| Routine Name |
Mark of Introduction |
Purpose |
| F01ABF
Example Text Example Data |
1 | Inverse of real symmetric positive-definite matrix using iterative refinement |
| F01ADF
Example Text Example Data |
2 | Inverse of real symmetric positive-definite matrix |
| F01BLF
Example Text Example Data |
5 | Pseudo-inverse and rank of realm by n matrix (m ≥ n) |
| F01BRF
Example Text Example Data |
7 | LU factorization of real sparse matrix |
| F01BSF
Example Text Example Data |
7 | LU factorization of real sparse matrix with known sparsity pattern |
| F01BUF
Example Text Example Data |
7 | ULDLTUT factorization of real symmetric positive-definite band matrix |
| F01BVF
Example Text Example Data |
7 | Reduction to standard form, generalized real symmetric-definite banded eigenproblem |
| F01CKF
Example Text |
2 | Matrix multiplication |
| F01CRF
Example Text |
7 | Matrix transposition |
| F01CTF
Example Text Example Data |
14 | Sum or difference of two real matrices, optional scaling and transposition |
| F01CWF
Example Text Example Data |
14 | Sum or difference of two complex matrices, optional scaling and transposition |
| F01ECF
Example Text Example Data |
22 | Real matrix exponential |
| F01LEF
Example Text Example Data |
11 | LU factorization of real tridiagonal matrix |
| F01LHF
Example Text Example Data |
13 | LU factorization of real almost block diagonal matrix |
| F01MCF
Example Text Example Data |
8 | LDLT factorization of real symmetric positive-definite variable-bandwidth matrix |
| F01QGF
Example Text Example Data |
14 | RQ factorization of realm by n upper trapezoidal matrix (m ≤ n) |
| F01QJF
Example Text Example Data |
14 | RQ factorization of realm by n matrix (m ≤ n) |
| F01QKF
Example Text Example Data |
14 | Operations with orthogonal matrices, form rows of Q, after RQ factorization by F01QJF |
| F01RGF
Example Text Example Data |
14 | RQ factorization of complex m by n upper trapezoidal matrix (m ≤ n) |
| F01RJF
Example Text Example Data |
14 | RQ factorization of complex m by n matrix (m ≤ n) |
| F01RKF
Example Text Example Data |
14 | Operations with unitary matrices, form rows of Q, after RQ factorization by F01RJF |
| F01ZAF
Example Text Example Data |
14 | Convert real matrix between packed triangular and square storage schemes |
| F01ZBF
Example Text Example Data |
14 | Convert complex matrix between packed triangular and square storage schemes |
| F01ZCF
Example Text Example Data |
14 | Convert real matrix between packed banded and rectangular storage schemes |
| F01ZDF
Example Text Example Data |
14 | Convert complex matrix between packed banded and rectangular storage schemes |