GO05 — Random Number Generators GO5XAF

NAG Library Routine Document
GOSXAF

Note: before using this routine, please read the Users” Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

GO5XAF initializes the Brownian bridge generator GOSXBF. It must be called before any calls to
GO5XBF.

2 Specification
SUBROUTINE GO5XAF (TO, TEND, TIMES, NTIMES, RCOMM, IFAIL)

INTEGER NTIMES, IFAIL
REAL (KIND=nag_wp) TO, TEND, TIMES(NTIMES), RCOMM(1l2* (NTIMES+1))

3 Description

3.1 Brownian Bridge Algorithm

Details on the Brownian bridge algorithm and the Brownian bridge process (sometimes also called a non-
free Wiener process) can be found in Section 2.6 in the GO5 Chapter Introduction. We briefly recall some
notation and definitions.

Fix two times ¢, < T" and let (t;), ;. be any set of time points satisfying t) <t; <t, <--- <ty <T.

Let (Xti)lgigN
matrix such that CC" is the desired covariance structure for the Wiener process. Each point X, of the

sample path is constructed according to the Brownian bridge interpolation algorithm (see Glasserman
(2004) or Section 2.6 in the GO5 Chapter Introduction). We always start at some fixed point
X, =xc R If we set X = & + C\/T — t,Z where Z is any d-dimensional standard Normal random
variable, then X will behave like a normal (free) Wiener process. However if we fix the terminal value

denote a d-dimensional Wiener sample path at these time points, and let C' be any d by d

X; =w e R% then X will behave like a non-free Wiener process.

3.2 Implementation

Given the start and end points of the process, the order in which successive interpolation times ¢; are
chosen is called the bridge construction order. The construction order is given by the array TIMES.
Further information on construction orders is given in Section 2.6.2 in the G05 Chapter Introduction. For
clarity we consider here the common scenario where the Brownian bridge algorithm is used with quasi-
random points. If pseudorandom numbers are used instead, these details can be ignored.

Suppose we require P Wiener sample paths each of dimension d. The main input to the Brownian bridge
algorithm is then an array of quasi-random points Z',Z% ..., Z"” where each point
Z0 = (ZY,Z5,...,Z%) has dimension D = d(N + 1) or D = dN respectively, depending on whether a
free or non-free Wiener process is required. When GO5XBF is called, the pth sample path for 1 <p < P
is constructed as follows: if a non-free Wiener process is required set X1 equal to the terminal value w,
otherwise construct X as

z
X=X, +CyT —ty| ¢
Z
where C' is the matrix described in Section 3.1. The array TIMES holds the remaining time points

ty,ty,...ty in the order in which the bridge is to be constructed. For each j=1,..., N set
r = TIMES(j), find

Mark 24 GO5XAF. 1

GO5XAF NAG Library Manual

and

q = max{to, TIMES(i) : 1 < i < j, TIMES(i) < r}

s =min{T, TIMES(i) : 1 <i < j, TIMES(i) > r}

and construct the point X, as

z .

x ~ Xl =N+ X =a) o fls=) —g)|
=4 G0 |

jd—ad+d

where a = 0 or a = 1 respectively depending on whether a free or non-free Wiener process is required.
Note that in our discussion j is indexed from 1, and so X, is interpolated between the nearest (in time)
Wiener points which have already been constructed. The routine GO5XEF can be used to initialize the
TIMES array for several predefined bridge construction orders.

4

References

Glasserman P (2004) Monte Carlo Methods in Financial Engineering Springer

5

1:

Parameters
TO — REAL (KIND=nag wp) Input

On entry: the starting value ¢, of the time interval.

TEND — REAL (KIND=nag_wp) Input
On entry: the end value T of the time interval.

Constraint: TEND > TO.

TIMES(NTIMES) — REAL (KIND=nag_wp) array Input

On entry: the points in the time interval (¢,,7") at which the Wiener process is to be constructed.
The order in which points are listed in TIMES determines the bridge construction order. The
routine GOSXEF can be used to create predefined bridge construction orders from a set of input
times.

Constraints:
TO < TIMES(i) < TEND, for i = 1,2,...,NTIMES;
TIMES (i) # TIMES(j), for ¢,j =1,2,...NTIMES and i # j.
NTIMES — INTEGER Input
On entry: the length of TIMES, denoted by IV in Section 3.1.
Constraint. NTIMES > 1.

RCOMM(12 x (NTIMES + 1)) — REAL (KIND=nag_wp) array Communication Array
On exit: communication array, used to store information between calls to GOSXBF. This array must
not be directly modified.

IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, —1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value —1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the

GO5XAF.2 Mark 24

GO05 — Random Number Generators GO5XAF

recommended value is 0. When the value —1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL = 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or —1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL =1
On entry, TEND = (value) and TO = (value).
Constraint: TEND > TO.
IFAIL =2
On entry, NTIMES = (value).
Constraint: NTIMES > 1.
IFAIL =3
On entry, TIMES((value)) = (value), TO = (value) and TEND = (value).
Constraint: TO < TIMES(i) < TEND for all s.
IFAIL =4

On entry, TIMES(:) = TIMES(j) = (value) for i = (value) and j = (value).
Constraint: all elements of TIMES must be unique.

7 Accuracy

Not applicable.

8 Further Comments

The efficient implementation of a Brownian bridge algorithm requires the use of a workspace array called
the working stack. Since previously computed points will be used to interpolate new points, they should
be kept close to the hardware processing units so that the data can be accessed quickly. Ideally the whole
stack should be held in hardware cache. Different bridge construction orders may require different

amounts of working stack. Indeed, a naive bridge algorithm may require a stack of size g or even g,

which could be very inefficient when NV is large. GO5XAF performs a detailed analysis of the bridge
construction order specified by TIMES. Heuristics are used to find an execution strategy which requires a
small working stack, while still constructing the bridge in the order required.

9 Example

This example calls GOSXAF, GO5XBF and GO5XEF to generate two sample paths of a three dimensional
free Wiener process. Pseudorandom variates are used to construct the sample paths.

See Section 9 in GOSXBF and GOSXEF for additional examples.

Mark 24 GO5XAF.3

GO5XAF NAG Library Manual

9.1 Program Text

Program gO5xafe
! GO5XAF Example Program Text
! Mark 24 Release. NAG Copyright 2012.

! .. Use Statements

Use nag_library, Only: gO05xaf, gO05xbf, gO5xef, nag_wp
! .. Implicit None Statement

Implicit None
! .. Parameters

Integer, Parameter :: nout = 6
! .. Local Scalars
Real (Kind=nag_wp) :: t0, tend
Integer :: a, bgord, 4, ifail, 1db, 1ldc, &

1ldz, nmove, npaths, ntimes, rcord
! .. Local Arrays

Real (Kind=nag_wp), Allocatable :: b(:,:), c(:,:), intime(:), &
rcomm(:), start(:), term(:), &
times(:), z(:,:)
Integer, Allocatable :: move(:)
! .. Intrinsic Procedures
Intrinsic :: size

! .. Executable Statements
! Get information required to set up the bridge
Call get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! Make the bridge construction bgord
Allocate (times(ntimes))
ifail = 0
Call gO5xef (bgord,t0,tend,ntimes,intime,nmove,move,times,ifail)

! Initialize the Brownian bridge generator
Allocate (rcomm(1l2*(ntimes+1)))
ifail = 0
Call gO5xaf(t0O,tend,times,ntimes,rcomm,ifail)

! Get additional information required by the bridge generator
Call get_bridge_gen_data(npaths,rcord,d,start,a,term,c)

! Generate the Z values
Call get_z(rcord,npaths,d,a,ntimes,z,b)

! Leading dimensions for the various input arrays
ldz = size(z,1)
ldc = size(c,1)
1db = size(b,1)

! Call the Brownian bridge generator routine
ifail = 0
Call gO05xbf (npaths,rcord,d,start,a,term,z,1ldz,c,ldc,b,1ldb,rcomm,ifail)

! Display the results
Call display_results(rcord,ntimes,d,b)

Contains
Subroutine get_bridge_init_data(bgord,t0,tend,ntimes,intime,nmove,move)

! .. Scalar Arguments

Real (Kind=nag_wp), Intent (Out) :: t0, tend
Integer, Intent (Out) :: bgord, nmove, ntimes
! .. Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: intime(:)
Integer, Allocatable, Intent (Out) :: move(:)
! .. Local Scalars
Integer 1
! .. Intrinsic Procedures
Intrinsic :: real

! .. Executable Statements

GO5XAF. 4 Mark 24

GO05 — Random Number Generators GO5XAF

! Set the basic parameters for a Wiener process
ntimes = 10
t0 = 0.0_nag_wp
Allocate (intime(ntimes))

! We want to generate the Wiener process at these time points
Do i = 1, ntimes
intime (i) = t0 + real(i,kind=nag_wp)
End Do
tend = tO0 + real(ntimes+1l,kind=nag_wp)

nmove = 0
Allocate (move (nmove))
bgord = 3

End Subroutine get_bridge_init_data
Subroutine get_bridge_gen_data(npaths,rcord,d,start,a,term,c)
! .. Use Statements

Use nag_library, Only: dpotrf
! .. Scalar Arguments

Integer, Intent (Out) :: a, d, npaths, rcord
! .. Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: c(:,:), start(:), &
term(:)

! .. Local Scalars
Integer :: info
! .. Executable Statements
! Set the basic parameters for a free Wiener process
npaths = 2
rcord =1
d =3
a=20

Allocate (start(d),term(d),c(d,d))

start(1l:d) = 0.0_nag_wp
! As A = 0, TERM need not be initialized

! We want the following covariance matrix
c(:,1) = (/6.0_nag_wp,1.0_nag_wp,-0.2_nag_wp/)
c(:,2) (/1.0_nag_wp,5.0_nag_wp,0.3_nag_wp/)
c(:,3) (/-0.2_nag_wp,0.3_nag_wp,4.0_nag_wp/)

! GOS5XBF works with the Cholesky factorization of the covariance matrix C
! so perform the decomposition
Call dpotrf(’'Lower’,d,c,d,info)
If (info/=0) Then
Write (nout,*) &
"Specified covariance matrix is not positive definite: info=', &
info
Stop
End If
End Subroutine get_bridge_gen_data

Subroutine get_z(rcord,npaths,d,a,ntimes,z,b)
! .. Use Statements

Use nag_library, Only: gO5skf
! .. Scalar Arguments

Integer, Intent (In) :: a, d, npaths, ntimes, rcord
! .. Array Arguments
Real (Kind=nag_wp), Allocatable, Intent (Out) :: b(:,:), z(:,:)
! .. Local Scalars
Integer :: idim, ifail
! .. Local Arrays
Integer :: seed(1)
Integer, Allocatable :: state(:)
! .. Executable Statements
idim = d*(ntimes+1l-a)

Mark 24 GO5XAF.5

GOSXAF

NAG Library Manual

Allocate 7
If (rcord==1) Then
Allocate (z(idim,npaths))
Allocate (b(d*(ntimes+1) ,npaths))
Else
Allocate (z(npaths,idim))
Allocate (b(npaths,d*(ntimes+1)))
End If

We now need to generate the input pseudorandom points
First initialize the base pseudorandom number generator
seed(1l) = 1023401

Call initialize_prng(6,0,seed,state)

Generate the pseudorandom points from N(0,1)
ifail = 0
Call gO05skf (idim*npaths,0.0_nag _wp,1.0_nag_wp,state,z,ifail)

End Subroutine get_z

Subroutine initialize_prng(genid,subid,seed,state)

Use Statements ..
Use nag_library, Only: gO5kff
Scalar Arguments

Integer, Intent (In) :: genid, subid
Array Arguments
Integer, Intent (In) :: seed(:)
Integer, Allocatable, Intent (Out) :: state(:)
Local Scalars
Integer :: ifail, lseed, lstate

Executable Statements
lseed = size(seed, 1)

Initial call to initializer to get size of STATE array
lstate = 0

Allocate (state(lstate))

ifail = 0

Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

Reallocate STATE
Deallocate (state)
Allocate (state(lstate))

Initialize the generator to a repeatable sequence
ifail = 0
Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)

End Subroutine initialize_prng

Subroutine display_results(rcord,ntimes,d,b)

GO5XAF.6

Scalar Arguments

Integer, Intent (In) :: d, ntimes, rcord
Array Arguments

Real (Kind=nag_wp), Intent (In) :: b(:,2)
Local Scalars

Integer :: i, j, k

Executable Statements
Write (nout,*) ’'GO5XAF Example Program Results’
Write (nout,*)

Do i = 1, npaths
Write (nout,99999) ’'Weiner Path ’, i, ', ', ntimes + 1, &
" time steps, ', d, ' dimensions’
Write (nout,99997)(j,j=1,4d)
k=1
Do j = 1, ntimes + 1
If (rcord==1) Then
Write (nout,99998) j, b(k:k+d-1,1)
Else
Write (nout,99998) j, b(i,k:k+d-1)
End If

Mark 24

GO05 — Random Number Generators

k =%k +4d
End Do

Write
End Do
99999 Format
99998 Format
99997 Format

(nout,

*)

(1X,A,I0,A,I0,A,IO0,A)
(1x,I2,1X,20(1X,F10.4))
(1X,3X,20(9X,1I2))

End Subroutine display_results
End Program gO5xafe

9.2 Program Data

None.

9.3 Program Results

GO5XAF Example Program Results

GOSXAF

Weiner Path 1, 11 time steps, 3 dimensions
1 2 3
1 1.6020 0.5611 1.6975
2 1.2767 0.3972 -1.7199
3 -0.1895 -0.8812 -5.1908
4 -2.8083 -4.4484 -6.7697
5 -5.6251 -6.0375 -3.2551
6 -6.5404 -6.2009 -5.5638
7 -4.6398 -4.9675 -7.4454
8 -5.3501 -4.8563 -9.9002
9 -7.1683 -7.2638 -9.7825
10 -1.9440 -7.0725 -10.7577
11 -4.9941 -3.5442 -10.1561

Weiner Path 2, 11 time steps, 3 dimensions
1 2 3
1 2.6097 6.2430 0.0316
2 3.5442 4.2836 2.5742
3 1.3068 6.1511 4.5362
4 2.7487 8.6021 2.6880
5 3.4584 6.1778 -0.6274
6 0.5965 8.3014 0.5933
7 -3.2701 5.4787 1.0727
8 -4.7527 7.0988 0.9120
9 -4.9375 7.9486 0.7657
10 -7.1302 7.3180 0.2706
11 -0.6289 9.8866 -2.2762

Mark 24 GO5XAF.7 (last)

	G05XAF
	1 Purpose
	2 Specification
	3 Description
	3.1 Brownian Bridge Algorithm
	3.2 Implementation

	4 References
	5 Parameters
	T0
	TEND
	TIMES
	NTIMES
	RCOMM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Fortran Library Manual, Mark 24
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	NAG Fortran Library specific documentation
	 NAG Fortran Library News

	NAG SMP Library specific documentation
	Introduction to the NAG Library for SMP & Multicore
	 NAG Library for SMP & Multicore News
	Tuned and Enhanced Routines in the

	Thread Safety
	Routines Withdrawn or Scheduled for Withdrawal
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Indexes

	Implementation-specific Details for Users
	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

