF(CW,LENCW,IW,LENIW,RW,LENRW,IFAIL) !initialisation

IF (IFAIL.EQ.0) THEN

INFORM=0

CALL E04NTF(’option’,n,CW,IW,RW,INFORM) !set options

etc ...
Or to set a double precision value:

Old: CALL E04NMF('option = v')
New: CALL E04NPF(CW,LENCW,IW,LENIW,RW,LENRW,IFAIL) !initialisation
 IF (IFAIL.EQ.0) THEN
 INFORM=0
 CALL E04NUF('option',v,CW,IW,RW,INFORM) !set options
 etc ...

E04UAF
Withdrawn at Mark 13
Replaced by E04UCF/E04UCA

No comparative calls are given between E04UAF and E04UCF/E04UCA since both routines have considerable flexibility and can be called with many different options. However users of E04UAF should have no difficulty in making the transition. Most of the ‘tuning’ parameters in E04UAF have their counterparts as optional parameters to E04UCF/E04UCA, and these may be provided by calling an option setting routine prior to the call to E04UCF/E04UCA. The subroutines providing function and constraint values to E04UCF/E04UCA are OBJFUN and CONFUN respectively; they have different parameter lists to FUNCT1 and CON1, but can be constructed simply as

```
SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
   INTEGER MODE, N, NSTATE, IUSER(*)
   double precision X(N), OBJF, OBJGRD(N), USER(*)
   CALL FUNCT1(MODE,N,X,OBJF)
   RETURN
END
```

```
SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,
                  IUSER,USER)
   INTEGER MODE, NCNLN, N, NROWJ, NEEDC(*), NSTATE, IUSER(*)
   double precision X(N), C(*), CJAC(NROWJ,*), USER(*)
   CALL CON1(MODE,N,NCNLN,X,C)
   RETURN
END
```

The parameters OBJGRD, NEEDC, CJAC, IUSER and USER are the same as those for E04UCF/E04UCA itself. It is important to note that, unlike FUNCT1 and CON1, a call to CONFUN is not preceded by a call to OBJFUN with the same values in X, so that FUNCT1 and CON1 will need to be modified if this property was being utilized. It should also be noted that E04UCF/E04UCA allows general linear constraints to be supplied separately from nonlinear constraints, and indeed this is to be encouraged, but the above call to CON1 assumes that linear constraints are being regarded as nonlinear.

E04UCF
Scheduled for withdrawal at Mark 23
Replaced by E04WDF

Old: CALL E04UCF(N,NCLIN,NCNLN,LDA,LDCJ,LDR,A,BL,BU,CONFUN,
 OBJFUN,ITER,ISTATE,C,CLAMDA,OBJF,OBJGRD,GRAD,HESS,X,IW,
 IWORK,LIWORK,WORK,LWORK,IUSER,USER,IFAIL)
New: CALL E04WDF(N,NCLIN,NCNLN,LDA,LDCJ,LDH,A,BL,BU,CONFUN,OBJFUN,
 MAJITS,ISTATE,C,CLAMDA,OBJF,OBJGRD,GRAD,HESS,X,IW,
 LENIW,RW,LENRW,IUSER,RUSER,IFAIL)

where

N, NCLIN, NCNLN, LDA, LDCJ have the same meaning in both calls.
LDH corresponds to LDR.
A, BL, BU have the same meaning in both calls.
CONFUN has the same parameter list and definitions in both calls. Note however that the MODE parameter of CONFUN in E04WDF has an extended definition to allow you set MODE = -1. This requests E04WDF to evaluate the functions closer to the last acceptable point.
OBJFUN has the same parameter list and definitions in both calls. Note however that the MODE parameter of OBJFUN in E04WDF has an extended definition to allow you set MODE = -1. This requests E04WDF to evaluate the functions closer to the last acceptable point.

MAJITS corresponds to ITER of E04UCF/E04UCA.

ISTATE is similar in both calls. However the negative values allowed in E04UCF/E04UCA are not permitted in E04WDF.

CCON corresponds to C in E04UCF/E04UCA.

CIAC, CLAMDA, OBJ have the same meaning in both calls.

GRAD corresponds to OBJGRD in E04UCF/E04UCA.

HESS roughly corresponds to R in E04UCF/E04UCA:

(i) There is exact correspondence if a ‘Cold Start’ option is used.

(ii) For a ‘Warm Start’ HESS must contain an approximation to the Hessian of the Lagrangian, whereas R in E04UCF/E04UCA contained a triangular factor of a Cholesky decomposition of this matrix.

X has the same meaning in both calls.

IW, LENIW, RW, LENRW are unique to E04WDF.

IUSER has the same meaning in both calls.

RUSER corresponds USER in E04UCF/E04UCA.

IFAIL has the same meaning in both calls.

E04UDF
Scheduled for withdrawal at Mark 23
Replaced by E04WEF

| Old: CALL E04UDF(IOPTNS,INFORM) |
| New: CALL E04WCF(IW,LENIW,RW,LENRW,IFAIL) | ! Initialisation
| IF (IFAIL.EQ.0) THEN |
| INFORM=1 |
| CALL E04WEF(IOPTS,IW,RW,INFORM) | ! Set options
| etc ...

E04UEF
Scheduled for withdrawal at Mark 23
Replaced by E04WFF, E04WGF and E04WHF

| Old: CALL E04UEF(string) |
| New: CALL E04WCF(IW,LENIW,RW,LENRW,IFAIL) | ! initialisation
| IF (IFAIL.EQ.0) THEN |
| INFORM=0 |
| CALL E04WFF(string,IW,RW,INFORM) | ! set options
| etc ...

Or to set an integer value:

| Old: CALL E04UEF(‘option = n’) |
| New: CALL E04WCF(IW,LENIW,RW,LENRW,IFAIL) | ! initialisation
| IF (IFAIL.EQ.0) THEN |
| INFORM=0 |
| CALL E04WGF(‘option’,n,IW,RW,INFORM) | ! set options
| etc ...

Or to set a double precision value:

| Old: CALL E04UEF(‘option = v’) |
| New: CALL E04WCF(IW,LENIW,RW,LENRW,IFAIL) | ! initialisation
| IF (IFAIL.EQ.0) THEN |
| INFORM=0 |
| CALL E04WGF(‘option’,v,IW,RW,INFORM) | ! set options
| etc ...
Replacement Calls

E04UHF
Scheduled for withdrawal at Mark 23
Replaced by E04VKF

Old: CALL E04UHF(IOPTNS, INFORM)
New: CALL E04VGF(CW, LENCW, IW, LENIW, RW, LENRW, IFAIL) ! Initialisation
IF (IFAIL.EQ.0) THEN
 INFORM=1
 CALL E04VKF(IOPTS, CW, IW, RW, INFORM)
else...

E04UJF
Scheduled for withdrawal at Mark 23
Replaced by E04VLF, E04VMF and E04VNF

Old: CALL E04UJF(string)
New: CALL E04VGF(CW, LENCW, IW, LENIW, RW, LENRW, IFAIL) ! Initialisation
IF (IFAIL.EQ.0) THEN
 INFORM=0
 CALL E04VLF(string, CW, IW, RW, INFORM)
else...

Or to set an integer value:

Old: CALL E04UJF(’option = n’)
New: CALL E04VGF(CW, LENCW, IW, LENIW, RW, LENRW, IFAIL) ! Initialisation
IF (IFAIL.EQ.0) THEN
 INFORM=0
 CALL E04VMF(’option’, n, CW, IW, RW, INFORM)
else...

Or to set a double precision value:

Old: CALL E04UJF(’option = v’)
New: CALL E04VGF(CW, LENCW, IW, LENIW, RW, LENRW, IFAIL) ! Initialisation
IF (IFAIL.EQ.0) THEN
 INFORM=0
 CALL E04VNF(’option’, v, CW, IW, RW, INFORM)
else...

E04UNF
Scheduled for withdrawal at Mark 22
Replaced by E04USF/E04USA

Old: CALL E04UNF(M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ,
+ LDR, A, BL, BU, Y, CONFUN, OBJFUN, ITER,
+ R, X, IWORK, LIWORK, WORK, LWORK, IUSER,
+ USER, IFAIL)
New: CALL E04USF(M, N, NCLIN, NCNLN, LDA, LDCJ, LDFJ,
+ LDR, A, BL, BU, Y, CONFUN, OBJFUN, ITER,
+ ISTATE, C, CJAC, F, FJAC, CLAMDA, OBJF,
+ R, X, IWORK, LIWORK, WORK, LWORK, IUSER,
+ USER, IFAIL)

The specification of the subroutine OBJFUN must also be changed as follows:

Old: SUBROUTINE OBJFUN(MODE, M, N, LDFJ, X, F, FJAC, NSTATE, IUSER, USER)
INTEGER MODE, M, N, LDFJ, NSTATE, IUSER(*)
DOUBLE PRECISION X(N), F(*), FJAC(LDFJ(*), USER(*)
New: SUBROUTINE OBJFUN(MODE, M, N, LDFJ, NEEDFI, X, F, FJAC, NSTATE,
+ IUSER, USER)
INTEGER MODE, M, N, NEEDFI, NSTATE, IUSER(*)
DOUBLE PRECISION X(N), F(*), FJAC(LDFJ(*), USER(*)

See the routine documents for further information.
E04UPF
Withdrawn at Mark 19
Replaced by E04UNF

Old: CALL E04UPF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,LDR,A,BL,BU,
+ CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC,
+ CLAMDA,OBJF,R,X,IWORK,LIWORK,WORK,LWORK,
+ IUSER,IFAIL)
New: CALL E04USF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,
+ LDR,A,BL,BU,Y,CONFUN,OBJFUN,ITER,
+ ISTATE,C,CJAC,F,FJAC,CLAMDA,OBJF,
+ R,X,IWORK,LIWORK,WORK,LWORK,IUSER,
+ USER,IFAIL)

E04USF/E04USA contains one additional parameter as follows:

\[Y(M) \] – *double precision* array.

Note that a call to E04UPF is the same as a call to E04USF/E04USA with \(Y(i) = 0.0 \), for \(i = 1, 2, \ldots, M \).

The specification of the subroutine OBJFUN must also be changed as follows:

Old: SUBROUTINE OBJFUN(MODE,M,N,LDFJ,X,F,FJAC,NSTATE,IUSER,USER)
INTEGER MODE,M,N,LDFJ,NSTATE,IUSER(*)
double precision X(N),F(J),FJAC(LDFJ,*)
USER(*)
New: SUBROUTINE OBJFUN(MODE,M,N,LDFJ,NEEDFI,X,F,FJAC,NSTATE,
+ IUSER,USER)
INTEGER MODE,M,N,NEEFI,NSTATE,IUSER(*)
double precision X(N),F(J),FJAC(LDFJ,*),USER(*)

See the routine documents for further information.

E04VAF
Withdrawn at Mark 12
Replaced by E04UCA/E04UCA

E04VBF
Withdrawn at Mark 12
Replaced by E04UCA/E04UCA

E04VCF
Withdrawn at Mark 17
Replaced by E04UCA/E04UCA

Old: CALL E04VCF(ITMAX,MSGLVL,N,NCLIN,NCNLN,NCTOTL,NROWA,NROWJ,
+ NROWR,BIGBND,EPSCF,ETA,FTOL,A,BL,BU,FEATOL,
+ CONFUN,OBJFUN,ITER,ISTATE,R,SEED,X,C,CJAC,OBJF,OBJGRD,
+ CLAMDA,OBJF,R,X,IWORK,LIWORK,WORK,LWORK,
+ IFAIL)
New: CALL E04UCF(N,NCLIN,NCNLN,NCTOTL,NROWA,NROWJ,NROWR,A,BL,BU,CONFUN,
+ OBJFUN,ITER,ISTATE,C,CJAC,OBJF,OBJGRD,R,X,
+ IWORK,LIWORK,WORK,LWORK,IUSER,USER,FAIL)

The specification of the subroutine OBJFUN must also be changed as follows:

Old: SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE)
INTEGER MODE,N,NSTATE
double precision X(N),OBJF,OBJGRD(N)
New: SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER)
INTEGER MODE,N,NSTATE,IUSER(*)
double precision X(N),OBJF,OBJGRD(N),USER(*)

If NCNLN > 0, the specification of the subroutine CONFUN must also be changed as follows:

Old: SUBROUTINE CONFUN(MODE,NCLIN,N,NCNLN,X,C,CJAC,NSTATE)
INTEGER MODE,NCLIN,N,NCNLN,NOROWJ,X,C,CJAC,NSTATE
double precision X(N),C(NROWJ),CJAC(NROWJ,N)

[NP3657/21] REPLACE.21
New: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, NEEDC, X, C, CJAC, NSTATE, + IUSER, USER)
 INTEGER MODE, NCNLN, N, NROWJ, NEEDC(NCNLN), NSTATE, IUSER(*)
 double precision X(N), C(NCNLN), CJAC(NROWJ,N), USER(*)

If NCNLN = 0, then the name of the dummy routine E04VDM (VDME04 in some implementations) may
need to be changed to E04UDM (UDME04 in some implementations) in the calling program.

The parameters NCTOTL, EPSAF, FEALIN and ORTHOG are no longer required. Values for ITMAX,
MSGlvl, BIGBND, ETA, FTOL, COLD and FEATOL may be supplied by calling an option setting
routine.

E04UCF/E04UCA contains two additional parameters as follows:

IUSER(*) – INTEGER array of dimension at least 1.

USERR(*) – double precision array of dimension at least 1.

The minimum value of the parameter LIWORK must be increased from $3 \times N + NCLIN + NCNLN$ to
$3 \times N + NCLIN + 2 \times NCNLN$. The minimum value of the parameter LWORK may also need to be
changed. See the routine documents for further information.

E04VDF
Withdrawn at Mark 17
Replaced by E04UCF/E04UCA

Old: IFAIL = 110
 CALL E04VDF(ITMAX, MSGlvl, N, NCLIN, NCNLN, NCTOTL, NROWA, NROWJ, + CTOL, PTOL, A, BL, BU, CONFUN, OBJFUN, X, ISTATE, C, CJAC, + CJAC, OBJF, OBJGRD, CLAMDA, IWORK, LIWORK, LWORK, + IFAIL)
New: IFAIL = -1
 CALL E04UCF(N, NCNLN, NROWA, NROWJ, N, A, BL, BU, CONFUN, OBJFUN, + ITER, ISTATE, C, CJAC, CLAMDA, OBJF, OBJGRD, R, X, IWORK, + LIWORK, WORK, LWORK, IUSER, USER, IFAIL)

The specification of the subroutine OBJFUN must also be changed as follows:

Old: SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE)
 INTEGER MODE, N, NSTATE
 double precision X(N), OBJF, OBJGRD(N)
New: SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, USER)
 INTEGER MODE, N, NSTATE, IUSER(*)
 double precision X(N), OBJF, OBJGRD(N), USER(*)

If NCNLN > 0, the specification of the subroutine CONFUN must also be changed as follows:

Old: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE)
 INTEGER MODE, NCNLN, N, NROWJ, NSTATE
 double precision X(N), C(NROWJ), CJAC(NROWJ,N)
New: SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, NEEDC, X, C, CJAC, NSTATE, + IUSER, USER)
 INTEGER MODE, NCNLN, N, NROWJ, NEEDC(NCNLN), NSTATE, IUSER(*)
 double precision X(N), C(NCNLN), CJAC(NROWJ,N), USER(*)

If NCNLN = 0, then the name of the dummy routine E04VDM (VDME04 in some implementations) may
need to be changed to E04UDM (UDME04 in some implementations) in the calling program.

The parameter NCTOTL is no longer required. Values for ITMAX, MSGlvl, CTOL and FTOL may be
supplied by calling an option setting routine.

E04UCF/E04UCA contains four additional parameters as follows:

ITER – INTEGER.

R(NN) – double precision array.

IUSER(*) – INTEGER array of dimension at least 1.

USER(*) – double precision array of dimension at least 1.
The minimum value of the parameter LIWORK must be increased from $3 \times N + NCLIN + NCNLN$ to $3 \times N + NCLIN + 2 \times NCNLN$. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04WAF
Withdrawn at Mark 12
Replaced by E04UCF/E04UCA

E04ZAF
Withdrawn at Mark 12
Replaced by E04ZCF/E04ZCA

E04ZBF
Withdrawn at Mark 12
nolonger required

F01 – Matrix Factorizations

F01AAF
Withdrawn at Mark 17
Replaced by F07ADF (DGETRF) and F07AJF (DGETRI)

Old: CALL F01AAF(A,IA,N,X,IX,WKSPCE,IFAIL)
New: CALL sgetrf(N,N,A,IA,IPIV,IFAIL)
CALL F06QFF('General',N,N,A,IA,X,IX)
CALL sgetri(N,X,IX,IPIV,WKSPCE,LWORK,IFAIL)

where IPIV is an INTEGER vector of length N, and the INTEGER LWORK is the length of array WKSPCE, which must be at least $\max(1,N)$. In the replacement calls, F07ADF (DGETRF) computes the LU factorization of the matrix A, F06QFF copies the factorization from A to X, and F07AJF (DGETRI) overwrites X by the inverse of A. If the original matrix A is no longer required, the call to F06QFF is not necessary, and references to X and IX in the call of F07AJF (DGETRI) may be replaced by references to A and IA, in which case A will be overwritten by the inverse.

F01ACF
Withdrawn at Mark 16
Replaced by F01ABF

Old: CALL F01ACF(N,EPS,A,IA,B,IB,Z,L,IFAIL)
New: CALL F01ABF(A,IA,N,B,IB,Z,IFAIL)

The number of iterative refinement corrections returned by F01ACF in L is no longer available. The parameter EPS is no longer required.

F01AEF
Withdrawn at Mark 18
Replaced by F06EGF (DSWAP), F07FDF (DPOTRF) and F08SEF (DSYGST)

Old: CALL F01AEF(N,A,IA,B,IB,DL,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J, N
 A(I,J) = A(J,I)
 B(I,J) = B(J,I)
 10 CONTINUE
 DL(J) = B(J,J)
20 CONTINUE
 CALL spotrf('L',N,B,IB,INFO)
 IF (INFO.EQ.0) THEN
 CALL ssygst(1,'L',N,A,IA,B,IB,INFO)
 ELSE
 IFAIL = 1
 END IF
 CALL sswap(N,DL,1,B,IB+1)
IFAIL is set to 1 if the matrix B is not positive-definite. It is essential to test IFAIL.

F01AFF
Withdrawn at Mark 18
Replaced by F06EGF (DSWAP) and F06YJF (DTRSM)

Old: CALL F01AFF(N,M1,M2,B,IB,DL,Z,IZ)
New: CALL sswap(N,DL,1,B,IB+1)
 CALL strsm('L','L','T','N',N,M2-M1+1,1.0D0,B,IB,Z(1,M1),IZ)
 CALL sswap(N,DL,1,B,IB+1)

F01AGF
Withdrawn at Mark 18
Replaced by F08FEF (DSYTRD)

Old: CALL F01AGF(N,TOL,A,IA,D,E,E2)
New: CALL ssytrd('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
 E(1) = 0.0D0
 DO 10 I = 1, N
 E2(I) = E(I)*E(I)
 10 CONTINUE

where TAU is a *double precision* array of length at least $(N - 1)$, WORK is a *real* array of length at least (1) and LWORK is its actual length.

Note that the tridiagonal matrix computed by F08FEF (DSYTRD) is different from that computed by F01AGF, but it has the same eigenvalues.

F01AHF
Withdrawn at Mark 18
Replaced by F08FGF (DORMTR)
The following replacement is valid only if the previous call to F01AGF has been replaced by a call to F08FEF (DSYTRD) as shown above.

Old: CALL F01AHF(N,M1,M2,A,IA,E,Z,IZ)
New: CALL sormtr('L','L','N',N,M2-M1+1,A,IA,TAU,Z(1,M1),IZ,WORK, + LWORK,INFO)

where WORK is a *double precision* array of length at least $(M2 - M1 + 1)$, and LWORK is its actual length.

F01AJF
Withdrawn at Mark 18
Replaced by F08FEF (DSYTRD) and F08FFF (DORGTR)

Old: CALL F01AJF(N,TOL,A,IA,D,E,Z,IZ)
New: CALL ssytrd('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
 CALL sorgtr('L',N,Z,IZ,TAU,WORK,LWORK,INFO)

where TAU is a *double precision* array of length at least $(N - 1)$, WORK is a *real* array of length at least $(N - 1)$ and LWORK is its actual length.

Note that the tridiagonal matrix T and the orthogonal matrix Q computed by F08FEF (DSYTRD) and F08FFF (DORGTR) are different from those computed by F01AJF, but they satisfy the same relation $Q^T AQ = T$.

F01AKF
Withdrawn at Mark 18
Replaced by F08NEF (DGEHRD)

Old: CALL F01AKF(N,K,L,A,IA,INTGER)
New: CALL sgehrd(N,K,L,A,IA,TAU,WORK,LWORK,INFO)
where TAU is a **double precision** array of length at least \((N - 1)\), WORK is a **real** array of length at least \((N)\) and LWORK is its actual length.

Note that the Hessenberg matrix computed by F08NEF (DGEHRD) is different from that computed by F01AKF, because F08NEF (DGEHRD) uses orthogonal transformations, whereas F01AKF uses stabilized elementary transformations.

F01ALF
Withdrawn at Mark 18
Replaced by F08NGF (DORMHR)

The following replacement is valid only if the previous call to F01AKF has been replaced by a call to F08NEF (DGEHRD) as indicated above.

\[
\text{Old: } \text{CALL F01ALF}(K,L,IR,A,IA,INTGER,Z,IZ,N) \\
\text{New: } \text{CALL sormhr}('L', 'N', N, IR, K, L, A, TAU, Z, IZ, WORK, LWORK, INFO)
\]

where WORK is a **double precision** array of length at least \((IR)\) and LWORK is its actual length.

F01AMF
Withdrawn at Mark 18
Replaced by F08NSF (ZGEHRD)

\[
\text{Old: } \text{CALL F01AMF}(N,K,L,AR,IAR,AI,IAI,INTGER) \\
\text{New: } \text{DO } 20 \; J = 1, N \\
\text{DO } 10 \; I = 1, N \\
A(I,J) = \text{cmplx}(AR(I,J),AI(I,J)) \\
10 \; \text{CONTINUE} \\
20 \; \text{CONTINUE} \\
\text{CALL cgehrd}(N,K,L,A,TAU,WORK,LWORK,INFO)
\]

where A is a **complex*16** array of dimension \((IA)\), TAU is a **complex*16** array of length at least \((N - 1)\), WORK is a **complex*16** array of length at least \((N)\) and LWORK is its actual length.

Note that the Hessenberg matrix computed by F08NSF (ZGEHRD) is different from that computed by F01AMF, because F08NSF (ZGEHRD) uses orthogonal transformations, whereas F01AMF uses stabilized elementary transformations.

F01ANF
Withdrawn at Mark 18
Replaced by F08NTF (ZUNGHR)

The following replacement is valid only if the previous call to F01AMF has been replaced by a call to F08NSF (ZGEHRD) as indicated above.

\[
\text{Old: } \text{CALL F01ANF}(K,L,IR,AR,IAR,AI,IAI,INTGER,ZR,IZR,ZI,IZI,N) \\
\text{New: } \text{CALL cunhmr}('L', 'N', N, IR, K, L, A, TAU, Z, IZ, WORK, LWORK, INFO) \\
\text{DO } 20 \; J = 1, IR \\
\text{DO } 10 \; I = 1, N \\
ZR(I,J) = \text{real}(Z(I,J)) \\
ZI(I,J) = \text{imag}(Z(I,J)) \\
10 \; \text{CONTINUE} \\
20 \; \text{CONTINUE}
\]

where A is a **complex*16** array of dimension \((IA)\), TAU is a **complex*16** array of length at least \((N - 1)\), Z is a **complex*16** array of dimension \((IZ, IR)\), WORK is a **complex*16** array of length at least \((IR)\) and LWORK is its actual length.

F01APF
Withdrawn at Mark 18
Replaced by F06QFF and F08NFF (DORGHR)

The following replacement is valid only if the previous call to F01AKF has been replaced by a call to F08NEF (DGEHRD) as indicated above.

\[
\text{Old: } \text{CALL F01APF}(N,K,L,INTGER,H,IH,V,IV) \\
\text{New: } \text{CALL F06QFF('L',N,N,H,IV)}
\]

Introduction

Replacement Calls

[NP3657/21] REPLACE.25
CALL sorghr(N,K,L,V,I,TAU,WORK,LWORK,INFO)

where WORK is a double precision array of length at least (N), and LWORK is its actual length.

Note that the orthogonal matrix formed by F08NFF (DORGRHR) is not the same as the non-orthogonal matrix formed by F01APF. See F01AKF above.

F01ATF
Withdrawn at Mark 18
Replaced by F08NHF (DGEBAL)

Old: CALL F01ATF(N,IB,A,IA,K,L,D)
New: CALL sgebal('B',N,A,IA,K,L,D,INFO)

Note that the balanced matrix returned by F08NHF (DGEBAL) may be different from that returned by F01ATF.

F01AUF
Withdrawn at Mark 18
Replaced by F08NJF (DGEBAK)

Old: CALL F01AUF(N,K,L,M,D,Z,IZ)
New: CALL sgebak('B','R',N,K,L,D,M,Z,IZ,INFO)

F01AVF
Withdrawn at Mark 18
Replaced by F08NVF (ZGEBAL)

Old: CALL F01AVF(N,IB,AR,IAR,AL,IAK,L,D)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = cmplx(AR(I,J),AI(I,J))
 10 CONTINUE
20 CONTINUE
CALL cgebal('B',N,A,IA,K,L,D,INFO)
DO 20 J = 1, N
 DO 10 I = 1, N
 AR(I,J) = real(A(I,J))
 AI(I,J) = imag(A(I,J))
 10 CONTINUE
20 CONTINUE

where A is a complex*16 array of dimension (IA,N).

Note that the balanced matrix returned by F08NVF (ZGEBAL) may be different from that returned by F01AVF.

F01AWF
Withdrawn at Mark 18
Replaced by F08NWF (ZGEBAK)

Old: CALL F01AWF(N,K,L,M,D,ZR,IZR,ZI,IZI)
New: DO 20 J = 1, M
 DO 10 I = 1, N
 Z(I,J) = cmplx(ZR(I,J),ZI(I,J))
 10 CONTINUE
20 CONTINUE
CALL cgebak('B','R',N,K,L,D,M,Z,IZ,INFO)
DO 40 J = 1, M
 DO 30 I = 1, N
 ZR(I,J) = real(Z(I,J))
 ZI(I,J) = imag(Z(I,J))
 30 CONTINUE
40 CONTINUE

where Z is a complex*16 array of dimension (IZ,M).
F01AXF
Withdrawn at Mark 18
Replaced by F08BEF (DGEQPF) and F06EFF (DCOPY)

Old: CALL F01AXF(M,N,QR,IQR,ALPHA,IPIV,Y,E,IFAIL)
New: CALL sgeqpf(M,N,QR,IQR,IPIV,Y,WORK,INFO)
CALL scopy(N,QR,IQR+1,ALPHA,1)

where WORK is a double precision array of length at least (3 × N).

Note that the details of the Householder matrices returned by F08BEF (DGEQPF) are different from those returned by F01AXF, but they determine the same orthogonal matrix Q.

F01AYF
Withdrawn at Mark 18
Replaced by F08GEF (DSPTRD)

Old: CALL F01AYF(N,TOL,A,IA,D,E,E2)
New: CALL ssptrd('U',N,A,D,E(2),TAU,INFO)
E(1) = 0.0D0
DO 10 I = 1, N
 E2(I) = E(I)*E(I)
10 CONTINUE

where TAU is a double precision array of length at least (N – 1).

F01AZF
Withdrawn at Mark 18
Replaced by F08GGF (DOPMTR)
The following replacement is valid only if the previous call to F01AYF has been replaced by a call to F08GEF (DSPTRD) as shown above.

Old: CALL F01AZF(N,M1,M2,A,IA,Z,IZ)
New: CALL sopmtr('L','U','N',N,M2-M1+1,A,TAU,Z(1,M1),IZ,WORK,INFO)

where WORK is a double precision array of length at least (M2 – M1 + 1).

F01BCF
Withdrawn at Mark 18
Replaced by F08FSF (ZHETRD) and F08FTF (ZUNGTR)

Old: CALL F01BCF(N,TOL,AR,IAR,AI,IAI,D,E,WK1,WK2)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = cmplx(AR(I,J),AI(I,J))
 10 CONTINUE
20 CONTINUE
CALL chetrd('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
E(1) = 0.0D0
CALL cungtr('L',N,A,IA,TAU,WORK,LWORK,INFO)
DO 40 J = 1, N
 DO 30 I = 1, N
 AR(I,J) = real(A(I,J))
 AI(I,J) = imag(A(I,J))
 30 CONTINUE
40 CONTINUE

where A is a complex*16 array of dimension (IA,N), TAU is a complex*16 array of length at least (N – 1), WORK is a complex*16 array of length at least (N – 1), and LWORK is its actual length.

Note that the tridiagonal matrix T and the unitary matrix Q computed by F08FSF (ZHETRD) and F08FTF (ZUNGTR) are different from those computed by F01BCF, but they satisfy the same relation $Q^H A Q = T$.

[NP3657/21] REPLACED 27
F01BDF
Withdrawn at Mark 18
Replaced by F06EGF (DSWAP), F07FDF (DPOTRF) and F08SEF (DSYGST)

Old: CALL F01BDF(N,A,IA,B,IB,DL,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J, N
 A(I,J) = A(J,I)
 B(I,J) = B(J,I)
 10 CONTINUE
 DL(J) = B(J,J)
 20 CONTINUE
CALL spotrf('L',N,B,IB,INFO)
IF (INFO.EQ.0) THEN
 CALL sygst('L',N,A,IA,B,IB,INFO)
ELSE
 IFAIL = 1
END IF
CALL sswap(N,DL,1,B,IB+1)

IFAIL is set to 1 if the matrix B is not positive-definite. It is essential to test IFAIL.

F01BEF
Withdrawn at Mark 18
Replaced by F06YFF (DTRMM)

Old: CALL F01BEF(N,M1,M2,B,IB,DL,V,IV)
New: CALL sswap(N,DL,1,B,IB+1)
CALL strmm('L','L','N','N',N,M2-M1+1,1.0D0,B,IB,V(1,M1),IV)
CALL sswap(N,DL,1,B,IB+1)

F01BFF
Withdrawn at Mark 8
Replaced by F07GDF (DPPTRF) or F07PDF (DSPTRF)

F01BHF
Withdrawn at Mark 9
Replaced by F02WEF

F01BJF
Withdrawn at Mark 9
Replaced by F08HEF (DSBTRD)

F01BKF
Withdrawn at Mark 9
Replaced by F02WDF

F01BMF
Withdrawn at Mark 9
Replaced by F07BDF (DGBTRF)

F01BNF
Withdrawn at Mark 17
Replaced by F07FRF (ZPOTRF)

Old: CALL F01BNF(N,A,IA,P,IFAIL)
New: CALL cpotrf('Upper',N,A,IA,IFAIL)

where, before the call, array A contains the upper triangle of the matrix to be factorized rather than the lower triangle (note that the elements of the upper triangle are the complex conjugates of the elements of the lower triangle). The double precision array P is no longer required; the upper triangle of A is overwritten by the upper triangular factor U, including the diagonal elements (which are not reciprocated).
F01BPF
Withdrawn at Mark 17
Replaced by F07FRF (ZPOTRF) and F07FWF (ZPOTRI)

Old: CALL F01BPF(N,A,IA,V,IFAIL)
New: CALL cpotrf('Upper',N,A,IA,IFAIL)
CALL cpotri('Upper',N,A,IA,IFAIL)

where, before the calls, the upper triangle of the matrix to be inverted must be contained in rows 1 to N of A, rather than the lower triangle being in rows 2 to \(N+1 \) (note that the elements of the upper triangle are the complex conjugates of the elements of the lower triangle). The workspace vector \(V \) is no longer required.

F01BQF
Withdrawn at Mark 16
Replaced by F07GDF (DPPTRF) or F07PDF (DSPTRF)

The replacement routines do not have exactly the same functionality as F01BQF; if this functionality is genuinely required, please contact NAG.

(a) where the symmetric matrix is known to be positive-definite (if the matrix is in fact not positive-definite, the replacement routine will return a positive value in IFAIL)

Old: CALL F01BQF(N,EPS,RL,IRL,D,IFAIL)
New: CALL spptrf('Lower',N,RL,IFAIL)

(b) where the matrix is not positive-definite (the replacement routine forms an \(LDL^T \) factorization where \(D \) is block diagonal, rather than a Cholesky factorization)

Old: CALL F01BQF(N,EPS,RL,IRL,D,IFAIL)
New: CALL sspptrf('Lower',N,RL,IPIV,IFAIL)

For the replacement calls in both (a) and (b), the array RL must now hold the complete lower triangle of the symmetric matrix, including the diagonal elements, which are no longer required to be stored in the redundant array D. The declared dimension of RL must be increased from at least \(N(N-1)/2 \) to at least \(N(N+1)/2 \). It is important to note that for the calls of F07GDF (DPPTRF) and F07PDF (DSPTRF), the lower triangle of the matrix must be stored packed by column instead of by row. The dimension parameter IRL is no longer required. For the call of F07PDF (DSPTRF), the INTEGER array IPIV of length N must be supplied.

F01BTF
Withdrawn at Mark 18
Replaced by F07ADF (DGETRF)

Old: CALL F01BTF(N,A,IA,P,DP,IFAIL)
New: CALL sgetrf(N,N,A,IA,IPIV,IFAIL)

where IPIV is an INTEGER array of length N which holds the indices of the pivot elements, and the array P is no longer required. It may be important to note that after a call of F07ADF (DGETRF), A is overwritten by the upper triangular factor \(U \) and the off-diagonal elements of the unit lower triangular factor \(L \), whereas the factorization returned by F01BTF gives \(U \) the unit diagonal. The permutation determinant DP returned by F01BTF is not computed by F07ADF (DGETRF). If this value is required, it may be calculated after a call of F07ADF (DGETRF) by code similar to the following:

\[
\begin{align*}
DP &= 1.0D0 \\
& \text{DO } I = 1, N \\
& \quad \text{IF (I.NE.IPIV(I)) DP = -DP} \\
& \text{CONTINUE}
\end{align*}
\]

F01BWF
Withdrawn at Mark 18
Replaced by F08HEF (DSBTRD)

Old: CALL F01BWF(N,M1,A,IA,D,E)
New: CALL ssbtrd('N','U',N,M1-1,A,IA,D,E(2),Q,1,WORK,INFO)
E(1) = 0.0D0
where Q is a dummy double precision array of length (1) (not used in this call), and WORK is a double precision array of length at least (N).

Note that the tridiagonal matrix computed by F08HEF (DSBTRD) is different from that computed by F01BWF, but it has the same eigenvalues.

F01BXF
Withdrawn at Mark 17
Replaced by F07FDF (DPOTRF)

Old: CALL F01BXF(N,A,IA,P,IFAIL)
New: CALL spotrf(‘Upper’,N,A,IA,IFAIL)

where, before the call, array A contains the upper triangle of the matrix to be factorized rather than the lower triangle. The array P is no longer required; the upper triangle of A is overwritten by the upper triangular factor U, including the diagonal elements (which are not reciprocated).

F01CAF
Withdrawn at Mark 14
Replaced by F06QHF

Old: CALL F01CAF(A,M,N,IFAIL)
New: CALL F06QHF(‘General’,M,N,0.0D0,0.0D0,A,M)

F01CBF
Withdrawn at Mark 14
Replaced by F06QHF

Old: CALL F01CBF(A,M,N,IFAIL)
New: CALL F06QHF(‘General’,M,N,0.0D0,1.0D0,A,M)

F01CCF
Withdrawn at Mark 7
Replaced by F06QFF

F01CDF
Withdrawn at Mark 15
Replaced by F01CTF

Old: CALL F01CDF(A,B,C,M,N,IFAIL)
New: CALL F01CTF(‘N’,’N’,M,N,1.0D0,B,M,1.0D0,C,M,A,M,IFAIL)

F01CEF
Withdrawn at Mark 15
Replaced by F01CTF

Old: CALL F01CEF(A,B,C,M,N,IFAIL)
New: CALL F01CTF(‘N’,’N’,M,N,1.0D0,B,M,-1.0D0,C,M,A,M,IFAIL)

F01CFF
Withdrawn at Mark 14
Replaced by F06QFF

Old: CALL F01CFF(A,MA,NA,P,Q,B,MB,Na,M1,M2,N1,N2,IFAIL)
New: CALL F06QFF(‘General’,M2-M1+1,N2-N1+1,B(M1,N1),MB,A(P,Q),MA)

F01CGF
Withdrawn at Mark 15
Replaced by F01CTF

Old: CALL F01CGF(A,MA,NA,P,Q,B,MB,Na,M1,M2,N1,N2,IFAIL)
New: CALL F01CTF(‘N’,’N’,M2-M1+1,N2-N1+1,B(M1,N1),MB,A(P,Q),MA,IFAIL)
F01CHF
Withdrawn at Mark 15
Replaced by F01CTF

Old: CALL F01CHF(A,MA,NA,P,Q,B,MB,NB,M1,M2,N1,N2,IFAIL)
New: CALL F01CTF('N','N',M2-M1+1,N2-N1+1,1.0D0,A(P,Q),MA,-1.0D0,
+ B(M1,N1),MB,A(P,Q),MA,IFAIL)

F01CJF
Withdrawn at Mark 8
Replaced by F01CRF

F01CLF
Withdrawn at Mark 16
Replaced by F06YAF (DGEMM)

Old: CALL F01CLF(A,B,C,N,P,M,IFAIL)
New: CALL sgemm('N','T',N,P,M,1.0D0,B,N,C,P,0.0D0,A,N)

F01CMF
Withdrawn at Mark 14
Replaced by F06QFF

Old: CALL F01CMF(A,LA,B,LB,M,N)
New: CALL F06QFF('General',M,N,A,LA,B,LB)

F01CNF
Withdrawn at Mark 13
Replaced by F06EFF (DCOPY)

Old: CALL F01CNF(V,M,A,LA,I)
New: CALL scopy(M,V,1,A(I,1),LA)

F01CPF
Withdrawn at Mark 13
Replaced by F06EFF (DCOPY)

Old: CALL F01CPF(A,B,N)
New: CALL scopy(N,A,1,B,1)

F01CQF
Withdrawn at Mark 13
Replaced by F06FBF

Old: CALL F01CQF(A,N)
New: CALL F06FBF(N,0.0D0,A,1)

F01CSF
Withdrawn at Mark 13
Replaced by F06PEF (DSPMV)

Old: CALL F01CSF(A,LA,B,N,C)
New: CALL sspmv('U',N,1.0D0,A,B,1,0.0D0,C,1)

F01DAF
Withdrawn at Mark 13
Replaced by F06EAF (DDOT)

Old: F01DAF(L,M,C1,IRA,ICB,A,IA,B,IB,N)
New: C1 + sdot(M-L+1,A(IRA,L)IA,B(L,ICB),1)
Replacement Calls

F01DBF
Withdrawn at Mark 13
Replaced by X03AAF

Old: \[D = F01DBF(L,M,C1,IRA,ICB,A,IA,B,IB,N) \]
New: \[\text{CALL X03AAF}(A(IRA,L),(M-L)*IA+1,B(L,ICB),M-L+1,IA,1,C1,0.0D0,D,} \]
\[\text{+ D2,.TRUE.,IFAIL)} \]

(here D2 is a new \textit{double precision} variable whose value is not used).

F01DCF
Withdrawn at Mark 13
Replaced by F06GAF (ZDOTU)

Old: \[\text{CALL F01DCF}(L,M,CX,IRA,ICB,A,IA,B,IB,N,CR,CI) \]
New: \[DX = CX - \cdot u(M-L+1,A(IRA,L),IA,B(L,ICB),1) \]
\[CR = \text{real}(DX) \]
\[CI = \text{imag}(DX) \]

(here DX is a new \textit{complex} variable).

F01DDF
Withdrawn at Mark 13
Replaced by X03ABF

Old: \[\text{CALL F01DDF}(L,M,CX,IRA,ICB,A,IA,B,IB,N,CR,CI) \]
New: \[\text{CALL X03ABF}(A(IRA,L),(M-L)*IA+1,B(L,ICB),M-L+1,IA,1,-CX,DX,} \]
\[\text{+ .TRUE.,IFAIL)} \]
\[CR = -\text{real}(DX) \]
\[CI = -\text{imag}(DX) \]

(here DX is a new \textit{complex} variable).

F01DEF
Withdrawn at Mark 14
Replaced by F06EAF (DDOT)

Old: \[F01DEF(A,B,N) \]
New: \[\text{sdot}(N,A,1,B,1) \]

F01LBF
Withdrawn at Mark 18
Replaced by F07BDF (DGBTRF)

Old: \[\text{CALL F01LBF}(N,M1,M2,A,IA,AL,IL,IN,IV,IFAIL) \]
New: \[\text{sgbtrf}(N,N,M1,M2,A,IN,IFAIL) \]
where the size of array A must now have a leading dimension IA of at least \(2 \times M1 + M2 + 1 \). The array
AL, its associated dimension parameter IL, and the parameter IV are not required for F07BDF (DGBTRF)
because this routine overwrites A by both the \(L \) and \(U \) factors. The scheme by which the matrix is packed
into the array is completely different from that used by F01LBF; the relevant routine document should be
consulted for details.

F01LZF
Withdrawn at Mark 15
Replaced by F08KEF (DGEBRD), F08KFF (DORGBR) or F08KGF (DORMBR)

Old: \[\text{CALL F01LZF}(N,A,NRA,C,NRC,WANTB,B,WANTQ,WANTY,Y,NRY,LY,WANTZ,Z,} \]
\[+ NRZ,NCZ,D,E,WORK1,WORK2,IFAIL) \]
New: \[\text{sgsbrd}(N,N,A,NRA,D,E(2),TAUQ,TAUP,WORK1,WORK2,INFO) \]
\[\text{IF (WANTB) THEN} \]
\[\text{CALL sormbr}(‘Q’,’L’,’T’,N,1,NA,NRA,TAUQ,B,N,WORK1,WORK2,INFO) \]
\[\text{ELSE IF (WANTQ) THEN} \]
\[\text{CALL sorgeq}(‘Q’,N,N,N,A,NRA,TAUQ,WORK,WORK,INFO) \]
\[\text{ELSE IF (WANTY) THEN} \]
\[\text{CALL sormbr}(‘Q’,’R’,’N’,LY,N,N,A,NRA,TAUQ,Y,NRY,WORK1,WORK2,} \]
\[+ \text{INFO}) \]
ELSE IF (WANT2) THEN
 CALL sormbr(‘P’,’L’,’T’,N,NC2,N,A,NRA,TAUP,Z,NRZ,WORK1,LWORK,
 + INFO)
END IF

where TAUQ and TAUP are real arrays of length at least (N) and LWORK is the actual length of WORK1. The parameter WORK2 is no longer required.

F01MAF
Withdrawn at Mark 19
Replaced by F11JAF

Existing programs should be modified to call F11JAF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F01NAF
Withdrawn at Mark 17
Replaced by F07BRF (ZGBTRF)

Old: CALL F01NAF(N,ML,MU,A,NRA,TOL,IN,SCALE,IFAIL)
New: CALL cgbtrf(N,N,ML,MU,A,NRA,IN,IFAIL)

where the parameter TOL and array SCALE are no longer required. The input matrix must be stored using the same scheme as for F01NAF, except in rows ML + 1 to 2 × ML + MU + 1 of A instead of rows 1 to ML + MU + 1. In F07BRF (ZGBTRF), the value returned in IN(N) has no significance as an indicator of near-singularity of the matrix.

F01QAF
Withdrawn at Mark 15
Replaced by F08AEF (DGEQRF)

Old: CALL F01QAF(M,N,A,NRA,C,NRC,Z,IFAIL)
New: CALL sgeqrf(M,N,A,NRA,Z,WORK,LWORK,INFO)

where WORK is a real array of length at least (LWORK). The parameters C and NRC are no longer required.

Note that the representation of the matrix Q is not identical, but subsequent calls to routines F08AFF (DORGQQR) and F08AGF (DORMQR) may be used to obtain Q explicitly and to transform by Q or \(Q^T \) respectively.

F01QBF
Withdrawn at Mark 15
Replaced by F01QJF

Old: CALL F01QBF(M,N,A,NRA,C,NRC,WORK,IFAIL)
New: CALL F06QFF('General',M,N,A,NRA,C,NRC)
 CALL F01QJF(M,N,C,NRC,WORK,IFAIL)

The call to F06QFF simply copies the leading M by N part of A to C. This may be omitted if it is desired to use the same arrays for A and C. Note that the representation of the orthogonal matrix Q is not identical, but following F01QJF routine F01QKF may be used to form Q.

F01QCF
Withdrawn at Mark 18
Replaced by F08AEF (DGEQRF)

Old: CALL F01QCF(M,N,A,LDA,ZETA,IFAIL)
New: CALL sgeqrf(M,N,A,LDA,ZETA,WORK,LWORK,INFO)

where WORK is a **double precision** array of length at least (N), and LWORK is its actual length.

[NP3657/21] REPLC33
Replacement Calls

The subdiagonal elements of A and the elements of ZETA returned by F08AEF (DGEQRF) are not the same as those returned by F01QCF. Subsequent calls to F01QDF or F01QEF must also be replaced by calls to F08AGF (DORMQR) or F08AFF (DORGQR) as shown below.

F01QDF
With withdrawn at Mark 18
Replaced by F08AGF (DORMQR)
The following replacement is valid only if the previous call to F01QCF has been replaced by a call to F08AEF (DGEQRF) as shown above. It also assumes that the second argument of F01QDF (WHERE T) is 'S', which is appropriate if the contents of A and ZETA have not been changed after the call of F01QCF.

Old: CALL F01QDF('S',M,N,A,LDA,ZETA,NCOLB,B,LDB,WORK,IFAIL)
New: CALL sormqr('L',TRANS,M,NCOLB,N,A,LDA,ZETA,B,LDB,WORK,LWORK,INFO)

where LWORK is the actual length of WORK.

F01QEF
With withdrawn at Mark 18
Replaced by F08AFF (DORGQR)
The following replacement is valid only if the previous call to F01QCF has been replaced by a call to F08AEF (DGEQRF) as shown above. It also assumes that the first argument of F01QEF (WHERE T) is 'S', which is appropriate if the contents of A and ZETA have not been changed after the call of F01QCF.

Old: CALL F01QEF('S',M,N,NCOLQ,A,LDA,ZETA,WORK,IFAIL)
New: CALL sorgqr(M,NCOLQ,N,A,LDA,ZETA,WORK,LWORK,INFO)

where LWORK is the actual length of WORK.

F01QFF
With withdrawn at Mark 18
Replaced by F08BEF (DGEQPF)
The following replacement assumes that the 1st argument of F01QFF (PIVOT) is 'C'. There is no direct replacement if PIVOT = 'S'.

Old: CALL F01QFF('C',M,N,A,LDA,ZETA,PERM,WORK,IFAIL)
New: DO 10 I = 1, N
 PERM(I) = 0
10 CONTINUE
 CALL sgeqpf(M,N,A,LDA,PERM,ZETA,WORK,INFO)

where WORK is a double precision array of length at least $(3 \times N)$ (F01QFF only requires WORK to be of length $(2 \times N)$).

The subdiagonal elements of A and the elements of ZETA returned by F08BEF (DGEQPF) are not the same as those returned by F01QFF. Subsequent calls to F01QDF or F01QEF must also be replaced by calls to F08AGF (DORMQR) or F08AFF (DORGQR) as shown above. Note also that the array PERM returned by F08BEF (DGEQPF) holds details of the interchanges in a different form than that returned by F01QFF.

F01RCF
With withdrawn at Mark 18
Replaced by F08ASF (ZGEQRF)

Old: CALL F01RCF(M,N,A,LDA,THETA,IFAIL)
New: CALL cgeqrf(M,N,A,LDA,THETA,WORK,LWORK,INFO)

where WORK is a complex*16 array of length at least (N), and LWORK is its actual length.

The subdiagonal elements of A and the elements of THETA returned by F08ASF (ZGEQRF) are not the same as those returned by F01RCF. Subsequent calls to F01RDF or F01REF must also be replaced by calls to F08AUF (ZUNMQR) or F08ATF (ZUNGQR) as shown below.
F01RDF
Withdrawn at Mark 18
Replaced by F08AUF (ZUNMQR)

The following replacement is valid only if the previous call to F01RCF has been replaced by a call to F08ASF (ZGEQRF) as shown above. It also assumes that the second argument of F01RDF (WHERET) is 'S', which is appropriate if the contents of A and THETA have not been changed after the call of F01RCF.

Old: CALL F01RDF(TRANS,'S',M,N,A,LDA,THETA,NCOLB,B,LDB,WORK,IFAIL)
New: CALL cunmqr('L',TRANS,M,NCOLB,N,A,LDA,THETA,B,LDB,WORK,LWORK,+
INFO)

where LWORK is the actual length of WORK.

F01REF
Withdrawn at Mark 18
Replaced by F08ATF (ZUNGQR)

The following replacement is valid only if the previous call to F01RCF has been replaced by a call to F08ASF (ZGEQRF) as shown above. It also assumes that the first argument of F01REF (WHERET) is 'S', which is appropriate if the contents of A and THETA have not been changed after the call of F01RCF.

Old: CALL F01REF('S',M,N,NCOLQ,A,LDA,THETA,WORK,IFAIL)
New: CALL cungqr(M,NCOLQ,N,A,LDA,THETA,WORK,LWORK,INFO)

where LWORK is the actual length of WORK.

F01RFF
Withdrawn at Mark 18
Replaced by F08BSF (ZGEQPF)

The following replacement assumes that the first argument of F01RFF (PIVOT) is 'C'. There is no direct replacement if PIVOT = 'S'.

Old: CALL F01RFF('C',M,N,A,LDA,THETA,PERM,WORK,IFAIL)
New: DO 10 I = 1, N
 PERM(I) = 0
 10 CONTINUE
 CALL cgeqpf(M,N,A,LDA,PERM,THETA,CWORK,WORK,INFO)

where CWORK is a complex*16 array of length at least (N).

The subdiagonal elements of A and the elements of THETA returned by F08BSF (ZGEQPF) are not the same as those returned by F01RFF. Subsequent calls to F01RDF or F01REF must also be replaced by calls to F08AUF (ZUNMQR) or F08ATF (ZUNGQR) as shown above. Note also that the array PERM returned by F08BSF (ZGEQPF) holds details of the interchanges in a different form than that returned by F01RFF.

F02 – Eigenvalues and Eigenvectors

F02AAF
Withdrawn at Mark 18
Replaced by F02FAF

Old: CALL F02AAF(A,IA,N,R,E,IFAIL)
New: CALL F02FAF('N','L',N,A,IA,R,WORK,LWORK,IFAIL)

where WORK is a double precision array of length at least (3 × N) and LWORK is its actual length.

F02ABF
Withdrawn at Mark 18
Replaced by F02FAF

Old: CALL F02ABF(A,IA,N,R,V,IV,E,IFAIL)
New: CALL F02FAF('V','L',N,A,IA,R,WORK,LWORK,IFAIL)
where WORK is a `double precision` array of length at least $(3 \times N)$ and LWORK is its actual length. If F02ABF was called with the same array supplied for V and A, then the call to F06QFF may be omitted.

F02ADF
Withdrawn at Mark 18
Replaced by F02FDF

Old: CALL F02ADF(A,IA,B,IB,N,R,DE,IFAIL)
New: CALL F02FDF(1,'N','U',N,A,IB,B,IB,R,WORK,LWORK,IFAIL)

where WORK is a `double precision` array of length at least $(3 \times N)$ and LWORK is its actual length.

Note that the call to F02FDF will overwrite the upper triangles of the arrays A and B and leave the subdiagonal elements unchanged, whereas the call to F02ADF overwrites the lower triangle and leaves the elements above the diagonal unchanged.

F02AEF
Withdrawn at Mark 18
Replaced by F02FDF

Old: CALL F02AEF(A,IA,B,IB,N,R,V,IV,DL,E,IFAIL)
New: CALL F06QFF('U',N,N,A,IA,V,IV)
CALL F02FDF(1,'V','U',N,V,IV,B,IB,R,WORK,LWORK,IFAIL)

where WORK is a `double precision` array of length at least $(3 \times N)$ and LWORK is its actual length.

Note that the call to F02FDF will overwrite the upper triangle of the array B and leave the subdiagonal elements unchanged, whereas the call to F02ADF overwrites the lower triangle and leaves the elements above the diagonal unchanged. The call to F06QFF copies A to V, so A is left unchanged. If F02AEF was called with the same array supplied for V and A, then the call to F06QFF may be omitted.

F02AFF
Withdrawn at Mark 18
Replaced by F02EBF

Old: CALL F02AFF(A,IA,N,RR,RI,INTGER,IFAIL)
New: CALL F02EBF('N',N,A,IA,RR,RI,VR,1,VI,1,WORK,LWORK,IFAIL)

where VR and VI are dummy arrays of length (1) (not used in this call). WORK is a `double precision` array of length at least $(4 \times N)$ and LWORK is its actual length; the iteration counts (returned by F02AFF in the array INTGER) are not available from F02EBF.

F02AGF
Withdrawn at Mark 18
Replaced by F02EBF

Old: CALL F02AGF(A,IA,N,RR,RI,VR,IVR,VI,IVI,INTGER,IFAIL)
New: CALL F02EBF('V',N,A,IA,RR,RI,VR,IVR,VI,IVI,WORK,LWORK,IFAIL)

where WORK is a `double precision` array of length at least $(4 \times N)$ and LWORK is its actual length; the iteration counts (returned by F02AGF in the array INTGER) are not available from F02EBF.

F02AHF
Withdrawn at Mark 8
Replaced by F02ECF

F02AJF
Withdrawn at Mark 18
Replaced by F02GBF

Old: CALL F02AJF(AR,IAR,AI,IAI,N,RR,RI,INTGER,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = cmplx(AR(I,J),AI(I,J))
 10 CONTINUE
where \(A \) is a complex array of dimension \((IA,N)\), \(R \) is a complex array of dimension \((N)\), \(V \) is a dummy complex array of length \((1)\) (not used in this call), \(RWORK \) is a double precision array of length at least \((2\times N)\), \(WORK \) is a complex array of length at least \((2\times N)\) and \(LWORK \) is its actual length.

F02AKF

Withdrawn at Mark 18
Replaced by F02GBF

\[
\begin{align*}
\text{Old: } & \text{CALL F02AKF('AR', 'IA', 'AI', 'IA', 'N', 'RR', 'RI', 'VR', 'IVR', 'VI', 'IVI', 'INTEGER', 'IFAIL)} \\
\text{New: } & \text{DO 20 J = 1, N} \\
& \text{DO 10 I = 1, N} \\
& \text{A(I, J) = cmplx(AR(I, J), AI(I, J))} \\
& \text{10 CONTINUE} \\
& \text{20 CONTINUE} \\
& \text{CALL F02GBF('V', 'N', 'A', 'IA', 'R', 'V', 'IV', 'RWORK', 'WORK', 'LWORK', 'IFAIL)} \\
& \text{DO 40 J = 1, N} \\
& \text{RR(J) = real(R(J))} \\
& \text{RI(J) = imag(R(J))} \\
& \text{DO 30 I = 1, N} \\
& \text{VR(I, J) = real(V(I, J))} \\
& \text{VI(I, J) = imag(V(I, J))} \\
& \text{30 CONTINUE} \\
& \text{40 CONTINUE}
\end{align*}
\]

where \(A \) is a complex array of dimension \((IA,N)\), \(R \) is a complex array of length \((N)\), \(V \) is a complex array of dimension \((IV, N)\), \(RWORK \) is a double precision array of length at least \((2\times N)\), \(WORK \) is a complex array of length at least \((2\times N)\) and \(LWORK \) is its actual length.

F02AMF

Withdrawn at Mark 18
Replaced by F08JEF (DSTEQR)

\[
\begin{align*}
\text{Old: } & \text{CALL F08JEF('V', 'N', 'D', 'E', 'V', 'IV', 'INFO')} \\
\text{New: } & \text{CALL ssteqr('V', 'N', 'D', 'E', 'V', 'IV', 'WORK', 'INFO)}
\end{align*}
\]

where \(WORK \) is a double precision array of length at least \((2(N - 1))\).

F02ANF

Withdrawn at Mark 18
Replaced by F08PSF (ZHSEQR)

\[
\begin{align*}
\text{Old: } & \text{CALL F08PSF('E', 'N', 'HR', 'IHR', 'HI', 'IHI', 'RR', 'RI', 'INFO')} \\
\text{New: } & \text{DO 20 J = 1, N} \\
& \text{DO 10 I = 1, N} \\
& \text{H(I, J) = cmplx(HR(I, J), HI(I, J))} \\
& \text{10 CONTINUE} \\
& \text{20 CONTINUE} \\
& \text{CALL chseqr('E', 'N', 'N', 'N', 'HR', 'IHR', 'HI', 'IHI', 'R', 'Z', 'WORK', 'L', 'INFO')} \\
& \text{DO 30 I = 1, N} \\
& \text{RR(I) = real(R(I))} \\
& \text{RI(I) = imag(R(I))} \\
& \text{30 CONTINUE}
\end{align*}
\]
where H is a complex*16 array of dimension (IH,N), R is a complex*16 array of length (N), Z is a dummy complex*16 array of length (1) (not used in this call), and WORK is a complex*16 array of length at least (N).

F02APF
Withdrawn at Mark 18
Replaced by F08PEF (DHSEQR)

Old: CALL F02APF(N, EPS, H, IH, RR, RI, ICNT, IFAIL)
New: CALL shseqr(’E’, ’N’, N, 1, N, IH, RR, RI, Z, 1, WORK, 1, INFO)

where Z is a dummy double precision array of length (1) (not used in this call), and WORK is a double precision array of length at least (3 x N); the iteration counts (returned by F02APF in the array ICNT) are not available from F08PEF (DHSEQR).

F02AQF
Withdrawn at Mark 18
Replaced by F08PEF (DHSEQR) and F08QKF (DTREVC)

Old: CALL F02AQF(N, K, L, EPS, H, IH, V, IV, RR, RI, INTGER, IFAIL)
CALL strevc(’R’, ’O’, SELECT, N, H, IH, V, IV, N, M, WORK, INFO)

where SELECT is a dummy logical array of length (1) (not used in this call), and WORK is a double precision array of length at least (3 x N); the iteration counts (returned by F02AQF in the array INTGER) are not available from F08PEF (DHSEQR); M is an integer which is set to N by F08QKF (DTREVC).

F02ARF
Withdrawn at Mark 18
Replaced by F08PSF (ZHSEQR) and F08QXF (ZTREVC)

Old: CALL F02ARF(N, K, L, EPS, INTGER, HR, IHR, HI, IHI, RR, RI, VR, IVR, VI, IVI, IFAIL)
New: DO 20 J = 1, N
DO 10 I = 1, N
H(I,J) = cmplx(HR(I,J),HI(I,J))
10 CONTINUE
20 CONTINUE
CALL ctrevc(’R’, ’O’, SELECT, N, H, IH, V, IV, N, M, WORK, INFO)
DO 40 J = 1, N
RR(J) = real(R(J))
RI(J) = imag(R(J))
DO 30 I = 1, N
VR(I,J) = real(V(I,J))
VI(I,J) = imag(V(I,J))
30 CONTINUE
40 CONTINUE

where H is a complex*16 array of dimension (IH,N), R is a complex*16 array of length (N), V is a complex*16 array of dimension (IV,N), WORK is a complex*16 array of length at least (2 x N) and RWORK is a double precision array of length at least (N); M is an integer which is set to N by F08QXF (ZTREVC).

If F02ARF was preceded by a call to F01AMF to reduce a full complex matrix to Hessenberg form, then the call to F01AMF must also be replaced by calls to F08NSF (ZGEHRD) and F08NTF (ZUNGHR).

F02ATF
Withdrawn at Mark 8
Replaced by F08PKF (DHSEIN)

F02AUF
Withdrawn at Mark 8
Replaced by F08PXF (ZHSEIN)
F02AVF
Withdrawn at Mark 18
Replaced by F08JFF (DSTERF)

Old: CALL F02AVF(N,EPS,D,E,IFAIL)
New: CALL ssterf(N,D,E(2),INFO)

F02AWF
Withdrawn at Mark 18
Replaced by F02HAF

Old: CALL F02AWF(AR,IAR,AR,AI,IAI,N,R,WK1,WK2,WK3,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = cmplx(AR(I,J),AI(I,J))
 10 CONTINUE
 20 CONTINUE
 CALL F02HAF('N','L',N,A,IA,R,RWORK,WORK,LWORK,IFAIL)

where A is a complex*16 array of dimension (IA,N), RWORK is a double precision array of length at least (3 × N), WORK is a complex*16 array of length at least (2 × N) and LWORK is its actual length.

F02AXF
Withdrawn at Mark 18
Replaced by F02HAF

Old: CALL F02AXF(AR,IAR,AI,IAI,N,R,VR,IVR,VI,IVI,WK1,WK2,WK3,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = cmplx(AR(I,J),AI(I,J))
 10 CONTINUE
 20 CONTINUE
 CALL F06TFF('L',N,N,A,IA,V,IV)
 CALL F02HAF('V','L',N,V,IV,R,RWORK,WORK,LWORK,IFAIL)
 DO 40 J = 1, N
 DO 30 I = 1, N
 VR(I,J) = real(V(I,J))
 VI(I,J) = imag(V(I,J))
 30 CONTINUE
 40 CONTINUE

where A is a complex*16 array of dimension (IA,N), V is a complex*16 array of dimension (IV,N), RWORK is a double precision array of length at least (3 × N), WORK is a complex*16 array of length at least (2 × N) and LWORK is its actual length. If F02AXF was called with the same arrays supplied for VR and AR and for VI and AI, then the call to F06TFF may be omitted.

F02AYF
Withdrawn at Mark 18
Replaced by F08JSF (ZSTEQR)

Old: CALL F02AYF(N,EPS,D,E,VR,IV,VI,IVI,IFAIL)
New: CALL csteqr('V',N,D,E(2),V,IV,WK1,WK2,WK3,IFAIL)

where V is a complex*16 array of dimension (IV,N), and WORK is a real array of length at least (2(N − 1)).
F02BBF
Withdrawn at Mark 19
Replaced by F02FCF

Old: CALL F02BBF(A,IA,N,ALB,UB,M,MM,R,V,IV,D,E,E2,X,G,C,
+ ICOUNT,IFAIL)

New: CALL F02FCF('Vectors','Value','Lower',N,A,IA,ALB,UB,0,0,
+ M,MM,R,V,IV,WORK,LWORK,IWORK,IFAIL)

where R must have dimension (N), WORK is a real array of length at least \((8 \times N)\), LWORK is its actual length, and IWORK is an integer array of length at least \((5 \times N)\). Note that in the call to F02BBF R needs only to be of dimension \((M)\).

F02BCF
Withdrawn at Mark 19
Replaced by F02ECF

Old: CALL F02BCF(A,IA,N,ALB,UB,M,MM,RR,RI,VR,IVR,VI,IVI,
+ INTEGER,ICNT,C,B,IB,U,V,IFAIL)

New: CALL F02ECF('Moduli',N,A,IA,ALB,UB,M,MM,RR,RI,VR,IVR,
+ VI,IVI,WORK,LWORK,ICNT,C,IFAIL)

where WORK is a real array of length at least \((N*(N+4))\) and LWORK is its actual length.

F02BDF
Withdrawn at Mark 19
Replaced by F02GCF

Old: CALL F02BDF(AR,IAR,AI,IAI,N,ALB,UB,M,MM,RR,RI,VR,IVR,
+ VI,IVI,INTEGER,C,BR,IBR,BI,IBI,U,V,IFAIL)

New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = cmplx(AR(I,J),AI(I,J))
 10 CONTINUE
 20 CONTINUE

 CALL F02GCF('Moduli',N,A,IA,ALB,UB,M,MM,R,V,IV,WORK,
+ LWORK,RWORK,INTEGER,C,IFAIL)

 DO 30 I = 1, N
 RR(I) = real(R(I))
 RI(I) = imag(R(I))
 30 CONTINUE

 DO 50 J = 1, MM
 DO 40 I = 1, N
 VR(I,J) = real(V(I,J))
 VI(I,J) = imag(V(I,J))
 40 CONTINUE
 50 CONTINUE

where A is a complex*16 array of dimension \((IA,N)\), R is a complex*16 array of dimension \((N)\), V is a complex*16 array of dimension \((IV,M)\), WORK is a complex*16 array of length at least \((N \times (N + 2))\), LWORK is its actual length, and RWORK is a real array of length at least \((2 \times N)\).

F02BEF
Withdrawn at Mark 18
Replaced by F08JJF (DSTEBZ) and F08JKF (DSTEIN)

Old: CALL F02BEF(N,D,ALB,UB,EPS,EPS1,E,E2,M,MM,R,V,IV,ICOUNT,X,C,
+ IFAIL)

New: CALL sstebz('V','B',N,ALB,UB,0,0,EPS1,D,E(2),MM,NSPLIT,R,IBLOCK,
+ ISPLIT,X,IWORK,INFO)
 CALL sstein(N,D,E(2),MM,R,IBLOCK,ISPLIT,V,IV,X,IWORK,IFAILV,INFO)

where NSPLIT is an integer variable, IBLOCK, ISPLIT and IFAILV are integer arrays of length at least \((N)\), and IWORK is an integer array of length at least \((3 \times N)\).
F02BFF
Withdrawn at Mark 18
Replaced by F08JFF (DSTEBZ)

Old: CALL F02BFF(D,E,E2,N,M1,M2,MM12,EPS1,EPS,EPS2,I2,R,WU)
New: CALL sstebz('I','E',N,0.0D0,0.0D0,M1,M2,EPS1,D,E(2),M,
+ NSPLIT,R,IBLOCK,ISPLIT,WORK,IWORK,INFO)

where M and NSPLIT are integer variables, IBLOCK and ISPLIT are integer arrays of length at least (N), WORK is a double precision array of length at least (4 x N), and IWORK is an integer array of length at least (3 x N).

F02BJF
Scheduled for withdrawal at Mark 23
Replaced by F08WAF (DGGEV)

Old: CALL F02BJF(N,A,IA,B,IB,EPS1,ALFR,ALFI,BETA,MATV,V,IV,ITER,IFAIL)
New: IF (MATV) THEN
 JOBVR = 'V'
ELSE
 JOBVR = 'N'
ENDIF
CALL F08WAF('N',JOBVR,N,A,IA,B,IB,EPS1,ALFR,ALFI,BETA,VL,LDVL,
+ VR,LDVL,WORK,LWORK,INFO)
IF (INFO.NE.0) THEN
...

F02BKF
Withdrawn at Mark 18
Replaced by F08PKF (DHSEIN)

New: DO 20 J = 1, N
 R(J) = cmplx(RR(J),RI(J))
 DO 10 I = 1, N
 H(I,J) = cmplx(HR(I,J),HI(I,J))
 10 CONTINUE
 20 CONTINUE
CALL chsein('R','Q','N',C,N,H,IH,R,VR,IV,VI,IV,BR,IBI,UI,UII,WORK,
+ RWORK,IFAILR,INFO)
DO 30 I = 1, N
 RR(I) = real(R(I))
30 CONTINUE
DO 50 J = 1, M
 DO 40 I = 1, N
 VR(I,J) = real(V(I,J))
 VI(I,J) = imag(V(I,J))
 40 CONTINUE
50 CONTINUE

where H is a complex*16 array of dimension (IH,N), R is a complex*16 array of length (N), V is a complex*16, array of dimension (IV,M), M2 is an integer variable, WORK is a complex*16 array of length at least (N x N), RWORK is a double precision array of length at least (N), and IFAILR is an integer array of length at least (N).
Replacement Calls

F02BMF
Withdrawn at Mark 9
Replaced by F08HEF (DSBTRD) and F08JJF (DSTEBZ)

F02EAF
Scheduled for withdrawal at Mark 23
Replaced by F08PAF (DGEES)

Old: CALL F02EAF(JOB,N,A,LDA,WR,VI,Z,LDZ,WORK,LWORK,IFAIL)
New: LOGICAL SELECT
EXTERNAL SELECT
...
IF (JOB.EQ.‘N’) THEN
JOBVS = ‘N’
ELSE
JOBVS = ‘V’
END IF
CALL F08PAF(JOBVS,’N’,SELECT,N,A,LDA,0,WR,VI,Z,LDZ,WORK,
+ LWORK,BWORK,INFO)
IF (INFO.NE.0) THEN
....

LOGICAL FUNCTION SELECT(AR,AI)
DOUBLE PRECISION AR, AI
SELECT = .TRUE.
RETURN
ENDK

F02EBF
Scheduled for withdrawal at Mark 23
Replaced by F08NAF (DGEEV)

Old: CALL F02EBF(JOB,N,A,LDA,WR,VI,VR,LDVR,VI,LDVI,WORK,LWORK,
+ IFAIL)
New: IF (JOB.EQ.‘N’) THEN
JOBVR = ‘N’
ELSE
JOBVR = ‘V’
END IF
CALL F08NAF(‘N’,JOBVR,N,A,LDA,WR,VI,VL,LDVL,VR1,LDVR1,
+ WORK,LWORK,INFO)
IF (INFO.EQ.0) THEN
C Eigenvector information is stored differently in VR1
C VR(j)=VR1(j) if W(j) = 0.0
C VR(j)=VR1(j) and VI(j)=VR1(j+1) and
C VR(j+1)=VR1(j) and VI(j+1) = - VR1(j+1) if w(j)/= (not equals) 0 and
C W(j) = -w(j+1)
....

F02FAF
Scheduled for withdrawal at Mark 23
Replaced by F08FAF (DSYEV)

Old: CALL F02FAF(JOB,UPLO,N,A,LDA,W,WORK,LWORK,IFAIL)
New: CALL F08FAF(JOB,UPLO,N,A,LDA,W,WORK,LWORK,INFO)
IF (INFO.NE.0) THEN
....
C the workspace requirements are slightly different.

F02FCF
Scheduled for withdrawal at Mark 23
Replaced by F08FBF (DSYEVX)

Old: CALL F02FCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,MEST,M,
+ W,Z,LDZ,WORK,LWORK,IWORK,IFAIL)
New: CALL F08FCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,ABSTOL,M,
F02FDF
Scheduled for withdrawal at Mark 23
Replaced by F08SAF (DSYGV)

Old: CALL F02FDF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,IFAIL)
New: CALL F08SAF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,INFO)

F02FHF
Scheduled for withdrawal at Mark 23
Replaced by F08UAF (DSBGV)

Old: CALL F02FHF(N,MA,A,NRA,MB,B,NRB,D,WORK,LWORK,IFAIL)
New: CALL F08UAF('N','U',N,MA,MB,A,NRA,B,NRB,D,Z,LDZ,WORK,INFO)

F02GAF
Scheduled for withdrawal at Mark 23
Replaced by F08PNF (ZGEES)

Old: CALL F02GAF(JOB,N,A,LDA,W,Z,LDZ,RWORK,WORK,LWORK,IFAIL)
New: LOGICAL SELECT
EXTERNAL SELECT

... IF (JOB.EQ.'N') THEN
JOBVS = 'N'
ELSE
JOBVS = 'V'
END IF
CALL F08UAF(JOBVS,'N',SELECT,N,A,LDA,0,W,Z,LDZ,
+ WORK,LWORK,BWORK,INFO)

F02GBF
Scheduled for withdrawal at Mark 23
Replaced by F08NNF (ZGEEV)

Old: CALL F02GBF(JOB,N,A,LDA,W,V,LDV,RWORK,WORK,LWORK,IFAIL)
New: CALL F08NNF('N',JOB,N,A,LDA,W,VL,LDVL,V,LDV,
+ WORK,LWORK,RWORK,INFO)

F02GJF
Scheduled for withdrawal at Mark 23
Replaced by F08WNF (ZGGEV)

Old: CALL F02GJF(N,AR,IAR,AR,IAI,IBR,BI,EPS1,ALFR,ALFI,
+ BETA,MATV,VR,IVR,VI,IVI,ITER,IFAIL)
New: IF (MATV) THEN
 JOBVR = 'V'
ELSE
 JOBVR = 'N'
END IF

C Set A=AR + iAR and B = BR+iBR
C
CALL F08WNF('N',JOBVR,N,A,LDA,B,LDB,ALPHA,BETA1,VL,LDVL,+
 V,LDV,WORK,LWORK,RWORK,INFO)
C Note results returned in COMPLEX16 types, unlike F02GJF.
IF (INFO.NE.0) THEN
 ...

F02HAF
Scheduled for withdrawal at Mark 23
Replaced by F08FNF (ZHEEV)

Old: CALL F02HAF(JOB,UPLO,N,A,LDA,W,RWORK,WORK,LWORK,IFAIL)
New: CALL F08FNF(JOB,UPLO,N,A,LDA,W,WORK,LWORK,RWORK,INFO)
C Note slightly different workspace requirements.
IF (INFO.NE.0) THEN
 ...

F02HCF
Scheduled for withdrawal at Mark 23
Replaced by F08FPF (ZHEEVX)

Old: CALL F02HCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,MEST,M,+
 W,Z,LDZ,WORK,LWORK,RWORK,IWORK,IFAIL)
New: CALL F08FPF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,ABSTOL,M,+
 W,Z,LDZ,WORK,LWORK,RWORK,IWORK,INFO)
C Note slightly different workspace requirements.
IF (INFO.NE.0) THEN
 ...

F02HDF
Scheduled for withdrawal at Mark 23
Replaced by F08SNF (ZHEGV)

Old: CALL F02HDF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,RWORK,WORK,+
 LWORK,IFAIL)
New: CALL F08SNF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,RWORK,INFO)
C Note slightly different workspace requirements.
IF (INFO.NE.0) THEN
 ...

F02SWF
Withdrawn at Mark 18
Replaced by F08KEF (DGEBRD)
The following replacement ignores the triangular structure of A, and therefore references the subdiagonal elements of A; however on many machines the replacement code will be more efficient.

Old: CALL F02SWF(N,A,LDA,D,E,NCOLY,Y,LDY,WANTQ,Q,LDQ,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J+1, N
 A(I,J) = 0.0D0
 10 CONTINUE
 20 CONTINUE
CALL sgebrd(N,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO)
IF (WANTQ) THEN
 CALL F06QFF('L',N,N,A,LDA,Q,LDQ)
 CALL sorgbr('Q',N,N,N,Q,LDQ,TAUQ,WORK,LWORK,INFO)
END IF
IF (NCOLY.GT.0) THEN
 CALL sormbr('Q','L','T',N,NCOLY,N,Q,LDQ,TAUQ,Y,LDY,
where TAUQ, TAUP and WORK are double precision arrays of length at least \((N)\), and LWORK is the actual length of WORK.

F02SXF
Withdrawn at Mark 18
Replaced by F08KFF (DORGBR) and F08KGF (DORMBR)
The following replacement is valid only if the previous call to F02SWF has been replaced by a call to F08KEF (DGEBRD) as shown above.

Old: CALL F02SXF(N,A,LDA,NCOLY,Y,LDY,WORK,IFAIL)
New: IF (NCOLY.EQ.0) THEN
 CALL sorgbr('P',N,N,N,A,LDA,TAUP,WORK,LWORK,INFO)
ELSE
 CALL sormbr('P','L','T',N,NCOLY,N,A,LDA,TAUP,Y,LDY,WORK,
 LWORK,INFO)
END IF

F02SYF
Withdrawn at Mark 18
Replaced by F08MEF (DBDSQR)

Old: CALL F02SYF(N,D,E,NCOLB,B,LDB,NCOLZ,Z,LDZ,Y,LDY,NCOLY,Y,LDY,WORK,
IFAIL)
New: CALL sbdsqr('U',N,NCOLZ,NCOLY,NCOLB,D,E,Z,NRZ,B,N,WORK,INFO)

where WORK is a double precision array of length at least \(4(N - 1)\) unless NCOLB = NROWY = NCOLZ = 0.

F02SZF
Withdrawn at Mark 15
Replaced by F08MEF (DBDSQR)

Old: CALL F02SZF(N,D,E,WANTB,B,WANTY,Y,WANTZ,Z,NCZ,NCY,NCZ,NCY,WANTZ,
NCZ,NCY,WORK1,WORK2,WORK3,IFAIL)
New: IF (WANTB) THEN
 NCC = 1
ELSE
 NCC = 0
END IF
IF (WANTY) THEN
 NRU = LY
ELSE
 NRU = 0
END IF
IF (WANTZ) THEN
 NCVT = NCZ
ELSE
 NCVT = 0
END IF
CALL sbdsqr('U',N,NCVT,LY,Z,NRZ,Y,NRZ,NCZ,B,N,WORK,INFO)

WORK must be a one-dimensional double precision array of length at least \(lwork\) given by:

\[lwork = 1 \text{ when WANTB, WANTY and WANTZ are all false; } \]
\[lwork = \text{max}(4 \times (N - 1), 1) \text{ otherwise.} \]
The parameters WORK1, WORK2 and WORK3 are no longer required.

F02UWF
Withdrawn at Mark 18
Replaced by F08KSF (ZGEBRD)
The following replacement ignores the triangular structure of A, and therefore references the subdiagonal elements of A; however on many machines the replacement code will be more efficient.

Old: CALL F02UWF(N,A,LDA,D,E,NCOLY,Y,LDY,WANTQ,Q,LDQ,WORK,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J+1, N
 A(I,J) = 0.0D0
 10 CONTINUE
 20 CONTINUE
 CALL cgebrd(N,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO)
 IF (WANTQ) THEN
 CALL F06TFF('L',N,N,A,LDA,Q,LDQ)
 CALL cungbr('Q','L','C',N,N,A,LDA,TAUQ,WORK,LWORK,INFO)
 END IF
 IF (NCOLY.GT.0) THEN
 CALL cunmbr('Q','L','C',N,NCOLY,N,A,LDA,TAUQ,Y,LDY,CWORK,LWORK,INFO)
 END IF

where TAUQ and TAUP are complex*16 arrays of length at least (N), and LWORK is the actual length of WORK.

F02UXF
Withdrawn at Mark 18
Replaced by F08KTF (ZUNGBR) or F08KUF (ZUNMBR)

The following replacement is valid only if the previous call to F02UWF has been replaced by a call to F08KSF (ZGEBRD) as shown above.

Old: CALL F02UXF(N,A,LDA,NCOLY,Y,LDY,RWORK,CWORK,IFAIL)
New: IF (NCOLY.EQ.0) THEN
 CALL cungbr('P',N,N,N,A,LDA,TAUP,CWORK,LWORK,INFO)
ELSE
 CALL cunmbr('P','L','C',N,NCOLY,N,A,LDA,TAUP,Y,LDY,CWORK,LWORK,INFO)
END IF

where LWORK is the actual length of CWORK.

F02UYF
Withdrawn at Mark 18
Replaced by F08MSF (ZBDSQR)

Old: CALL F02UYF(N,D,E,NCOLB,B,LDB,NROWY,Y,LDY,NCOLZ,Z,LDZ,WORK,IFAIL)
New: CALL cbdsqr('U',N,NCOLZ,NROWY,NCOLB,D,E,Z,LDZ,Y,LDY,B,LDB,WORK,INFO)

where WORK is a double precision array of length at least (4(N-1)) unless NCOLB = NROWY = NCOLZ = 0.

F02WAF
Withdrawn at Mark 16
Replaced by F02WEF

Old: CALL F02WAF(M,N,A,NRA,WANTB,B,SV,WORK,LWORK,IFAIL)
New: IF (WANTB) THEN
 NCOLB = 1
ELSE
 NCOLB = 0
END IF
 CALL F02WEF(M,N,A,NRA,NCOLB,B,.FALSE.,WORK,1,SV,.TRUE.,
 WORK,1,RWORK,IFAIL)

RWORK must be a one-dimensional double precision array of length at least lwork given by:

\[
 lwork = \max(3 \times (N - 1), 1) \quad \text{when WANTB is false;}
\]
\[
 lwork = \max(5 \times (N - 1), 2) \quad \text{when WANTB is true.}
\]
If, in the call to F02WAF, LWORK satisfies these conditions then F02WEF may be called with RWORK as WORK.

F02WBF
Withdrawn at Mark 14
Replaced by F02WEF

Old: CALL F02WBF(M,N,A,NRA,WANTB,B,SV,WORK,LWORK,IFAIL)
New: IF (WANTB) THEN
 NCOLB = 1
ELSE
 NCOLB = 0
END IF
CALL F02WEF(M,N,A,NRA,NCOLB,B,M,.FALSE.,WORK,1,SV,.TRUE.,
+ WORK,1,RWORK,IFAIL)

RWORK must be a one-dimensional *double precision* array of length at least *lwork* given by:

\[
 lwork = \begin{cases}
 \max(3 \times (M - 1), 1) & \text{when } M = N \text{ and WANTB is false;} \\
 \max(5 \times (M - 1), 1) & \text{when } M = N \text{ and WANTB is true;} \\
 M^2 + 3 \times (M - 1) & \text{when } M < N \text{ and WANTB is false;} \\
 M^2 + 5 \times (M - 1) & \text{when } M < N \text{ and WANTB is true.}
 \end{cases}
\]

In the cases where WANTB is false F02WEF may be called with RWORK as WORK, but when WANTB is true the user should check that, in the call to F02WBF, LWORK satisfies the above conditions before replacing RWORK with WORK.

F02WCF
Withdrawn at Mark 14
Replaced by F02WEF

Old: CALL F02WCF(M,N,MINMN,A,NRA,Q,NRQ,SV,PT,NRPT,WORK,LWORK,
+ IFAIL)
New: IF (M.GE.N) THEN
CALL F06QFF('General',M,N,A,NRA,Q,NRQ)
CALL F02WEF(M,N,Q,NRQ,0,WORK,1,.TRUE.,WORK,1,SV,.TRUE.,
+ PT,NRPT,RWORK,IFAIL)
ELSE
CALL F06QFF('General',M,N,A,NRA,PT,NRPT)
CALL F02WEF(M,N,PT,NRPT,0,WORK,1,.TRUE.,Q,NRQ,SV,.TRUE.,
+ WORK,1,RWORK,IFAIL)
END IF

RWORK must be a one-dimensional *double precision* array of length at least *lwork* given by:

\[
 lwork = \begin{cases}
 N^2 + 5 \times (N - 1) & \text{when } M \geq N; \\
 M^2 + 5 \times (M - 1) & \text{when } M < N.
 \end{cases}
\]

If, in the call to F02WCF, LWORK satisfies these conditions then F02WEF may be called with RWORK as WORK.

F02WEF
Scheduled for withdrawal at Mark 23
Replaced by F08KBF (DGESVD)

Old: CALL F02WEF(M,N,A,LDA,NCOLB,B,LDB,WANTQ,Q,LDQ,SV,WANTR,
+ PT,LDPT,WORK,IFAIL)
New: IF (WANTQ) THEN
 JOBU = 'A'
ELSE
 JOBU = 'N'
END IF
IF (WANTP) THEN
 JOBV = 'A'
ELSE
 JOBV = 'N'
END IF
JOBT = 'N'
END IF

C Please note that the facility to return Q(t)B is not provided.
CALL F08KBF(JOBU,JOBT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,WORK, + LWORK,INFO)
C Note slightly different workspace requirements.
IF (INFO.NE.0) THEN
...

F02XEF
Scheduled for withdrawal at Mark 23
Replacement by F08KPF (ZGESVD)

Old: CALL F02XEF(M,N,A,LDA,NCOLB,B,LDB,WANTQ,Q,LDQ,SV,WANTP, + PH,LDPH,RWORK,CWORK,IFAIL)
New: IF (WANTQ) THEN
 JOBU = 'A'
ELSE
 JOBU = 'N'
END IF
IF (WANTP) THEN
 JOBT = 'A'
ELSE
 JOBT = 'N'
END IF
C Please note that the facility to return Q(h)B is not provided.
CALL F08KPF(JOBU,JOBT,M,N,A,LDA,SV,Q,LDQ,PH,LDPH,CWORK, + LWORK,RWORK,INFO)
C Note slightly different workspace requirements.
IF (INFO.NE.0) THEN
...

F03 – Determinants
F03AGF
Withdrawn at Mark 17
Replacement by F07HDF (DPBTRF)

Old: CALL F03AGF(N,M,A,IA,RL,IL,M1,D1,ID,IFAIL)
New: CALL spbtrf('Lower',N,M,A,IA,IFAIL)

where the array RL and its associated dimension parameter IL, and the parameters M1, D1 and ID are no longer required. In F07HDF (DPBTRF), the array A holds the matrix packed using a different scheme to that used by F03AGF; see the routine document for details. F07HDF (DPBTRF) overwrites A with the Cholesky factor L (without reciprocating diagonal elements) rather than returning L in the array RL. F07HDF (DPBTRF) does not compute the determinant of the input matrix, returned as $D1 \times 2.0$ID by F03AGF. If this is required, it may be calculated after the call of F07HDF (DPBTRF) by code similar to the following. The code computes the determinant by multiplying the diagonal elements of the factor L, taking care to avoid possible overflow or underflow.

D1 = 1.0D0
ID = 0
DO 30 I = 1, N
 D1 = D1*A(1,I)**2
10 IF (D1.GE.1.0D0) THEN
 D1 = D1*0.0625e0
 ID = ID + 4
 GO TO 10
END IF
20 IF (D1.LT.0.0625e0) THEN
 D1 = D1*16.0D0
 ID = ID - 4
 GO TO 20
END IF
30 CONTINUE
F03AHF
Withdrawn at Mark 17
Replaced by F07ARF (ZGETRF)

Old: CALL F03AHF(N,A,IA,DETR,DETI,ID,RINT,IFAIL)
New: CALL cgetrf(N,N,A,IA,IPIV,IFAIL)

where IPIV is an INTEGER array of length N which holds the indices of the pivot elements, and the array RINT is no longer required. It may be important to note that after a call of F07ARF (ZGETRF), A is overwritten by the upper triangular factor U and the off-diagonal elements of the unit lower triangular factor L, whereas the factorization returned by F03AHF gives U the unit diagonal. F07ARF (ZGETRF) does not compute the determinant of the input matrix, returned as $\text{cmplx}(\text{DETR},\text{DETI})/\text{C2}$ by F03AHF. If this is required, it may be calculated after a call of F07ARF (ZGETRF) by code similar to the following, where DET is a complex variable. The code computes the determinant by multiplying the diagonal elements of the factor U, taking care to avoid possible overflow or underflow.

\begin{verbatim}
DET = cmplx(1.0D0,0.0D0)
ID = 0
DO 30 I = 1, N
 IF (IPIV(I).NE.I) DET = -DET
 DET = DET*A(I,I)
10 IF (MAX(ABS(real(DET)),ABS(imag(DET))).GE.1.0D0) THEN
 DET = DET*0.0625e0
 ID = ID + 4
 GO TO 10
END IF
20 IF (MAX(ABS(real(DET)),ABS(imag(DET))).LT.0.0625e0) THEN
 DET = DET*16.0D0
 ID = ID - 4
 GO TO 20
END IF
30 CONTINUE
DETR = real(DET)
DETI = imag(DET)
\end{verbatim}

F03AJF
Withdrawn at Mark 8
Replaced by F01BRF

F03AKF
Withdrawn at Mark 8
Replaced by F01BSF

F03ALF
Withdrawn at Mark 9
Replaced by F07BDF (DGBTRF)

F03AMF
Withdrawn at Mark 17
No replacement; see Chapter

Old: CALL F01BNF(N,A,IA,P,IFAIL)
 CALL F03AMF(N,TEN,P,D1,D2)
New: CALL cpotrf('Upper',N,A,IA,IFAIL)
 D1 = 1.0D0
 D2 = 0.0D0
 DO 30 I = 1, N
 D1 = D1*real(A(I,I))**2
10 IF (D1.GE.1.0D0) THEN
 D1 = D1*0.0625e0
 D2 = D2 + 4
 GO TO 10
END IF
20 IF (D1.LT.0.0625e0) THEN
 D1 = D1*16.0D0
30 CONTINUE
D2 = D2 - 4
GO TO 20
END IF
30 CONTINUE
IF (TEN) THEN
 I = D2
 D2 = D2*LOG10(2.0D0)
 D1 = D1*2.0D0**(I-D2/LOG10(2.0D0))
END IF

F03AMF computes the determinant of a Hermitian positive-definite matrix after factorization by F01BNF, and has no replacement routine. F01BNF has been superseded by F07FRF (ZPOTRF). To compute the determinant of such a matrix, in the same form as that returned by F03AMF, code similar to the above may be used. The code computes the determinant by multiplying the (real) diagonal elements of the factor U, taking care to avoid possible overflow or underflow.

Note that before the call of F07FRF (ZPOTRF), array A contains the upper triangle of the matrix rather than the lower triangle.

F04 – Simultaneous Linear Equations

F04AAF
Scheduled for withdrawal at Mark 23
Replaced by F07AAF (DGESV)

Old: CALL F04AAF(A,IA,B,IB,N,M,C,IC,WKSPCE,IFAIL)
New: CALL F07AAF(N,M,A,IA,IPIV,B,IB,INFO)
 IF (INFO.NE.0) THEN
 c Answer now in B
 ...

F04ACF
Scheduled for withdrawal at Mark 23
Replaced by F07HAF (DPBSV)

Old: CALL F04ACF(A,IA,B,IB,N,M,I,IR,C,IC,RL,IRL,M1,IFAIL)
New: CALL F07HAF('U',N,M,IR,AB,LDAB,B,IB,INFO)
 IF (INFO.NE.0) THEN
 c A and AB are stored differently.
 c AB may be regarded as the transpose of A, with the 'U' option.
 c Thus LDAB might be M+1
 c Answer now in B
 ...

F04ADF
Scheduled for withdrawal at Mark 23
Replaced by F07ANF (ZGESV)

Old: CALL F04ADF(A,IA,B,IB,N,M,C,IC,WKSPCE,IFAIL)
New: CALL F07ANF(N,M,A,IA,IPIV,B,IB,INFO)
 IF (INFO.NE.0) THEN
 c Answer now in B
 ...

F04AKF
Withdrawn at Mark 17
Replaced by F07ASF (ZGETRS)

Old: CALL F04AKF(N,IR,A,IA,P,B,IB)
New: CALL cgetrs('No Transpose',N,IR,A,IA,IPIV,B,IB,INFO)

It is assumed that the matrix has been factorized by a call of F07ARF (ZGETRF) rather than F03AHF; see F03 Chapter Introduction for details. IPIV is an INTEGER array of length N, as returned by F07ARF (ZGETRF), and the array P is no longer required. INFO is an INTEGER diagnostic parameter; see the F07ASF (ZGETRS) routine document for details.
F04ALF
Withdrawn at Mark 17
Replaced by F07HEF (DPBTRS)

Old: CALL F04ALF(N,M,IR,RL,IRL,M1,B,IB,X,IX)
New: CALL F06QFF('General',N,IR,B,IB,X,IX)
CALL \(\text{spbtrs} \) ('Lower',N,M,IR,A,IA,X,IX,INFO)

It is assumed that the matrix has been factorized by a call of F07HDF (DPBTRF) rather than F03AGF; see F03 Chapter Introduction for details. \(A \) is the factorized matrix as returned by F07HDF (DPBTRF). The array RL, its associated dimension parameter IRL, and the parameter M1 are no longer required. INFO is an INTEGER diagnostic parameter; see the F07HEF (DPBTRS) routine document for details. If the original right-hand-side matrix B is no longer required, the call to F06QFF is not necessary, and references to X and IX in the call of F07HDF (DPBTRS) may be replaced by references to B and IB, in which case B will be overwritten by the solution.

F04ANF
Withdrawn at Mark 18
Replaced by F06EFF (DCOPY), F06PJF (DTRSV) and F08AGF (DORMQR)

Old: CALL F04ANF(M,N,QR,IQR,ALPHA,IPIV,B,X,Z)
New: CALL \(\text{scopy} \)(N,ALPHA,1,QR,IQR+1)
CALL \(\text{sormqr} \) ('L','T',M,1,N,QR,IQR,Y,B,M,Z,N,INFO)
CALL \(\text{strsv} \) ('U','N','N',N,QR,IQR,B,1)
D0 10 I = 1, N
X(IPIV(I)) = B(I)
10 CONTINUE

where Y must be the same **double precision** array as was used as the seventh argument in the previous call of F01AXF.

This replacement is valid only if the previous call to F01AXF has been replaced by a call to F08BEF (DGEQPF) as shown above.

F04APF
Withdrawn at Mark 8
Replaced by F04AXF

F04AQF
Withdrawn at Mark 16
Replaced by F07GEF (DPPTRS) and F07PEF (DSYTPR)

May be replaced by calls to F06EFF (DCOPY), and F07GEF (DPPTRS) or F07PEF (DSYTPR), depending on whether the symmetric matrix has previously been factorized by F07GDF (DPPTRF) or F07PDF (DSYTPRF) (see the description above of how to replace calls to F01BQF.

(a) where the symmetric matrix has been factorized by F07GDF (DPPTRF)

Old: CALL F04AQF(N,M,RL,D,B,X)
New: CALL \(\text{scopy} \)(N,B,1,X,1)
CALL \(\text{ssptrs} \) ('Lower',N,1,RL,X,N,INFO)

(b) where the symmetric matrix has been factorized by F07PDF (DSYTPRF)

Old: CALL F04AQF(N,M,RL,D,B,X)
New: CALL \(\text{scopy} \)(N,B,1,X,1)
CALL \(\text{ssptrs} \) ('Lower',N,1,RL,IPIV,N,INFO)

In both (a) and (b), the array RL must be as returned by the relevant factorization routine. The INTEGER parameter INFO is a diagnostic parameter. The INTEGER array IPIV in (b) must be as returned by F07PDF (DSYTPRF). The dimension parameter M, and the array D, are no longer required. If the right-hand-side array B is not needed after solution of the equations, the call to F06EFF (DCOPY), which simply copies array B to X, is not necessary. References to X in the calls of F07GEF (DPPTRS) and F07PEF (DSYTPRS) may then be replaced by references to B, in which case B will be overwritten by the solution vector.
Replacement Calls

F04ARF
Scheduled for withdrawal at Mark 23
Replaced by F07AAF (DGESV)

Old: CALL F04ARF(A,IA,B,N,C,WKSPCE,IFAIL)
New: CALL F07AAF(N,1,A,IA,IPIV,B,1,INFO)
IF (INFO.NE.0) THEN
 c Answer now in B
 ...

F04AUF
Withdrawn at Mark 9
Replaced by F04JGF

F04AVF
Withdrawn at Mark 9
Replaced by F07BEF (DGBTRS)

F04AWF
Withdrawn at Mark 17
Replaced by F07FSF (ZPOTRS)

Old: CALL F04AWF(N,IR,A,IA,P,B,IB,X,IX)
New: CALL F06TFF('General',N,IR,B,IB,X,IX)
CALL cpotrs('Upper',N,IR,A,IA,X,IX,INFO)

It is assumed that the matrix has been factorized by a call of F07FRF (ZPOTRF) rather than F01BNF; see
the F01 Chapter Introduction for details. A is the factorized matrix as returned by F07FRF (ZPOTRF).
The array P is no longer required. INFO is an INTEGER diagnostic parameter; see the F07FSF (ZPOTRS)
routine document for details. If the original right-hand side array B is no longer required, the call to
F06TFF is not necessary, and references to X and IX in the call of F07FSF (ZPOTRS) may be replaced by
references to B and IB, in which case B will be overwritten by the solution.

F04AYF
Withdrawn at Mark 18
Replaced by F07AEF (DGETRS)

Old: CALL F04AYF(N,IR,A,IA,P,B,IB,IFAIL)
New: CALL sgetrs('No Transpose',N,IR,A,IA,IPIV,B,IB,IFAIL)

It is assumed that the matrix has been factorized by a call of F07ADF (DGETRF) rather than F01BTF.
IPIV is an INTEGER array of length N, and the array P is no longer required.

F04AZF
Withdrawn at Mark 17
Replaced by F07FEF (DPOTRS)

Old: CALL F04AZF(N,IR,A,IA,P,B,IB,IFAIL)
New: CALL spotrs('Upper',N,IR,A,IA,B,IB,IFAIL)

It is assumed that the matrix has been factorized by a call of F07FDF (DPOTRF) rather than F01BXF.
The array P is no longer required.

F04EAF
Scheduled for withdrawal at Mark 23
Replaced by F07CAF (DGTSV)

Old: CALL F04EAF(N,D,DU,DL,B,IFAIL)
New: CALL F07CAF(N,1,DL(2),D,DU(2),B,N,INFO)
IF (INFO.NE.0) THEN
 c Answer now in B
 ...

REPLACE.52
F04FAF
Scheduled for withdrawal at Mark 23
Replaced by F07JAF (DPTSV)
Old: CALL F04FAF(JOB,N,D,E,B,IFAIL)
New: IF (JOB.EQ.0) CALL F07JAF(N,1,D,E(2),B,1,INFO)
 IF (INFO.NE.0) THEN
 c Answer now in B
 ...

F04JAF
Scheduled for withdrawal at Mark 23
Replaced by F08KAF (DGELSS)
Old: CALL F04JAF(M,N,A,NRA,B,TOL,SIGMA,IRANK,WORK,LWORK,IFAIL)
New: CALL F08KAF(M,N,1,A,NRA,B,1,S,RCOND,IRANK,WORK,LWORK,INFO)
 c Note workspace requirements are different.
 IF (INFO.NE.0) THEN
 C Answer now in B
 C Singular values now in S, not WORK.
 C The standard error is not computed
 ...

F04JDF
Scheduled for withdrawal at Mark 23
Replaced by F08KAF (DGELSS)
Old: CALL F04JDF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL F08ZBF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)
 C Slight workspace differences
 ...

F04JLF
Scheduled for withdrawal at Mark 23
Replaced by F08ZBF (DGGGLM)
Old: CALL F04JLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL F08ZBF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)
 C Slight workspace differences
 ...

F04JMF
Scheduled for withdrawal at Mark 23
Replaced by F08ZAF (DGGLSE)
Old: CALL F04JMF(M,N,P,A,LDA,B,LDB,C,D,X,Y,WORK,LWORK,IFAIL)
New: CALL F08ZAF(M,N,P,A,LDA,B,LDB,C,D,X,Y,WORK,LWORK,INFO)
 C Slight workspace differences
 ...

F04KLF
Scheduled for withdrawal at Mark 23
Replaced by F08ZPF (ZGGGLM)
Old: CALL F04KLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL F08ZPF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)
 IF (INFO.NE.0) THEN
 ...

Introduction
Replacement Calls
F04KMF
Scheduled for withdrawal at Mark 23
Replaced by F08ZNF (ZGGLSE)

Old: CALL F04KMF(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,IFAIL)
New: CALL F08ZNF(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,INFO)
 IF (INFO.NE.0) THEN
 ...

F04LDF
Withdrawn at Mark 18
Replaced by F07BEF (DGBTRS)

Old: CALL F04LDF(N,M1,M2,IR,A,IA,AL,IL,IN,B,IB,IFAIL)
New: CALL sgbtrs('No Transpose',N,M1,M2,IR,A,IA,IN,B,IB,IFAIL)

It is assumed that the matrix has been factorized by a call of F07BDF (DGBTRF) rather than F01LBF. The array AL and its associated dimension parameter IL are no longer required.

F04MAF
Withdrawn at Mark 19
Replaced by F11JCF

Existing programs should be modified to call F11JCF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F04MBF
Withdrawn at Mark 19
Replaced by F11GAF, F11GBF and F11GCF (or F11JCF or F11JEF)

If a user-defined preconditioner is required existing programs should be modified to call F11GAF, F11GBF and F11GCF. Otherwise F11JCF or F11JEF may be used. The interfaces for these routines are significantly different from that for F04MBF and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F04NAF
Withdrawn at Mark 17
Replaced by F06SKF (ZTBSV) and F07BSF (ZGBTRS)

Old: CALL F04NAF(JOB,N,ML,MU,A,NRA,IN,B,TOL,IFAIL)
New: JOB = ABS(JOB)
 IF (JOB.EQ.1) THEN
 CALL cgbtrs('No Transpose',N,ML,MU,1,A,NRA,IN,B,N,IFAIL)
 ELSE IF (JOB.EQ.2) THEN
 CALL cgbtrs('Conjugate Transpose',N,ML,MU,1,A,NRA,IN,B,N,IFAIL)
 ELSE IF (JOB.EQ.3) THEN
 CALL ctbsv('Upper', 'No Transpose', 'Non-unit', N,ML+MU,A,NRA,B,1)
 END IF

It is assumed that the matrix has been factorized by a call of F07BDF (ZGBTRF) rather than F01LBF. The replacement routines do not have the functionality to perturb diagonal elements of the triangular factor U, as specified by a negative value of JOB in F04NAF. The parameter TOL is therefore no longer useful. If this functionality is genuinely required, please contact NAG.

F05 – Orthogonalisation

F05ABF
Withdrawn at Mark 14
Replaced by F06EJF (DNRM2)

Old: U = F05ABF(X,N)
New: U = snrm2(N,X,1)
F06 – Linear Algebra Support Routines

F06QGF
Withdrawn at Mark 16
Replaced by F06RAF, F06RCF and F06RJF

Old: ANORM = F06QGF(NORM,MATRIX,M,N,A,LDA)
New: C = MATRIX(1:1)
 IF ((C.EQ.'G') .OR. (C.EQ.'g')) THEN
 ANORM = F06RAF(NORM,M,N,A,LDA,WORK1)
 ELSE IF ((C.EQ.'H') .OR. (C.EQ.'h') .OR. (C.EQ.'S') .OR. (C.EQ.'s')) THEN
 ANORM = F06RCF(NORM,'U',N,A,LDA,WORK2)
 ELSE IF ((C.EQ.'E') .OR. (C.EQ.'e') .OR. (C.EQ.'Y') .OR. (C.EQ.'y')) THEN
 ANORM = F06RCF(NORM,'L',N,N,A,LDA,WORK1)
 ELSE IF ((C.EQ.'U') .OR. (C.EQ.'u')) THEN
 ANORM = F06RJF(NORM,'U','N',M,N,A,LDA,WORK1)
 ELSE IF ((C.EQ.'L') .OR. (C.EQ.'l')) THEN
 ANORM = F06RJF(NORM,'L','N',M,N,A,LDA,WORK1)
 END IF

C must be declared as CHARACTER*1, WORK1 as a double precision array of dimension (1) and WORK2 as a double precision array of dimension (N).

F06VGF
Withdrawn at Mark 16
Replaced by F06UAF, F06UCF and F06UJF

Old: ANORM = F06VGF(NORM,MATRIX,M,N,A,LDA)
New: C = MATRIX(1:1)
 IF ((C.EQ.'G') .OR. (C.EQ.'g')) THEN
 ANORM = F06UAF(NORM,M,N,A,LDA,WORK1)
 ELSE IF ((C.EQ.'H') .OR. (C.EQ.'h') .OR. (C.EQ.'S') .OR. (C.EQ.'s')) THEN
 ANORM = F06UCF(NORM,'U',N,A,LDA,WORK2)
 ELSE IF ((C.EQ.'E') .OR. (C.EQ.'e') .OR. (C.EQ.'Y') .OR. (C.EQ.'y')) THEN
 ANORM = F06UCF(NORM,'L',N,A,LDA,WORK1)
 ELSE IF ((C.EQ.'U') .OR. (C.EQ.'u')) THEN
 ANORM = F06UJF(NORM,'U','N',M,N,A,LDA,WORK1)
 ELSE IF ((C.EQ.'L') .OR. (C.EQ.'l')) THEN
 ANORM = F06UJF(NORM,'L','N',M,N,A,LDA,WORK1)
 END IF

C must be declared as CHARACTER*1, WORK1 as a double precision array of dimension (1) and WORK2 as a double precision array of dimension (N).

F11 – Large Scale Linear Systems

F11BAF
Withdrawn at Mark 21
Replaced by F11BDF

Old: CALL F11BAF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN,
+ ANORM,SIGMAX,MONIT,LWREQ,IFAIL)
New: CALL F11BDF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN,
+ ANORM,SIGMAX,MONIT,WORK,LWORK,LWREQ,IFAIL)

F11BDF contains two additional parameters as follows:

WORK(LWORK) – double precision array.
LWORK – INTEGER.

See the routine document for further information.
F11BBF
Withdrawn at Mark 21
Replaced by F11BEF

Old: CALL F11BBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11BEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)

WGT must be a one-dimensional double precision array of length at least \(n \) (the order of the matrix) if weights are to be used in the termination criterion, and 1 otherwise. Note that the call to F11BEF requires the weights to be supplied in WGT(1 : n) rather than WORK(1 : n). The minimum value of the parameter LWORK may also need to be changed.

F11BCF
Withdrawn at Mark 21
Replaced by F11BFF

Old: CALL F11BCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,IFAIL)
New: CALL F11BFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWORK,IFAIL)

F11BFF contains two additional parameters as follows:

WORK(LWORK) – double precision array.
LWORK – INTEGER.

See the routine document for further information.

F11GAF
Scheduled for withdrawal at Mark 22
Replaced by F11GDF

Old: CALL F11GAF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,MAXITN,+ ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,IFAIL)
New: CALL F11GDF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,MAXITN,+ ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,WORK,LWORK,IFAIL)

F11GDF contains two additional parameters as follows:

WORK(LWORK) – double precision array.
LWORK – INTEGER.

See the routine document for further information.

F11GBF
Scheduled for withdrawal at Mark 22
Replaced by F11GEF

Old: CALL F11GBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11GEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)

WGT must be a one-dimensional double precision array of length at least \(n \) (the order of the matrix) if weights are to be used in the termination criterion, and 1 otherwise. Note that the call to F11GEF requires the weights to be supplied in WGT(1 : n) rather than WORK(1 : n). The minimum value of the parameter LWORK may also need to be changed.

F11GCF
Scheduled for withdrawal at Mark 22
Replaced by F11GFF

Old: CALL F11GCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,IFAIL)
New: CALL F11GFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,+ WORK,LWORK,IFAIL)

F11GFF contains two additional parameters as follows:

WORK(LWORK) – double precision array.
LWORK – INTEGER.
See the routine document for further information.

G01 – Simple Calculations on Statistical Data

G01ACF
Withdrawn at Mark 9
Replaced by G04BBF

G01BAF
Withdrawn at Mark 16
Replaced by G01EBF

Old: \(P = \text{G01BAF(IDF,T,IFAIL)} \)
New: \(P = \text{G01EBF('Lower-tail',T,REAL(IDF),IFAIL)} \)

G01BBF
Withdrawn at Mark 16
Replaced by G01EDF

Old: \(P = \text{G01BBF(I1,I2,A,IFAIL)} \)
New: \(P = \text{G01EDF('Upper-tail',A,REAL(I1),REAL(I2),IFAIL)} \)

G01BCF
Withdrawn at Mark 16
Replaced by G01ECF

Old: \(P = \text{G01BCF(X,N,IFAIL)} \)
New: \(P = \text{G01ECF('Upper-tail',X,REAL(N),IFAIL)} \)

G01BDF
Withdrawn at Mark 16
Replaced by G01EEF

Old: \(P = \text{G01BDF(X,A,B,IFAIL)} \)
New: \(\text{CALL G01EEF(X,A,B,TOL,P,Q,PDF,IFAIL)} \)

where TOL is set to the accuracy required by the user and Q and PDF are additional output quantities.

Note: the values of A and B must be \(\leq 106 \).

G01CAF
Withdrawn at Mark 16
Replaced by G01FBF

Old: \(T = \text{G01CAF(P,N,IFAIL)} \)
New: \(T = \text{G01FBF('Lower-tail',P,REAL(N),IFAIL)} \)

G01CBF
Withdrawn at Mark 16
Replaced by G01FDF

Old: \(F = \text{G01CBF(P,M,N,IFAIL)} \)
New: \(F = \text{G01FDF(P,REAL(M),REAL(N),IFAIL)} \)

G01CCF
Withdrawn at Mark 16
Replaced by G01FCF

Old: \(X = \text{G01CCF(P,N,IFAIL)} \)
New: \(X = \text{G01FCF(P,REAL(N),IFAIL)} \)
G01CDF
Withdrawn at Mark 16
Replaced by G01FEF

Old: X = G01CDF(P,A,B,IFAIL)
New: X = G01FEF(P,A,B,TOL,IFAIL)

where TOL is set to the accuracy required by the user.

Note: the values of A and B must be \(\leq 106 \).

G01CEF
Withdrawn at Mark 18
Replaced by G01FAF

Old: X = G01CEF(P,IFAIL)
New: X = G01FAF('Lower-tail',P,IFAIL)

G02 – Correlation and Regression Analysis

G02CJF
Withdrawn at Mark 16
Replaced by G02DAF and G02DGF

Old: CALL G02CJF(X,IX,Y,IY,N,M,IR,THETA,IT,SIGSQ,C,IC,IPIV, + WK1,WK2,IFAIL)
New: C set the first M elements of ISX to 1
CALL F06DBF(M,1,ISX,1)
C THEN
TOL = X02AJF()
CALL G02DAF('Zero','Unweighted',N,X,IX,M,ISX,M,Y,WT, + RSS, IDF, THETA, SE, COV, RES, H, C, IC, SVD, IRANK, + P, TOL, WK, IFAIL)
SIGSQ(1) = RSS/IDF
C there are two or more dependent variables,
C i.e., IR is greater than or equal to 2 then:
DO 20 I = 2, IR
CALL G02DGF('Unweighted',N,WT,RSS,IP,IRANK,COV,C,IC,SVD, + P,Y(1,I),THETA(I,I),SE,RES,WK,IFAIL)
SIGSQ(1) = RSS/IDF
20 CONTINUE

For unweighted regression, as is used here, WT may be any double precision array and will not be referenced, e.g., SIGSQ could be used.

The array C no longer contains \((X^T X)^{-1} \); however, \((X^T X)^{-1} \) scaled by \(\sigma^2 \) is returned in packed form in array COV. The upper triangular part of C will now contain a factorization of \(X^T X \).

The double precision arrays SE(M), COV(M × (M + 1)/2), RES(N), H(N), P(M × (M + 2)), the logical variable SVD and the INTEGER variable IRANK are additional outputs. There is also a single double precision workspace WK(5 × (M - 1) + M × M).

G04 – Analysis of Variance

G04ADF
Withdrawn at Mark 17
Replaced by G04BCF

Old: CALL G04ADF(DATA,VAR,AMR,AMC,AMT,LCODE,IA,N,NN)
New: IFAIL = 0
CALL G04BCF(1,N,N,DATA,N,IT,GMEAN,AMT,TABLE,6,C,NMAX, + IREP,RPMMEAN,AMR,AMC,R,EF,0.0,0,WK,IFAIL)

The arrays AMR, AMC and AMT contain the means of the rows, columns and treatments rather than the totals. The values equivalent to those returned in the array VAR of G04ADF are returned in the second
column of the two-dimensional array TABLE starting at the second row, e.g., \(\text{VAR}(1) = \text{TABLE}(2,2) \). The two-dimensional integer array LCODE (containing the treatment codes) has been replaced by the one-dimensional array IT. These arrays will be the equivalent if \(IA = N \). The following additional declarations are required.

\[
\begin{align*}
\text{double precision } & \quad \text{GMEAN} \\
\text{INTEGER } & \quad \text{IFAIL} \\
\text{double precision } & \quad \text{C}([\text{NMAX}, \text{NMAX}]), \text{EF}([\text{NMAX}]), \text{TABLE}(6,5), \text{R}([\text{NMAX} \times \text{NMAX}]) \\
& \quad + \text{RPMEAN}(1), \text{WK}([\text{NMAX} \times \text{NMAX}+\text{NMAX}]) \\
\text{INTEGER } & \quad \text{IREP}([\text{NMAX}]), \text{IT}([\text{NMAX} \times \text{NMAX}])
\end{align*}
\]

where NMAX is an integer such that \(N \leq NMAX \).

G04AEF

Withdrawn at Mark 17

Replaced by G04BBF

Original: CALL G04AEF(Y,N,K,NOBS,GBAR,GM,SS,IDF,F,FP,IFAIL)

New: CALL G04BBF(N,Y,0,K,IT,GM,BMEAN,GBAR,TABLE,4,C,KMAX,NOBS, \\
+ R,EF,0.0D0,0,WK,IFAIL)

The values equivalent to those returned by G04AEF in the arrays IDF and SS are returned in the first and second columns of TABLE starting at row 2 and the values equivalent to those returned in the scalars F and FP are returned in TABLE(2,4) and TABLE(2,5) respectively. NOBS is output from G04BBF rather than input. The groups are indicated by the array IT. The following code illustrates how IT can be computed from NOBS.

\[
\begin{align*}
\text{IJ} & = 0 \\
\text{DO } 40 & \text{ I = 1, K} \\
& \text{ DO 20 } J = 1, \text{NOBS}(I) \\
& \quad \text{IJ} = \text{IJ} + 1 \\
& \quad \text{IT}({\text{IJ}}) = I \\
20 & \text{ CONTINUE} \\
40 & \text{ CONTINUE}
\end{align*}
\]

The following additional declarations are required.

\[
\begin{align*}
\text{double precision } & \quad \text{BMEAN}(1), \text{C}([\text{KMAX}, \text{KMAX}]), \text{EF}([\text{KMAX}]), \text{R}([\text{NMAX}]), \text{TABLE}(4,5), \\
& \quad + \text{WK}([\text{KMAX} \times \text{KMAX}+\text{KMAX}]) \\
\text{INTEGER } & \quad \text{IT}([\text{NMAX}])
\end{align*}
\]

NMAX and KMAX are integers such that \(N \leq NMAX \) and \(K \leq KMAX \).

G04AFF

Withdrawn at Mark 17

Replaced by G04CAF

Original: CALL G04AFF(Y,1,1,Y2,M,NR,NC,ROW,COL,CELL,ICELL,G1,SS,IDF,F,FP, \\
+ IFAIL)

New: CALL G04CAF(M*NR*NC,Y1,2,LFAC,1,2,0,6,TABLE,ITOTAL,TMEAN,MAXT,E, \\
+ IMEAN,SEMEAN,BMEAN,R,1,WK,IFAIL)

Y1 is a one-dimensional array containing the observations in the same order as Y, if IY1 = M and IY2 = NR then these are equivalent. LFAC is an integer array such that LFAC(1) = NC and LFAC(2) = NR. The following indicates how the results equivalent to those produced by G04AFF can be extracted from the results produced by G04CAF.

\[
\begin{align*}
\text{G04AFF} & \quad \text{G04CAF} \\
\text{ROW}(i) & \quad \text{TMEAN}([\text{IMEAN}(1)+i], i = 1,2,...,\text{NR} \\
\text{COL}(j) & \quad \text{TMEAN}(j), j = 1,2,...,\text{NC} \\
\text{CELL}(i,j) & \quad \text{TMEAN}([\text{IMEAN}(2)+(j-1) \times \text{NR}+i], i = 1,2,...,\text{NR}; j = 1,2,...,\text{NC} \\
\text{GM} & \quad \text{BMEAN}(1) \\
\text{SS}(1) & \quad \text{TABLE}(3,2) \\
\text{SS}(2) & \quad \text{TABLE}(2,2) \\
\text{SS}(4) & \quad \text{TABLE}(4,2) \\
\text{IDF}(1) & \quad \text{TABLE}(3,1) \\
\text{IDF}(2) & \quad \text{TABLE}(2,1)
\end{align*}
\]
Note how rows and columns have swapped.

The following additional declarations are required.

\[
\begin{align*}
\text{double precision } & \quad \text{TABLE}(6,5), \ R(\text{NMAX}), \ T\text{MEAN}(\text{MAXT}), \ E(\text{MAXT}), \ B\text{MEAN}(1), \\
& \quad \text{SEM}E\text{AN}(5) \\
\text{INTEGER } & \quad \text{IMEAN}(5), \ IWK(\text{NMAX}+6), \ LFAC(2)
\end{align*}
\]

NMAX and MAXT are integers such that NMAX ≥ M × NR × NC and MAXT ≥ NR + NC + NR × NC.

G05 – Random Number Generators

G05AAF
Withdrawn at Mark 7
Replaced by G05CAF

G05ABF
Withdrawn at Mark 7
Replaced by G05DAF

G05ACF
Withdrawn at Mark 7
Replaced by G05DBF

G05ADF
Withdrawn at Mark 7
Replaced by G05DDF

G05AEF
Withdrawn at Mark 7
Replaced by G05DDF

G05AFF
Withdrawn at Mark 7
Replaced by G05DEF

G05AGF
Withdrawn at Mark 7
Replaced by G05DFF

G05AHF
Withdrawn at Mark 7
Replaced by G05FFF

G05AIF
Withdrawn at Mark 7
Replaced by G05FFF

G05AKF
Withdrawn at Mark 7
Replaced by G05FFF
Introduction

Replacement Calls

G05ALF
Withdrawn at Mark 7
Replaced by G05FEF

G05AMF
Withdrawn at Mark 7
Replaced by G05FEF

G05ANF
Withdrawn at Mark 7
Replaced by G05DHF

G05APF
Withdrawn at Mark 7
Replaced by G05DJF

G05AQF
Withdrawn at Mark 7
Replaced by G05DKF

G05ARF
Withdrawn at Mark 7
Replaced by G05EXF

G05ASF
Withdrawn at Mark 7
Replaced by G05EDF

G05ATF
Withdrawn at Mark 7
Replaced by G05EBF

G05AUF
Withdrawn at Mark 7
Replaced by G05EFF

G05AVF
Withdrawn at Mark 7
Replaced by G05ECF

G05AWF
Withdrawn at Mark 7
Replaced by G05EXF

G05AZF
Withdrawn at Mark 7
Replaced by G05EYF

G05BAF
Withdrawn at Mark 7
Replaced by G05CBF

G05BBF
Withdrawn at Mark 7
Replaced by G05CCF
G05CAF
Scheduled for withdrawal at Mark 22
Replaced by G05KAF

Old: \(X = G05CAF(X) \)
New: \(X = G05KAF(IGEN, ISEED) \)

The integer parameter \(IGEN \) contains the generator number to use and the integer array \(ISEED \) of dimension 4 contains the current state for that generator. \(G05CAF \) can be called without a prior call to one of the initialisation routines \(G05CBF \) or \(G05CCF \); in such cases a prior call to \(G05KBF \) or \(G05KCF \) must precede the first call to \(G05KAF \).

G05CBF
Scheduled for withdrawal at Mark 22
Replaced by G05KBF

Old: CALL G05CBF(I)
New: IGEN = 0
\(ISEED(1) = I \)
CALL G05KBF(IGEN, ISEED)

The integer parameter \(IGEN \) can be set to any number between 0 and 273 inclusive. If \(IGEN \) is set to zero then the integer array \(ISEED \), of dimension 4, contains in its first element the integer seed value to initialise the basic generator; otherwise all four elements of \(ISEED \) must be set to integers, at least six digits in length.

G05CCF
Scheduled for withdrawal at Mark 22
Replaced by G05KCF

Old: CALL G05CCF
New: CALL G05KCF(IGEN, ISEED)

The integer parameter \(IGEN \) contains the generator number to use and the integer array \(ISEED \) of dimension 4 contains the current state for that generator. \(IGEN \) can be set to any number between 0 and 273 inclusive.

G05CFF
Scheduled for withdrawal at Mark 22
Replaced by F06DFF

Old: CALL G05CFF(IA, NI, XA, NX, IFAIL)
New: LGEN = IGEN
CALL F06DFF(4, ISEED, 1, LSEED, 1)

The data defining the generator state for the group of routines \(G05K-G05Q \), can be saved by simply creating local copies of the parameters \(IGEN \) and \(ISEED \).

G05CGF
Scheduled for withdrawal at Mark 22
Replaced by F06DFF

Old: CALL G05CGF(IA, NI, XA, NX, IFAIL)
New: IGEN = LGEN
CALL F06DFF(4, LSEED, 1, ISEED, 1)

The data defining the generator state for the group of routines \(G05K-G05Q \), can be restored by simply copying back previously saved values contained in the parameters \(IGEN \) and \(ISEED \).

G05DAF
Scheduled for withdrawal at Mark 22
Replaced by G05LGF

Old: DO 10 I = 1, N
\(X(I) = G05DAF(A, B) \)
10 CONTINUE
New: \(AA = \min(A,B) \)
\(BB = \max(A,B) \)
\(\text{IFAIL} = 0 \)
\(\text{CALL G05LGDF}(AA,BB,N,X,IGEN,ISEED,IFAIL) \)

In G05LGF the first parameter must be less than or equal to the second parameter, this does not have to be the case in G05DAF. The **double precision** array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DAF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LGF.

G05DBF
Scheduled for withdrawal at Mark 22
Replaced by G05LJF

Old: DO 10 I = 1, N
\(X(I) = \text{G05DBF}(A) \)
10 CONTINUE
New: \(AA = \text{ABS}(A) \)
\(\text{IFAIL} = 0 \)
\(\text{CALL G05LJF}(AA,N,X,IGEN,ISEED,IFAIL) \)

In G05LJF the first parameter must be non-negative, this does not have to be the case in G05DBF. The **double precision** array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DBF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LJF.

G05DCF
Scheduled for withdrawal at Mark 22
Replaced by G05LNF

Old: DO 10 I = 1, N
\(X(I) = \text{G05DCF}(A,B) \)
10 CONTINUE
New: \(BB = \text{ABS}(B) \)
\(\text{IFAIL} = 0 \)
\(\text{CALL G05LNF}(A,BB,N,X,IGEN,ISEED,IFAIL) \)

In G05LNF the second parameter must be positive, this does not have to be the case in G05DCF. The **double precision** array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DCF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LNF.

G05DDF
Scheduled for withdrawal at Mark 22
Replaced by G05LAF

Old: DO 10 I = 1, N
\(X(I) = \text{G05DDF}(A,B) \)
10 CONTINUE
New: \(BB = B**2 \)
\(\text{IFAIL} = 0 \)
\(\text{CALL G05LAF}(A,BB,N,X,IGEN,ISEED,IFAIL) \)

In G05LAF the second parameter represents the variance whereas the second parameter in G05DDF represents the standard deviation. The **double precision** array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DDF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LAF. The algorithm used in G05LAF is different from that used in G05DDF, so the sequence of values produced by G05DDF cannot be reproduced by G05LAF.
G05DEF
Scheduled for withdrawal at Mark 22
Replaced by G05LKF

Old: DO 10 I = 1, N
 X(I) = G05DEF(A,B)
 10 CONTINUE
New: BB = B**2
 IFAIL = 0
 CALL G05LKF(A,BB,N,X,IGEN,ISEED,IFAIL)

In G05LKF the second parameter represents the variance of the corresponding normal distribution whereas the second parameter in G05DEF represents the standard deviation. The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DEF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LKF. The algorithm used in G05LKF is different from that used in G05DEF, so the sequence of values produced by G05DEF cannot be reproduced by G05LKF.

G05DFF
Scheduled for withdrawal at Mark 22
Replaced by G05LLF

Old: DO 10 I = 1, N
 X(I) = G05DFF(A,B)
 10 CONTINUE
New: BB = ABS(B)
 IFAIL = 0
 CALL G05LLF(A,BB,N,X,IGEN,ISEED,IFAIL)

In G05LLF the second parameter must be non-negative, this does not have to be the case in G05DFF. The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DFF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LLF.

G05DFG
Withdrawn at Mark 16
Replaced by G05FFF

Old: X = G05DFG(G,H,IFAIL)
New: CALL G05FFF(A,B,1,X(1),IGEN,ISEED,IFAIL)

where X must now be declared as an array of length at least 1. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DFG could be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LFF.

G05DHF
Scheduled for withdrawal at Mark 22
Replaced by G05LCF

Old: DO 10 I = 1, N
 X(I) = G05DHF(DF,IFAIL)
 10 CONTINUE
New: CALL G05LCF(DF,N,X,IGEN,ISEED,IFAIL)

The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DHF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LCF.
Introduction

Replacement Calls

G05DJF
Scheduled for withdrawal at Mark 22
Replaced by G05LBF

Old: DO 10 I = 1, N
 X(I) = G05DJF(DF,IFAIL)
10 CONTINUE

New: CALL G05LBF(DF,N,X,IGEN,ISEED,IFAIL)

The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DJF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LBF.

G05DKF
Scheduled for withdrawal at Mark 22
Replaced by G05LDF

Old: DO 10 I = 1, N
 X(I) = G05DKF(DF1,DF2,IFAIL)
10 CONTINUE

New: CALL G05LDF(DF1,DF2,N,X,IGEN,ISEED,IFAIL)

The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DKF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LDF.

G05DLF
Withdrawn at Mark 16
Replaced by G05FEF

Old: X = G05DLF(G,H,IFAIL)

New: CALL G05LEF(G,H,1,X(1),IGEN,ISEED,IFAIL)

where X must now be declared as an array of length at least 1. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DLF could be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LEF.

G05DMF
Withdrawn at Mark 16
Replaced by G05FEF

Old: X = G05DMF(G,H,IFAIL)
New: CALL G05LEF(G,H,1,X(1),IGEN,ISEED,IFAIL)

IF (X(1).LT.1.0D0) X(1) = X(1)/(1.0D0-X(1))

where X must now be declared as an array of length at least 1. If the value of X(1) returned by G05LEF is 1.0, appropriate action should be taken. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DMF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LEF. Alternatively the ratio of gamma variates can be used i.e.,

CALL G05LFF(G,1.0D0,1,X(1),IGEN,ISEED,IFAIL1)
CALL G05LFF(H,1.0D0,1,Y(1),IGEN,ISEED,IFAIL2)
IF (Y(1).NE.0.0D0) X(1) = X(1)/Y(1)

where Y must be declared as an array of length at least 1.
Replacement Calls

G05DPF
Scheduled for withdrawal at Mark 22
Replaced by G05LMF

| Old: DO 10 I = 1, N |
| X(I) = G05DPF(A,B,IFAIL) |
| 10 CONTINUE |
| New: CALL G05LMF(A,B,N,X,IGEN,ISEED,IFAIL) |

The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DPF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LMF.

G05DRF
Scheduled for withdrawal at Mark 22
Replaced by G05MEF

| Old: DO 10 I = 1, M |
| IX(I) = G05DRF(ALAMDA(I),IFAIL) |
| 10 CONTINUE |
| New: CALL G05MEF(M,ALAMDA,IX,IGEN,ISEED,IFAIL) |

The integer array IX and the double precision array ALAMDA must be at least M in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DRF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MEF.

G05DYF
Scheduled for withdrawal at Mark 22
Replaced by G05MAF

| Old: DO 10 I = 1, M |
| IX(I) = G05DYF(IA,IB) |
| 10 CONTINUE |
| New: IFAIL = 0 |
| CALL G05MAF(IA,IB,N,IX,IGEN,ISEED,IFAIL) |

The integer array IX must be at least max(1,N) in length. In G05MAF the first parameter IA not be greater than the second parameter, this is not the case in G05DYF. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DYF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MAF.

G05DZF
Scheduled for withdrawal at Mark 22
Replaced by G05KEF

| Old: L = G05DZF(P) |
| New: PP = MAX(0.0D0,MIN(P,1.0D0)) |
| IFAIL = 0 |
| L = G05KEF(PP,IGEN,ISEED,IFAIL) |

The double precision parameter P in G05KEF must not be less than zero or greater than one. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05DZF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05KEF.
Introduction

Replacement Calls

G05EAF
Scheduled for withdrawal at Mark 22
Replaced by G05LZF

Old: CALL G05EAF(A,N,C,IC,EPS,R,NR,IFAIL)
New: MODE = 0
CALL G05LZF(MODE,N,A,C,IC,X,IGEN,ISEED,R,NR,IFAIL)

The integer parameter MODE in G05LZF is set to zero to initialise the reference vector only as is done in the call to G05EAF. The double precision array X must be at least N in length and will contain a multivariate Normal vector to be generated in a subsequent call to G05LZF with MODE = 1. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EAF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LZF. See also the replacement call for the superseded routine G05EZF.

G05EBF
Scheduled for withdrawal at Mark 22
Replaced by G05MAF

Old: CALL G05EBF(IA,IB,R,NR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EYF(R,NR)
10 CONTINUE
New: CALL G05MAF(IA,IB,N,X,IGEN,ISEED,IFAIL)

The reference vector R and its dimension are not required by G05MAF. The integer array X must be at least N in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EBF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MAF.

G05ECF
Scheduled for withdrawal at Mark 22
Replaced by G05MKF

Old: CALL G05ECF(T,R,NR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EYF(R,NR)
10 CONTINUE
New: CALL G05MKF(0,T,N,X,IGEN,ISEED,R2,NR2,IFAIL)
CALL G05MKF(1,T,N,X,IGEN,ISEED,R2,NR2,IFAIL)

The double precision array R2 is the reference vector in G05MKF and this needs two more elements of storage than R, used in G05ECF. Thus for the dimension, NR2, of R2, we have NR2 ≥ NR + 2. The integer vector X must be of length at least N. The first parameter, MODE, in G05MKF can also take the values 2 and 3, see the G05MKF routine document for details. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05ECF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MKF.

G05EDF
Scheduled for withdrawal at Mark 22
Replaced by G05MJF

Old: CALL G05EDF(M,P,R,NR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EYF(R,NR)
10 CONTINUE
New: CALL G05MJF(0,M,P,N,X,IGEN,ISEED,R2,NR2,IFAIL)
CALL G05MJF(1,M,P,N,X,IGEN,ISEED,R2,NR2,IFAIL)

The double precision array R2 is the reference vector in G05MJF and this needs two more elements of storage than R, used in G05EDF. Thus for the dimension, NR2, of R2, we have NR2 ≥ NR + 2. The integer vector X must be of length at least N. The first parameter, MODE, in G05MJF can also take the
values 2 and 3, see the G05MJF routine document for details. The integer parameter IGEN contains the
generator number to use and the integer array ISEED of dimension 4 contains the current state for that
generator. G05EDF can be called without a prior call to one of the initialisation routines G05CBF or
G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MJF.

G05EEF
Scheduled for withdrawal at Mark 22
Replaced by G05MCF

Old: CALL G05EEF(M,P,R,NR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EYF(R,NR)
10 CONTINUE
New: CALL G05MCF(0,M,P,N,X,IGEN,ISEED,R2,NR2,IFAIL)
 CALL G05MCF(1,M,P,N,X,IGEN,ISEED,R2,NR2,IFAIL)

The double precision array R2 is the reference vector in G05MCF and this needs two more elements of
storage than R, used in G05EEF. Thus for the dimension, NR2, of R2, we have NR2 ≥ NR + 2. The
integer vector X must be of length at least N. The first parameter, MODE, in G05MCF can also take the
values 2 and 3, see the G05MCF routine document for details. The integer parameter IGEN contains the
generator number to use and the integer array ISEED of dimension 4 contains the current state for that
generator. G05EEF can be called without a prior call to one of the initialisation routines G05CBF or
G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MCF.

G05EFF
Scheduled for withdrawal at Mark 22
Replaced by G05MLF

Old: CALL G05EFF(L,M,NP,NR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EYF(R,NR)
10 CONTINUE
New: CALL G05MLF(0,L,M,NP,N,X,IGEN,ISEED,R2,NR2,IFAIL)
 CALL G05MLF(1,L,M,NP,N,X,IGEN,ISEED,R2,NR2,IFAIL)

The double precision array R2 is the reference vector in G05MLF and this needs two more elements of
storage than R, used in G05EFF. Thus for the dimension, NR2, of R2, we have NR2 ≥ NR + 2. The
integer vector X must be of length at least N. The first parameter, MODE, in G05MLF can also take the
values 2 and 3, see the G05MLF routine document for details. The integer parameter IGEN contains the
generator number to use and the integer array ISEED of dimension 4 contains the current state for that
generator. G05EFF can be called without a prior call to one of the initialisation routines G05CBF or
G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MLF.

G05EGF
Scheduled for withdrawal at Mark 22
Replaced by G05PAF

Old: CALL G05EGF(E,A,NA,B,NB,R,NR,VAR,IFAIL)
New: AVAR = B(1)**2
 IF (AVAR.GT.0.0D0) THEN
 DO 10 I = 1, NB - 1
 THETA(I) = -B(I+1)/B(1)
 10 CONTINUE
 ELSE
 DO 20 I = 1, IQ
 THETA(I) = 0.0D0
 20 CONTINUE
 END IF
 MODE = 0
 CALL G05PAF(MODE,E,NA,A,NB-1,THETA,AVAR,VAR,N,X,IGEN,+
 ISEED,R,NR,IFAIL)

The double precision vector THETA must be of length at least NB - 1. The integer parameter MODE in
G05PAF is set to zero to initialise the reference vector only as is done in the call to G05EGF. The double
precision array X must be at least N in length where the integer parameter N is the number of terms in the
time series to be generated in a subsequent call to G05PAF with MODE = 1. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EGF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05PAF. See also the replacement call for the superseded routine G05EWF.

G05EHF
Scheduled for withdrawal at Mark 22
Replaced by G05NAF

Old: CALL G05EHF(INDEX,N,IFAIL)
New: CALL G05NAF(INDEX,N,IGEN,ISEED,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EHF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05NAF.

G05EJF
Scheduled for withdrawal at Mark 22
Replaced by G05NBF

Old: CALL G05EJF(IA,N,IZ,M,IFAIL)
New: CALL G05NBF(IA,N,IZ,M,IGEN,ISEED,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EJF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05NBF.

G05EWF
Scheduled for withdrawal at Mark 22
Replaced by G05PAF

Old: CALL G05EGF(E,A,NA,B,NB,R,NR,VAR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EWF(R,NR,IFAIL)
10 CONTINUE
New: AVAR = B(1)**2
 IF (AVAR.GT.0.0D0) THEN
 DO 10 I = 1, NB - 1
 THETA(I) = -B(I+1)/B(1)
10 CONTINUE
 ELSE
 DO 20 I = 1, IQ
 THETA(I) = 0.0D0
20 CONTINUE
 END IF

 MODE = 0
 CALL G05PAF(MODE,E,NA,A,NB-1,THETA,AVAR,VAR,N,X,IGEN,
 + ISEED,R,NR,IFAIL)
 MODE = 1
 CALL G05PAF(MODE,E,NA,A,NB-1,THETA,AVAR,VAR,N,X,IGEN,
 + ISEED,R,NR,IFAIL)

The double precision vector THETA must be of length at least NB − 1. The integer parameter MODE in G05PAF is set to zero to initialise the reference vector only as is done in the call to G05EGF. The double precision array X must be at least N in length where the integer parameter N is the number of terms in the time series to be generated in the subsequent call to G05PAF with MODE = 1. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EWF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05PAF. See also the replacement call for the superseded routine G05EGF.
Replacement Calls

G05EXF
Scheduled for withdrawal at Mark 22
Replaced by G05MZF

Old: CALL G05EXF(P,NP,IP,LP,R,NR,IFAIL)
DO 10 I = 1, N
 X(I) = G05EYF(R,NR)
10 CONTINUE
New: CALL G05MZF(0,P,NP,IP,LP,N,X,IGEN,ISEED,R2,NR2,IFAIL)
CALL G05MZF(1,P,NP,IP,LP,N,X,IGEN,ISEED,R2,NR2,IFAIL)

The double precision array R2 is the reference vector in G05MZF and this needs four more elements of storage than R, used in G05EXF. Thus for the dimension, NR2, of R2, we have NR2 ≥ NR + 4. The integer vector X must be of length at least N. The first parameter, MODE, in G05MZF can also take the value 2, see the G05MZF routine document for details. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EXF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05MZF.

G05EYF
Scheduled for withdrawal at Mark 22
Replaced by G05MZF

G05EYF is designed to be used in conjunction with other routines in the G05 chapter that have also been superseded. See the replacement calls for these routines for details.

G05EZF
Scheduled for withdrawal at Mark 22
Replaced by G05LZF

Old: CALL G05EAF(A,N,C,IC,EPS,R,NR,IFAIL)
CALL G05EZF(X,N,R,NR,IFAIL)
New: MODE = 0
CALL G05LZF(MODE,N,A,C,IC,X,IGEN,ISEED,R,NR,IFAIL)
MODE = 1
CALL G05LZF(MODE,N,A,C,IC,X,IGEN,ISEED,R,NR,IFAIL)

The integer parameter MODE in G05LZF is set to zero to initialise the reference vector only as is done in the call to G05EAF. The double precision array X must be at least N in length and will contain a multivariate Normal vector generated in the subsequent call to G05LZF with MODE = 1. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05EAF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LZF. See also the replacement call for the superseded routine G05EAF.

G05FAF
Scheduled for withdrawal at Mark 22
Replaced by G05LGF

Old: CALL G05FAF(A,B,N,X)
New: AA = MIN(A,B)
BB = MAX(A,B)
IFAIL = 0
CALL G05LGF(AA,BB,N,X,IGEN,ISEED,IFAIL)

In G05LGF the first parameter must be less than or equal to the second parameter, this does not have to be the case in G05FAF. The double precision array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05FAF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LGF.
G05FBF
Scheduled for withdrawal at Mark 22
Replaced by G05LJF

Old: CALL G05FBF(A,N,X)
New: AA = ABS(A)
 IFAIL = 0
 CALL G05LJF(AA,N,X,IGEN,ISEED,IFAIL)

In G05LJF the first parameter must be non-negative, this does not have to be the case in G05FBF. The **double precision** array X must be at least max(1,N) in length. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05FBF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LJF.

G05FDF
Scheduled for withdrawal at Mark 22
Replaced by G05LAF

Old: CALL G05FDF(A,B,N,X)
New: BB = B**2
 IFAIL = 0
 CALL G05LAF(A,BB,N,X,IGEN,ISEED,IFAIL)

In G05LAF the second parameter represents the variance whereas the second parameter in G05FDF represents the standard deviation. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05FDF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LAF.

G05FEF
Scheduled for withdrawal at Mark 22
Replaced by G05LEF

Old: CALL G05FEF(A,B,N,X,IFAIL)
New: CALL G05LEF(A,B,N,X,IGEN,ISEED,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05FEF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LEF.

G05FFF
Scheduled for withdrawal at Mark 22
Replaced by G05LFF

Old: CALL G05FFF(A,B,N,X,IFAIL)
New: CALL G05LFF(A,B,N,X,IGEN,ISEED,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05FFF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LFF.

G05FSF
Scheduled for withdrawal at Mark 22
Replaced by G05LPF

Old: CALL G05FSF(A,N,X,IFAIL)
New: CALL G05LPF(A,N,X,IGEN,ISEED,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05FSF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05LPF.
G05GAF
Scheduled for withdrawal at Mark 22
Replaced by G05QAF

Old: CALL G05GAF(SIDE,INIT,M,N,A,LDA,WK,IFAIL)
New: CALL G05QAF(SIDE,INIT,M,N,A,LDA,IGEN,ISEED,WK,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05GAF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05QAF.

G05GBF
Scheduled for withdrawal at Mark 22
Replaced by G05QBF

Old: CALL G05GBF(N,D,C,LDC,EPS,WK,IFAIL)
New: CALL G05QBF(N,D,C,LDC,EPS,IGEN,ISEED,WK,IFAIL)

The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05GBF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05QBF.

G05HDF
Scheduled for withdrawal at Mark 22
Replaced by G05PCF

Old: CALL G05HDF(MODE,K,IP,IQ,MEAN,PAR,LPAR,QQ,IX,N,W,REF,LIWORK,LIFAIL)
New: IF (MODE.EQ.’S’) THEN
 IMODE = 0
 ELSE IF (MODE.EQ.’C’) THEN
 IMODE = 1
 ELSE IF (MODE.EQ.’R’) THEN
 IMODE = 3
 END IF
 LL = 0
 DO 30 L = 1, IP
 DO 20 I = 1, K
 DO 10 J = 1, K
 LL = LL + 1
 PHI(I,J,L) = PAR(LL)
 10 CONTINUE
 20 CONTINUE
 30 CONTINUE
 DO 60 L = 1, IQ-1
 DO 50 I = 1, K
 DO 40 J = 1, K
 LL = LL + 1
 THETA(I,J,L) = PAR(LL)
 40 CONTINUE
 50 CONTINUE
 60 CONTINUE
 IF (MEAN.EQ.’M’) THEN
 DO 70 I = 1, K
 LL = LL + 1
 XMEAN(I) = PAR(LL)
 70 CONTINUE
 ELSE
 DO 80 I = 1, K
 XMEAN(I) = 0.0D0
 80 CONTINUE
 END IF
 CALL G05PCF(IMODE,K,XMEAN,IP,PHI,IQ,THETA,QQ,IX,N,W,IGEN,
 + ISEED,REF,LREF,LIWORK,LIFAIL)
The integer parameter IMODE should be set to 0, 1 or 3 in place of the parameter MODE having settings of 'S', 'C' or 'R' respectively. The double precision array PHI should have length at least max(1, IP × (K × K)); if dimensioned as PHI(K,K,IP) (as in the above example) then PHI(i,j,l) will contain the element PAR((l − 1) × k × k + (i − 1) × k + j). The double precision array THETA should have length at least max(1, IQ × (K × K)); if dimensioned as THETA(K, K, IQ) (as in the above example) then THETA(i,j,l) will contain the element PAR(IP × k × k + (l − 1) × k × k + (i − 1) × k + j). The double precision array XMEAN should have length at least K; if MEAN = 'M' then XMEAN(i) will contain the element PAR(IP + IQ × k × k + i), otherwise XMEAN should contain an array of zero values. The integer parameter IGEN contains the generator number to use and the integer array ISEED of dimension 4 contains the current state for that generator. G05HDF can be called without a prior call to one of the initialisation routines G05CBF or G05CCF; in such cases a prior call to G05KBF or G05KCF must precede the first call to G05PCF.

G05YAF
Scheduled for withdrawal at Mark 23
Replaced by G05YCF, G05YDF, G05YEF, G05YFF, G05YGF, G05YHF, G05YJF and G05YKF

This routine has been replaced by a suite of smaller routines consisting of initialisation routines and generator routines. So for:

Faure quasi random numbers

Old: CALL G05YAF(.TRUE.,'F',ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YCF(IDIM,IREF,IFAIL)

Old: CALL G05YAF(.FALSE.,'F',ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YDF(N,QUASI,IREF,IFAIL)

Sobol quasi random numbers

Old: CALL G05YAF(.TRUE.,'S',ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YEF(IDIM,IREF,ISKIP,IFAIL)

Old: CALL G05YAF(.FALSE.,'S',ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YFF(N,QUASI,IREF,IFAIL)

Neiderreiter quasi random numbers

Old: CALL G05YAF(.TRUE.,'N',ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YGF(IDIM,IREF,ISKIP,IFAIL)

Old: CALL G05YAF(.FALSE.,'N',ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YHF(N,QUASI,IREF,IFAIL)

G05YBF
Scheduled for withdrawal at Mark 23
Replaced by G05YCF, G05YDF, G05YEF, G05YFF, G05YGF, G05YHF, G05YJF and G05YKF

This routine has been replaced by a suite of routines consisting of the relevant initialisation routine followed by one of two possible generator routines.

Faure quasi random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,'F',.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YCF(IDIM,IREF,IFAIL)

Old: CALL G05YBF(.FALSE.,'F',.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(XMEAN,STD,N,QUASI,IREF,IFAIL)

Sobol quasi random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,'S',.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YEF(IDIM,IREF,ISKIP,IFAIL)
Neiderreiter quasi random numbers with Gaussian probability:
Old: CALL G05YBF(.FALSE.,'S',.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(XMEAN,STD,N,QUASI,IREF,IFAIL)
Old: CALL G05YBF(.TRUE.,'N',.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YGF(IDIM,IREF,SKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,'N',.FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(XMEAN,STD,N,QUASI,IREF,IFAIL)

Faure quasi random numbers with log Normal probability:
Old: CALL G05YBF(.TRUE.,'F',.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YCF(IDIM,IREF,IFAIL)
Old: CALL G05YBF(.FALSE.,'F',.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(XMEAN,STD,N,QUASI,IREF,IFAIL)

Sobol quasi random numbers with log Normal probability:
Old: CALL G05YBF(.TRUE.,'S',.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YEF(IDIM,IREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,'S',.TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(XMEAN,STD,N,QUASI,IREF,IFAIL)

G05ZAF
Scheduled for withdrawal at Mark 22

G08 – Nonparametric Statistics

G08ABF
Withdrawn at Mark 16
Replaced by G08AGF
Old: CALL G08ABF(X,Y,N,W1,W2,W,N1,P,IFAIL)
New: DO 20 I = 1, N
 Z(I) = X(I) - Y(I)
20 CONTINUE
XME = 0.0D0
CALL G08AGF(N,Z,XME,'Lower-tail','No-zeros',W,WNOR,P,+
 N1,W1,IFAIL)

W1 is a double precision work array of dimension (3 × N). The double precision array W2 is no longer required. WNOR returns the normalized Wilcoxon test statistic. The double precision array Z, of dimension (N), contains the difference between the paired sample observations, and by setting the double precision variable XME to zero the routine may be used to test whether the medians of the two matched or paired samples are equal.
G08ADF
Withdrawn at Mark 16
Replaced by G08AHF, G08AJF and G08AKF

Old: CALL G08ADF(X,N,N1,W,U,P,IFAIL)
New: N2 = N - N1
CALL G08AHF(N1,X,N2,X(N1+1),’Lower-tail’,U,UNOR,P,
+ TIES,RANKS,W,IFAIL)

The observations from the two independent samples must be stored in two separate double precision arrays, of dimensions N1 and N2, where N2 = N - N1, rather than consecutively in one array as in G08ADF.

UNOR returns the normalized Mann–Whitney U statistic. The LOGICAL parameter TIES indicates whether ties were present in the pooled sample or not and RANKS, a double precision array of dimension (N1+N2), returns the ranks of the pooled sample.

Both G08ADF and its replacement routine G08AHF return approximate tail probabilities for the test statistic. To compute exact tail probabilities G08AJF may be used if there are no ties in the pooled sample and G08AKF may be used if there are ties in the pooled sample.

G08CAF
Withdrawn at Mark 16
Replaced by G08CBF

Old: CALL G08CAF(N,X,NULL,NP,P,NEST,NTYPE,D,PROB,S,IND,IFAIL)
New: CALL G08CBF(N,X,DIST,PAR,NEST,NTYPE,D,Z,PROB,S,IFAIL)

The following table indicates how existing choices for the null distribution, indicated through the INTEGER variable NULL in G08CAF, may be made in G08CBF using the character variable DIST.

<table>
<thead>
<tr>
<th>null distribution</th>
<th>G08CAF – NULL</th>
<th>G08CBF – DIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>uniform</td>
<td>1</td>
<td>’U’</td>
</tr>
<tr>
<td>Normal</td>
<td>2</td>
<td>’N’</td>
</tr>
<tr>
<td>Poisson</td>
<td>3</td>
<td>’P’</td>
</tr>
<tr>
<td>exponential</td>
<td>4</td>
<td>’E’</td>
</tr>
</tbody>
</table>

PAR is a double precision array of dimension (1) for both the one and two parameter distributions, but only the first element of PAR is actually referenced (used) if the chosen null distribution has only one parameter. The input parameter NP is no longer required.

On exit S contains the sample observations sorted into ascending order. It no longer contains the sample cumulative distribution function but this may be computed from S.

G13 – Time Series Analysis

G13DAF
Withdrawn at Mark 17
Replaced by G13DMF

Old: CALL G13DAF(X,NXM,NX,NSM,NS,NL,ICR,C0,C,IFAIL)
New: C First transpose the data matrix X
C note NSM is used as the first dimension of the array W
D0 20 I = 1, NS
CALL F06EFF(NX,X,(1,I),1,W(I,1),NSM)
20 CONTINUE
C then if ICR = 0 in the call to G13DAF
CALL G13DMF(’V-Covariances’,NS,NX,W,NSM,NS,MEAN,C0,C,IFAIL)
C else if ICR = 1 in the call to G13DAF
CALL G13DMF(’R-Correlations’,NS,NX,W,NSM,NS,MEAN,C0,C,IFAIL)

Note that in G13DAF the NS series are stored in the columns of X whereas in G13DMF these series are stored in rows; hence it is necessary to transpose the data array.

The double precision array WMEAN must be of length NS, and on output stores the means of each of the NS series.
The diagonal elements of C_0 store the variances of the series if covariances are requested, but the standard deviations if correlations are requested.

H01ABF
Withdrawn at Mark 12
Replaced by E04MFF/E04MFA

H01ADF
Withdrawn at Mark 12
Replaced by E04MFF/E04MFA

H01AEF
Withdrawn at Mark 9
Replaced by E04MFF/E04MFA

H01AFF
Withdrawn at Mark 12
Replaced by E04MFF/E04MFA

H02AAF
Withdrawn at Mark 12
Replaced by E04NCF/E04NCA

H02BAF
Withdrawn at Mark 15
Replaced by H02BBF

Old: CALL H02BAF(A,MM,N1,M,N,200,L,X,NUMIT,OPT,IFAIL)
New: C
M, N and MM must be set before these declaration statements

```fortran
INTEGER MAXDPT, LIWORK, LRWORK, ITMAX, MSGLVL, MAXNOD, INTFST
PARAMETER (LIWORK = (25+N+M)*MAXDPT + 5*N+M+4)
PARAMETER (LRWORK = MAXDPT*(N+2) + 2*N*N+13*N + 12*M)
INTEGER INTVAR(N), IWORK(LIWORK)
double precision BIGBND, TOLFES, TOLIV, ROPT
double precision RA(MM,N), RX(N), CVEC(N), BL(N+M), BU(N+M), RWORK(LRWORK)
DO 10 J = 1, N
   INTVAR(J) = 1
   CVEC(J) = A(1,J)
   RX(J) = 1.0D0
DO 20 I = 1, M
   RA(I,J) = A(I+1,J)
20 CONTINUE
10 CONTINUE
BIGBND = 1.0e20
DO 30 I = 1, N
   BL(I) = 0.0D0
   BU(I) = BIGBND
30 CONTINUE
DO 40 I = N+1, N+M
   BU(I) = A(I-N+1,N+1)
   BL(I) = -BIGBND
40 CONTINUE
ITMAX = 0
MSGLVL = 0
MAXNOD = 0
```

Replacement Calls

NAG Fortran Library Manual

REPLACE.76 [NP3657/21]
INTFST = 0
TOLIV = 0.0D0
TOLFES = 0.0D0
MAXDPT = 3*N/2
IFAIL = 0
CALL H02BBF(ITMAX,MSGLVL,N,M,RA,MM,BL,BU,INTVAR,CVEC,MAXNOD,
+ INTFST,MAXDPT,TOLIV,TOLFES,BIGBND,RX,ROPT,IWORK,
+ LIWORK,RWORK,LRWORK,IFAIL)
L = 1
IF (IFAIL.EQ.0) L = 0
IF (IFAIL.EQ.4) L = 2
IF (L.EQ.0) THEN
 DO 50 I = 1, N
 X(I) = RX(I)
 50 CONTINUE
OPT = ROPT
ENDIF

The code indicates the minimum changes necessary, but H02BBF has additional flexibility and users may wish to take advantage of new features. It is strongly recommended that users consult the routine document.

M01 – Sorting

M01AAF
Withdrawn at Mark 13
Replaced by M01DAF

Old: CALL M01AAF(A,M,N,IP,IST,IFAIL)
New: CALL M01DAF(A(M),1,N-M+1,'A',IP(M),IFAIL)

The array IST is no longer needed.

M01ABF
Withdrawn at Mark 13
Replaced by M01DAF

Old: CALL M01ABF(A,M,N,IP,IST,IFAIL)
New: CALL M01DAF(A(M),1,N-M+1,'D',IP(M),IFAIL)

The array IST is no longer needed.

M01ACF
Withdrawn at Mark 13
Replaced by M01DBF

Old: CALL M01ACF(IA,M,N,IP,IST,IFAIL)
New: CALL M01DBF(IA(M),1,N-M+1,'A',IP(M),IFAIL)

The array IST is no longer needed.

M01ADF
Withdrawn at Mark 13
Replaced by M01DBF

Old: CALL M01ADF(IA,M,N,IP,IST,IFAIL)
New: CALL M01DBF(IA(M),1,N-M+1,'D',IP(M),IFAIL)

The array IST is no longer needed.

M01AEF
Withdrawn at Mark 13
Replaced by M01DEF and M01EAF

Old: CALL M01AEF(A,NR,NC,IC,T,TT,IFAIL)
New: CALL M01DEF(A,NR,1,NR,IC,IC,'A',IRANK,IFAIL)
 DO 10 I = 1, NC

[NP3657/21] REPLAC77
The double precision arrays T and TT are no longer needed, but a new integer array IRANK of length NR is required.

M01AFF
Withdrawn at Mark 13
Replaced by M01DEF and M01EAF

Old: CALL M01AFF(A,NR,NC,IC,T,TT,IFAIL)
New: CALL M01DEF(A,NR,1,NR,IC,IC,'D',IRANK,IFAIL)
DO 10 I = 1, NC
CALL M01EAF(A(1,I),1,NR,IRANK,IFAIL)
10 CONTINUE

The double precision arrays T and TT are no longer needed, but a new integer array IRANK of length NR is required.

M01AGF
Withdrawn at Mark 13
Replaced by M01DFF and M01EBF

Old: CALL M01AGF(IA,NR,NC,IC,K,L,IFAIL)
New: CALL M01DFF(IA,NR,1,NR,IC,IC,'A',IRANK,IFAIL)
DO 10 I = 1, NC
CALL M01EBF(IA(1,I),1,NR,IRANK,IFAIL)
10 CONTINUE

The integer arrays K and L are no longer needed, but a new integer array IRANK of length NR is required.

M01AHF
Withdrawn at Mark 13
Replaced by M01DFF and M01EBF

Old: CALL M01AHF(IA,NR,NC,IC,K,L,IFAIL)
New: CALL M01DFF(IA,NR,1,NR,IC,IC,'D',IRANK,IFAIL)
DO 10 I = 1, NC
CALL M01EBF(IA(1,I),1,NR,IRANK,IFAIL)
10 CONTINUE

The integer arrays K and L are no longer needed, but a new integer array IRANK of length NR is required.

M01AJF
Withdrawn at Mark 16
Replaced by M01CAF, M01DAF and M01ZAF

Old: CALL M01AJF(A,W,IND,INDW,N,NW,IFAIL)
New: CALL M01DAF(A,1,N,'A',IND,IFAIL)
CALL M01ZAF(IND,1,N,IFAIL)
CALL M01CAF(A,1,N,'A',IFAIL)

The arrays W and INDW are no longer needed.

M01AKF
Withdrawn at Mark 16
Replaced by M01CAF, M01DAF and M01ZAF

Old: CALL M01AKF(A,W,IND,INDW,N,NW,IFAIL)
New: CALL M01DAF(A,1,N,'D',IND,IFAIL)
CALL M01ZAF(IND,1,N,IFAIL)
CALL M01CAF(A,1,N,'D',IFAIL)

The arrays W and INDW are no longer needed.
Introduction

Replacement Calls

M01ALF
Withdrawn at Mark 13
Replaced by M01CBF, M01DBF and M01ZAF

Old: CALL M01ALF(IA,IW,IND,INDW,N,NW,IFAIL)
New: CALL M01DBF(IA,1,N,’A’,IND,IFAIL)
CALL M01ZAF(IND,1,N,IFAIL)
CALL M01CBF(IA,1,N,’A’,IFAIL)

The arrays IW and INDW are no longer needed.

M01AMF
Withdrawn at Mark 13
Replaced by M01CBF, M01DBF and M01ZAF

Old: CALL M01AMF(IA,IW,IND,INDW,N,NW,IFAIL)
New: CALL M01DBF(IA,1,N,’D’,IND,IFAIL)
CALL M01ZAF(IND,1,N,IFAIL)
CALL M01CBF(IA,1,N,’D’,IFAIL)

The arrays IW and INDW are no longer needed.

M01ANF
Withdrawn at Mark 13
Replaced by M01CAF

Old: CALL M01ANF(A,I,J,IFAIL)
New: CALL M01CAF(A,I,J,’A’,IFAIL)

M01APF
Withdrawn at Mark 16
Replaced by M01CAF

Old: CALL M01APF(A,I,J,IFAIL)
New: CALL M01CAF(A,I,J,’D’,IFAIL)

M01AQF
Withdrawn at Mark 13
Replaced by M01CBF

Old: CALL M01AQF(IA,I,J,IFAIL)
New: CALL M01CBF(IA,I,J,’A’,IFAIL)

M01ARF
Withdrawn at Mark 13
Replaced by M01CBF

Old: CALL M01ARF(IA,I,J,IFAIL)
New: CALL M01CBF(IA,I,J,’D’,IFAIL)

The character-sorting routines M01BAF, M01BBF, M01BCF and M01BDF have no exact replacements,
because they require the data to be stored in an integer array, whereas the new character-sorting routines
require the data to be stored in a character array. The following advice assumes that calling programs are
modified so that the data is stored in a character array CH instead of in an integer array IA; \texttt{nchar} denotes
the machine-dependent number of characters stored in an integer variable. The new routines sort according
to the ASCII collating sequence, which may differ from the machine-dependent collating sequence used by
the old routines.

M01BAF
Withdrawn at Mark 13
Replaced by M01CCF

Old: CALL M01BAF(IA,I,J,IFAIL)
New: CALL M01CCF(CH,I,J,1,\texttt{nchar},’D’,IFAIL)

assuming that each element of the character array CH corresponds to one element of the integer array IA.
M01BBF
Withdrawn at Mark 13
Replaced by M01CCF

Old: CALL M01BBF(IA,I,J,IFAIL)
New: CALL M01CCF(CH,I,J,I,nchar,’A’,IFAIL)

assuming that each element of the character array CH corresponds to one element of the integer array IA.

M01BCF
Withdrawn at Mark 13
Replaced by M01CCF

Old: CALL M01BCF(IA,NR,NC,L1,L2,LC,IUC,IT,ITT,IFAIL)
New: CALL M01CCF(CH,LC,IUC,(L1-1)*nchar-1,L2*nchar,’D’,IFAIL)

provided that each element of the character array CH corresponds to a whole column of the integer array IA. The arrays IT and ITT are no longer needed. The call of M01CCF will fail if NR*nchar exceeds 255.

M01BDF
Withdrawn at Mark 13
Replaced by M01CCF

Old: CALL M01BDF(IA,NR,NC,L1,L2,LC,IUC,IT,ITT,IFAIL)
New: CALL M01CCF(CH,LC,IUC,(L1-1)*nchar-1,L2*nchar,’A’,IFAIL)

provided that each element of the character array CH corresponds to a whole column of the integer array IA. The arrays IT and ITT are no longer needed. The call of M01CCF will fail if NR*nchar exceeds 255.

P01 – Error Trapping

P01AAF
Withdrawn at Mark 13
Replaced by P01ABF

Existing programs should be modified to call P01ABF. Please consult the appropriate routine document.

X02 – Machine Constants

X02AAF
Withdrawn at Mark 16
Replaced by X02AJF

Old: X02AAF(X)
New: X02AJF()

X02ABF
Withdrawn at Mark 16
Replaced by X02AKF

Old: X02ABF(X)
New: X02AKF()

X02ACF
Withdrawn at Mark 16
Replaced by X02ALF

Old: X02ACF(X)
New: X02ALF()
X02ADF
Withdrawn at Mark 14
Replaced by X02AJF and X02AKF
Old: X02ADF(X)
New: X02AKF()/X02AJF()

X02AEF
Withdrawn at Mark 14
Replaced by X02AMF
Old: X02AEF(X)
New: LOG(X02AMF())

Note: the replacement expressions may not return the same value, but the value will be sufficiently close, and safe, for the purposes for which it is used in the Library.

X02AFF
Withdrawn at Mark 14
Replaced by X02AMF
Old: X02AFF(X)
New: -LOG(X02AMF())

Note: the replacement expressions may not return the same value, but the value will be sufficiently close, and safe, for the purposes for which it is used in the Library.

X02AGF
Withdrawn at Mark 16
Replaced by X02AMF
Old: X02AGF(X)
New: X02AMF()

Note: the replacement expressions may not return the same value, but the value will be sufficiently close, and safe, for the purposes for which it is used in the Library.

X02BAF
Withdrawn at Mark 14
Replaced by X02BHF
Old: X02BAF(X)
New: X02BHF()

X02BCF
Withdrawn at Mark 14
Replaced by X02AMF
Old: X02BCF(X)
New: -LOG(X02AMF())/LOG(2.0)

Note: the replacement expressions may not return the same value, but the value will be sufficiently close, and safe, for the purposes for which it is used in the Library.

X02BDF
Withdrawn at Mark 14
Replaced by X02AMF
Old: X02BDF(X)
New: LOG(X02AMF())/LOG(2.0)

Note: the replacement expressions may not return the same value, but the value will be sufficiently close, and safe, for the purposes for which it is used in the Library.
X02CAF
Withdrawn at Mark 17
not needed except with F01BTF and F01BXF