NAG Library Routine Document
 G02BUF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02BUF calculates the sample means and sums of squares and cross-products, or sums of squares and cross-products of deviations from the mean, in a single pass for a set of data. The data may be weighted.

2 Specification

```
SUBROUTINE GO2BUF (MEAN, WEIGHT, N, M, X, LDX, WT, SW, WMEAN, C, IFAIL)
INTEGER N, M, LDX, IFAIL
REAL (KIND=nag_wp) X(LDX,M), WT(*), SW, WMEAN(M), C((M*M+M)/2)
CHARACTER(1) MEAN, WEIGHT
```


3 Description

G02BUF is an adaptation of West's WV2 algorithm; see West (1979). This routine calculates the (optionally weighted) sample means and (optionally weighted) sums of squares and cross-products or sums of squares and cross-products of deviations from the (weighted) mean for a sample of n observations on m variables X_{j}, for $j=1,2, \ldots, m$. The algorithm makes a single pass through the data.

For the first $i-1$ observations let the mean of the j th variable be $\bar{x}_{j}(i-1)$, the cross-product about the mean for the j th and k th variables be $c_{j k}(i-1)$ and the sum of weights be W_{i-1}. These are updated by the i th observation, $x_{i j}$, for $j=1,2, \ldots, m$, with weight w_{i} as follows:

$$
\begin{aligned}
& W_{i}=W_{i-1}+w_{i} \\
& \bar{x}_{j}(i)=\bar{x}_{j}(i-1)+\frac{w_{i}}{W_{i}}\left(x_{j}-\bar{x}_{j}(i-1)\right), \quad j=1,2, \ldots, m
\end{aligned}
$$

and
$c_{j k}(i)=c_{j k}(i-1)+\frac{w_{i}}{W_{i}}\left(x_{j}-\bar{x}_{j}(i-1)\right)\left(x_{k}-\bar{x}_{k}(i-1)\right) W_{i-1}, \quad j=1,2, \ldots, m$ and $k=j, j+1, \ldots, m$.
The algorithm is initialized by taking $\bar{x}_{j}(1)=x_{1 j}$, the first observation, and $c_{i j}(1)=0.0$.
For the unweighted case $w_{i}=1$ and $W_{i}=i$ for all i.
Note that only the upper triangle of the matrix is calculated and returned packed by column.

4 References

Chan T F, Golub G H and Leveque R J (1982) Updating Formulae and a Pairwise Algorithm for Computing Sample Variances Compstat, Physica-Verlag

West D H D (1979) Updating mean and variance estimates: An improved method Comm. ACM 22 532-555

5 Parameters
1: MEAN - CHARACTER(1)
Input
On entry: indicates whether G02BUF is to calculate sums of squares and cross-products, or sums of squares and cross-products of deviations about the mean.

MEAN = ' M^{\prime}
The sums of squares and cross-products of deviations about the mean are calculated.
MEAN $=$ ' Z '
The sums of squares and cross-products are calculated.
Constraint: MEAN $=$ ' M^{\prime} or ' Z '.
2: WEIGHT - CHARACTER(1)
Input
On entry: indicates whether the data is weighted or not.
WEIGHT = 'U'
The calculations are performed on unweighted data.
WEIGHT $=$ ' ${ }^{\prime}$ '
The calculations are performed on weighted data.
Constraint: WEIGHT = ' W ' or ' U '.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of observations in the dataset.
Constraint: $\mathrm{N} \geq 1$.
4: M - INTEGER
Input
On entry: m, the number of variables.
Constraint: $\mathrm{M} \geq 1$.

Input
On entry: $\mathrm{X}(i, j)$ must contain the i th observation on the j th variable, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.

6: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G02BUF is called.

Constraint: $\mathrm{LDX} \geq \mathrm{N}$.
7: $\quad \mathrm{WT}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array WT must be at least N if $\mathrm{WEIGHT}=$ ' W ', and at least 1 otherwise.

On entry: the optional weights of each observation.
If WEIGHT $=$ ' U ', WT is not referenced.
If WEIGHT $=$ ' W ', $\mathrm{WT}(i)$ must contain the weight for the i th observation.
Constraint: if WEIGHT $=$ ' W ', WT $(i) \geq 0.0$, for $i=1,2, \ldots, n$.
8: \quad SW - REAL (KIND=nag_wp)
Output
On exit: the sum of weights.
If WEIGHT $=$ ' U ', SW contains the number of observations, n.

9: $\quad \mathrm{WMEAN}(\mathrm{M})$ - REAL (KIND=nag_wp) array
Output
On exit: the sample means. WMEAN (j) contains the mean for the j th variable.
10: $\quad \mathrm{C}((\mathrm{M} \times \mathrm{M}+\mathrm{M}) / 2)-$ REAL (KIND=nag_wp) array
Output
On exit: the cross-products.
If MEAN $=$ ' M^{\prime} ' C contains the upper triangular part of the matrix of (weighted) sums of squares and cross-products of deviations about the mean.
If MEAN $=$ ' Z ', C contains the upper triangular part of the matrix of (weighted) sums of squares and cross-products.

These are stored packed by columns, i.e., the cross-product between the j th and k th variable, $k \geq j$, is stored in $\mathrm{C}(k \times(k-1) / 2+j)$.

11: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{M}<1$,
or $\quad \mathrm{N}<1$,
or \quad LDX $<\mathrm{N}$.
IFAIL $=2$
On entry, MEAN \neq ' M^{\prime} or ' Z '.
IFAIL $=3$
On entry, WEIGHT \neq ' W ' or ' U '.
IFAIL $=4$
On entry, WEIGHT $=$ ' W ', and a value of $\mathrm{WT}<0.0$.

7 Accuracy

For a detailed discussion of the accuracy of this algorithm see Chan et al. (1982) or West (1979).

8 Further Comments

G02BWF may be used to calculate the correlation coefficients from the cross-products of deviations about the mean. The cross-products of deviations about the mean may be scaled using F06EDF (DSCAL) or F06FDF to give a variance-covariance matrix.

The means and cross-products produced by G02BUF may be updated by adding or removing observations using G02BTF.

9 Example

A program to calculate the means, the required sums of squares and cross-products matrix, and the variance matrix for a set of 3 observations of 3 variables.

9.1 Program Text

```
Program gO2bufe
    GO2BUF Example Program Text
    Mark 24 Release. NAG Copyright 2012.
    .. Use Statements ..
    Use nag_library, Only: dscal, g02buf, nag_wp, x04ccf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
    Integer, Parameter : : incl = 1, nin = 5, nout = 6
.. Local Scalars .
    Real (Kind=nag_wp) :: alpha, sw
    Integer :: i, ifail, lc, ldx, lwt, m, n
    Character (1) :: mean, weight
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: c(:), wmean(:), wt(:), x(:,:)
! .. Executable Statements ..
    Write (nout,*) 'GO2BUF Example Program Results'
    Write (nout,*)
    Flush (nout)
! Skip heading in data file
    Read (nin,*)
    Read in problem size
    Read (nin,*) mean, weight, m, n
    If (weight=='W' .Or. weight=='w') Then
        lwt = n
    Else
        lwt = 0
    End If
    ldx = n
    lc = (m*m+m)/2
    Allocate (wt(lwt),x(ldx,m),wmean(m),c(lc))
! Read in data
    If (lwt>0) Then
        Read (nin,*) wt(1:n)
    End If
    Read (nin,*)(x(i,1:m),i=1,n)
! Calculate sums of squares and cross-products matrix
    ifail = 0
    Call g02buf(mean,weight,n,m,x,ldx,wt,sw,wmean,c,ifail)
! Display results
    Write (nout,*) 'Means'
    Write (nout,99999) wmean(1:m)
```

```
Write (nout,*)
Write (nout,*) 'Weights'
Write (nout,99999) wt(1:n)
Write (nout,*)
Flush (nout)
ifail = 0
Call x04ccf('Upper','Non-unit',m,c,'Sums of squares and cross-products', &
    ifail)
! Convert the sums of squares and cross-products to a variance matrix
If (sw>one) Then
        alpha = one/(sw-one)
    The NAG name equivalent of dscal is f06edf
    Call dscal(lc,alpha,c,incl)
    Write (nout,*)
    Flush (nout)
    ifail = 0
    Call x04ccf('Upper','Non-unit',m,c,'Variance matrix',ifail)
End If
99999 Format (1X,6F14.4)
End Program gO2bufe
```


9.2 Program Data

```
\begin{tabular}{ccc} 
GO2BUF & Example Program Data \\
'M' \(^{\prime}\) & 'W' & 3 \\
0.1300 & 1.3070 & 3 \\
9.1231 & 3.7011 & 4.3700 \\
0.9310 & 0.0900 & 0.8870 \\
0.0009 & 0.0099 & 0.0999
\end{tabular}
```


9.3 Program Results

GO2BUF Example Program Results			
Means			
1.3299	0.3		0.9874
Weights			
0.1300	1.3		0.3700
Sums of squares and cross-products			
1	2	3	
18.7569	3.6978	4.0707	
2	1.5905	1.6861	
3		1.9297	
Variance matrix			
1	2	3	
$1 \quad 10.8512$	4.5822	5.0443	
2	1.9709	2.0893	
3		2.3912	

