
NAG Library Routine Document

C05AZF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

C05AZF locates a simple zero of a continuous function in a given interval by using Brent’s method, which
is a combination of nonlinear interpolation, linear extrapolation and bisection. It uses reverse
communication for evaluating the function.

2 Specification

SUBROUTINE C05AZF (X, Y, FX, TOLX, IR, C, IND, IFAIL)

INTEGER IR, IND, IFAIL

REAL (KIND=nag_wp) X, Y, FX, TOLX, C(17)

3 Description

You must supply X and Y to define an initial interval a; b½ � containing a simple zero of the function f xð Þ
(the choice of X and Y must be such that f Xð Þ � f Yð Þ � 0:0). The routine combines the methods of
bisection, nonlinear interpolation and linear extrapolation (see Dahlquist and Björck (1974)), to find a
sequence of sub-intervals of the initial interval such that the final interval X;Y½ � contains the zero and
X� Yj j is less than some tolerance specified by TOLX and IR (see Section 5). In fact, since the

intermediate intervals X;Y½ � are determined only so that f Xð Þ � f Yð Þ � 0:0, it is possible that the final
interval may contain a discontinuity or a pole of f (violating the requirement that f be continuous).
C05AZF checks if the sign change is likely to correspond to a pole of f and gives an error return in this
case.

A feature of the algorithm used by this routine is that unlike some other methods it guarantees convergence

within about log2 b� að Þ=�½ �ð Þ2 function evaluations, where � is related to the parameter TOLX. See Brent
(1973) for more details.

C05AZF returns to the calling program for each evaluation of f xð Þ. On each return you should set
FX ¼ f Xð Þ and call C05AZF again.

The routine is a modified version of procedure ‘zeroin’ given by Brent (1973).

4 References

Brent R P (1973) Algorithms for Minimization Without Derivatives Prentice–Hall

Bus J C P and Dekker T J (1975) Two efficient algorithms with guaranteed convergence for finding a zero
of a function ACM Trans. Math. Software 1 330–345

Dahlquist G and Björck Å (1974) Numerical Methods Prentice–Hall

5 Parameters

Note: this routine uses reverse communication. Its use involves an initial entry, intermediate exits and re-
entries, and a final exit, as indicated by the parameter IND. Between intermediate exits and re-entries, all
parameters other than FX must remain unchanged.

C05 – Roots of One or More Transcendental Equations C05AZF

Mark 24 C05AZF.1



1: X – REAL (KIND=nag_wp) Input/Output
2: Y – REAL (KIND=nag_wp) Input/Output

On initial entry: X and Y must define an initial interval a; b½ � containing the zero, such that
f Xð Þ � f Yð Þ � 0:0. It is not necessary that X < Y.

On intermediate exit: X contains the point at which f must be evaluated before re-entry to the
routine.

On final exit: X and Y define a smaller interval containing the zero, such that f Xð Þ � f Yð Þ � 0:0,
and X� Yj j satisfies the accuracy specified by TOLX and IR, unless an error has occurred. If
IFAIL ¼ 4, X and Y generally contain very good approximations to a pole; if IFAIL ¼ 5, X and Y
generally contain very good approximations to the zero (see Section 6). If a point X is found such
that f Xð Þ ¼ 0:0, then on final exit X ¼ Y (in this case there is no guarantee that X is a simple zero).
In all cases, the value returned in X is the better approximation to the zero.

3: FX – REAL (KIND=nag_wp) Input

On initial entry: if IND ¼ 1, FX need not be set.

If IND ¼ �1, FX must contain f Xð Þ for the initial value of X.

On intermediate re-entry: must contain f Xð Þ for the current value of X.

4: TOLX – REAL (KIND=nag_wp) Input

On initial entry: the accuracy to which the zero is required. The type of error test is specified by IR.

Constraint: TOLX > 0:0.

5: IR – INTEGER Input

On initial entry: indicates the type of error test.

IR ¼ 0
The test is: X� Yj j � 2:0� TOLX�max 1:0; Xj jð Þ.

IR ¼ 1
The test is: X� Yj j � 2:0� TOLX.

IR ¼ 2
The test is: X� Yj j � 2:0� TOLX� Xj j.

Suggested value: IR ¼ 0.

Constraint: IR ¼ 0, 1 or 2.

6: Cð17Þ – REAL (KIND=nag_wp) array Input/Output

On initial entry: if IND ¼ 1, no elements of C need be set.

If IND ¼ �1, Cð1Þ must contain f Yð Þ, other elements of C need not be set.

On final exit: is undefined.

7: IND – INTEGER Input/Output

On initial entry: must be set to 1 or �1.

IND ¼ 1
FX and Cð1Þ need not be set.

IND ¼ �1
FX and Cð1Þ must contain f Xð Þ and f Yð Þ respectively.

On intermediate exit: contains 2, 3 or 4. The calling program must evaluate f at X, storing the
result in FX, and re-enter C05AZF with all other parameters unchanged.

C05AZF NAG Library Manual

C05AZF.2 Mark 24



On final exit: contains 0.

Constraint: on entry IND ¼ �1, 1, 2, 3 or 4.

8: IFAIL – INTEGER Input/Output

On initial entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you
should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

On final exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, f Xð Þ and f Yð Þ have the same sign with neither equalling 0:0.

IFAIL ¼ 2

On entry, IND 6¼ �1, 1, 2, 3 or 4.

IFAIL ¼ 3

On entry, TOLX � 0:0,
or IR 6¼ 0, 1 or 2.

IFAIL ¼ 4

An interval X;Y½ � has been determined satisfying the error tolerance specified by TOLX and IR and
such that f Xð Þ � f Yð Þ � 0. However, from observation of the values of f during the calculation of
X;Y½ �, it seems that the interval X;Y½ � contains a pole rather than a zero. Note that this error exit is

not completely reliable: the error exit may be taken in extreme cases when X;Y½ � contains a zero, or
the error exit may not be taken when X;Y½ � contains a pole. Both these cases occur most frequently
when TOLX is large.

IFAIL ¼ 5

The tolerance TOLX is too small for the problem being solved. This indicator is only set when the
interval containing the zero has been reduced to one of relative length at most 2�, where � is the
machine precision, but the exit condition specified by IR is not satisfied. It is unsafe to continue
reducing the interval beyond this point, but the final values of X and Y returned are accurate
approximations to the zero.

7 Accuracy

The accuracy of the final value X as an approximation of the zero is determined by TOLX and IR (see
Section 5). A relative accuracy criterion (IR ¼ 2) should not be used when the initial values X and Y are
of different orders of magnitude. In this case a change of origin of the independent variable may be
appropriate. For example, if the initial interval X;Y½ � is transformed linearly to the interval 1; 2½ �, then the
zero can be determined to a precise number of figures using an absolute (IR ¼ 1) or relative (IR ¼ 2) error

C05 – Roots of One or More Transcendental Equations C05AZF

Mark 24 C05AZF.3



test and the effect of the transformation back to the original interval can also be determined. Except for
the accuracy check, such a transformation has no effect on the calculation of the zero.

8 Further Comments

For most problems, the time taken on each call to C05AZF will be negligible compared with the time
spent evaluating f xð Þ between calls to C05AZF.

If the calculation terminates because f Xð Þ ¼ 0:0, then on return Y is set to X. (In fact, Y ¼ X on return
only in this case and, possibly, when IFAIL ¼ 5.) There is no guarantee that the value returned in X
corresponds to a simple root and you should check whether it does. One way to check this is to compute
the derivative of f at the point X, preferably analytically, or, if this is not possible, numerically, perhaps by
using a central difference estimate. If f 0 Xð Þ ¼ 0:0, then X must correspond to a multiple zero of f rather
than a simple zero.

9 Example

This example calculates a zero of e�x � x with an initial interval 0; 1½ �, TOLX ¼ 1.0E�5 and a mixed
error test.

9.1 Program Text

! C05AZF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

Module c05azfe_mod

! C05AZF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: tolx = 1.0E-5_nag_wp
Integer, Parameter :: ir = 0, nout = 6

Contains
Function f(x)

! .. Function Return Value ..
Real (Kind=nag_wp) :: f

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..
f = exp(-x) - x

Return

End Function f
End Module c05azfe_mod
Program c05azfe

! C05AZF Example Main Program

! .. Use Statements ..
Use nag_library, Only: c05azf, nag_wp
Use c05azfe_mod, Only: f, ir, nout, tolx

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fx, x, y
Integer :: ifail, ind

! .. Local Arrays ..

C05AZF NAG Library Manual

C05AZF.4 Mark 24



Real (Kind=nag_wp) :: c(17)
! .. Executable Statements ..

Write (nout,*) ’C05AZF Example Program Results’

Write (nout,*)
Write (nout,*) ’ Iterations’
Write (nout,*)

! Initial values, root in [0,1].
x = 0.0_nag_wp
y = 1.0_nag_wp
ind = 1
ifail = -1

! Reverse communication loop
revcom: Do

Call c05azf(x,y,fx,tolx,ir,c,ind,ifail)

If (ind==0) Then
Exit revcom

End If

fx = f(x)
Write (nout,99999) ’ X =’, x, ’ FX =’, fx, ’ IND =’, ind

End Do revcom

! Results
Select Case (ifail)
Case (0)

Write (nout,*)
Write (nout,*) ’ Solution’
Write (nout,*)
Write (nout,99998) ’ X =’, x, ’ Y =’, y

Case (4,5)
Write (nout,99998) ’X =’, x, ’ Y =’, y

End Select

99999 Format (1X,A,F8.5,A,E12.4,A,I2)
99998 Format (1X,2(A,F8.5))

End Program c05azfe

9.2 Program Data

None.

9.3 Program Results

C05AZF Example Program Results

Iterations

X = 0.00000 FX = 0.1000E+01 IND = 2
X = 1.00000 FX = -0.6321E+00 IND = 3
X = 0.61270 FX = -0.7081E-01 IND = 4
X = 0.56707 FX = 0.1154E-03 IND = 4
X = 0.56714 FX = -0.9448E-06 IND = 4
X = 0.56713 FX = 0.1473E-04 IND = 4
X = 0.56714 FX = -0.9448E-06 IND = 4

Solution

X = 0.56714 Y = 0.56713
___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

C05 – Roots of One or More Transcendental Equations C05AZF

Mark 24 C05AZF.5 (last)


	C05AZF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	X
	Y
	FX
	TOLX
	IR
	C
	IND
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results


	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the 

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




