| Routine Name |
Mark of Introduction |
Purpose |
| F01ABF
Example Text Example Data |
1 | nagf_matop_real_symm_posdef_inv Inverse of real symmetric positive definite matrix using iterative refinement |
| F01ADF
Example Text Example Data |
2 | nagf_matop_real_symm_posdef_inv_noref Inverse of real symmetric positive definite matrix |
| F01BLF
Example Text Example Data |
5 | nagf_matop_real_gen_pseudinv Pseudo-inverse and rank of real m by n matrix (m ≥ n) |
| F01BRF
Example Text Example Data |
7 | nagf_matop_real_gen_sparse_lu LU factorization of real sparse matrix |
| F01BSF
Example Text Example Data |
7 | nagf_matop_real_gen_sparse_lu_reuse LU factorization of real sparse matrix with known sparsity pattern |
| F01BUF
Example Text Example Data |
7 | nagf_matop_real_symm_posdef_fac ULDLTUT factorization of real symmetric positive definite band matrix |
| F01BVF
Example Text Example Data |
7 | nagf_matop_real_symm_posdef_geneig Reduction to standard form, generalized real symmetric-definite banded eigenproblem |
| F01CKF
Example Text Example Data |
2 | nagf_matop_real_gen_matmul Matrix multiplication |
| F01CRF
Example Text Example Data |
7 | nagf_matop_real_gen_trans_inplace Matrix transposition |
| F01CTF
Example Text Example Data |
14 | nagf_matop_real_addsub Sum or difference of two real matrices, optional scaling and transposition |
| F01CWF
Example Text Example Data |
14 | nagf_matop_complex_addsub Sum or difference of two complex matrices, optional scaling and transposition |
| F01ECF
Example Text Example Data |
22 | nagf_matop_real_gen_matrix_exp Real matrix exponential |
| F01EDF
Example Text Example Data |
23 | nagf_matop_real_symm_matrix_exp Real symmetric matrix exponential |
| F01EFF
Example Text Example Data |
23 | nagf_matop_real_symm_matrix_fun Function of a real symmetric matrix |
| F01FCF
Example Text Example Data |
23 | nagf_matop_complex_gen_matrix_exp Complex matrix exponential |
| F01FDF
Example Text Example Data |
23 | nagf_matop_complex_herm_matrix_exp Complex Hermitian matrix exponential |
| F01FFF
Example Text Example Data |
23 | nagf_matop_complex_herm_matrix_fun Function of a complex Hermitian matrix |
| F01LEF
Example Text Example Data |
11 | nagf_matop_real_gen_tridiag_lu LU factorization of real tridiagonal matrix |
| F01LHF
Example Text Example Data |
13 | nagf_matop_real_gen_blkdiag_lu LU factorization of real almost block diagonal matrix |
| F01MCF
Example Text Example Data |
8 | nagf_matop_real_vband_posdef_fac LDLT factorization of real symmetric positive definite variable-bandwidth matrix |
| F01QGF
Example Text Example Data |
14 | nagf_matop_real_trapez_rq RQ factorization of real m by n upper trapezoidal matrix (m ≤ n) |
| F01QJF
Example Text Example Data |
14 | nagf_matop_real_gen_rq RQ factorization of real m by n matrix (m ≤ n) |
| F01QKF
Example Text Example Data |
14 | nagf_matop_real_gen_rq_formq Operations with orthogonal matrices, form rows of Q, after RQ factorization by F01QJF |
| F01RGF
Example Text Example Data |
14 | nagf_matop_complex_trapez_rq RQ factorization of complex m by n upper trapezoidal matrix (m ≤ n) |
| F01RJF
Example Text Example Data |
14 | nagf_matop_complex_gen_rq RQ factorization of complex m by n matrix (m ≤ n) |
| F01RKF
Example Text Example Data |
14 | nagf_matop_complex_gen_rq_formq Operations with unitary matrices, form rows of Q, after RQ factorization by F01RJF |
| F01VAF
Example Text Example Data |
23 | DTRTTP nagf_matop_dtrttp Copies a real triangular matrix from full format to packed format scheme |
| F01VBF
Example Text Example Data |
23 | ZTRTTP nagf_matop_ztrttp Copies a complex triangular matrix from full format to packed format scheme |
| F01VCF
Example Text Example Data |
23 | DTPTTR nagf_matop_dtpttr Copies a real triangular matrix from packed format to full format scheme |
| F01VDF
Example Text Example Data |
23 | ZTPTTR nagf_matop_ztpttr Copies a complex triangular matrix from packed format to full format scheme |
| F01VEF
Example Text Example Data |
23 | DTRTTF nagf_matop_dtrttf Copies a real triangular matrix from full format to Rectangular Full Packed format scheme |
| F01VFF
Example Text Example Data |
23 | ZTRTTF nagf_matop_ztrttf Copies a complex triangular matrix from full format to Rectangular Full Packed format scheme |
| F01VGF
Example Text Example Data |
23 | DTFTTR nagf_matop_dtfttr Copies a real triangular matrix from Rectangular Full Packed format to full format scheme |
| F01VHF
Example Text Example Data |
23 | ZTFTTR nagf_matop_ztfttr Copies a complex triangular matrix from Rectangular Full Packed format to full format scheme |
| F01VJF
Example Text Example Data |
23 | DTPTTF nagf_matop_dtpttf Copies a real triangular matrix from packed format to Rectangular Full Packed format scheme |
| F01VKF
Example Text Example Data |
23 | ZTPTTF nagf_matop_ztpttf Copies a complex triangular matrix from packed format to Rectangular Full Packed format scheme |
| F01VLF
Example Text Example Data |
23 | DTFTTP nagf_matop_dtfttp Copies a real triangular matrix from Rectangular Full Packed format to packed format scheme |
| F01VMF
Example Text Example Data |
23 | ZTFTTP nagf_matop_ztfttp Copies a complex triangular matrix from Rectangular Full Packed format to packed format scheme |
| F01ZAF
Example Text Example Data |
14 | nagf_matop_real_tri_pack Convert real matrix between packed triangular and square storage schemes |
| F01ZBF
Example Text Example Data |
14 | nagf_matop_complex_tri_pack Convert complex matrix between packed triangular and square storage schemes |
| F01ZCF
Example Text Example Data |
14 | nagf_matop_real_band_pack Convert real matrix between packed banded and rectangular storage schemes |
| F01ZDF
Example Text Example Data |
14 | nagf_matop_complex_band_pack Convert complex matrix between packed banded and rectangular storage schemes |