NAG Library Routine Document
 D01ASF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D01ASF calculates an approximation to the sine or the cosine transform of a function g over $[a, \infty)$:

$$
I=\int_{a}^{\infty} g(x) \sin (\omega x) d x \quad \text { or } \quad I=\int_{a}^{\infty} g(x) \cos (\omega x) d x
$$

(for a user-specified value of ω).

2 Specification

```
SUBROUTINE DO1ASF (G, A, OMEGA, KEY, EPSABS, RESULT, ABSERR, LIMLST,
    LST, ERLST, RSLST, IERLST, W, LW, IW, LIW, IFAIL)
INTEGER KEY, LIMLST, LST, IERLST(LIMLST), LW, IW(LIW), LIW,
    IFAIL
REAL (KIND=nag_wp) G, A, OMEGA, EPSABS, RESULT, ABSERR, ERLST(LIMLST), &
EXTERNAL G
```


3 Description

D01ASF is based on the QUADPACK routine QAWFE (see Piessens et al. (1983)). It is an adaptive routine, designed to integrate a function of the form $g(x) w(x)$ over a semi-infinite interval, where $w(x)$ is either $\sin (\omega x)$ or $\cos (\omega x)$.
Over successive intervals

$$
C_{k}=[a+(k-1) c, a+k c], \quad k=1,2, \ldots, \mathrm{LST}
$$

integration is performed by the same algorithm as is used by D01ANF. The intervals C_{k} are of constant length

$$
c=\{2[|\omega|]+1\} \pi /|\omega|, \quad \omega \neq 0
$$

where $[|\omega|]$ represents the largest integer less than or equal to $|\omega|$. Since c equals an odd number of half periods, the integral contributions over succeeding intervals will alternate in sign when the function g is positive and monotonically decreasing over $[a, \infty)$. The algorithm, described in Piessens et al. (1983), incorporates a global acceptance criterion (as defined by Malcolm and Simpson (1976)) together with the ϵ-algorithm (see Wynn (1956)) to perform extrapolation. The local error estimation is described by Piessens et al. (1983).
If $\omega=0$ and KEY $=1$, the routine uses the same algorithm as D01AMF (with EPSREL $=0.0$).
In contrast to the other routines in Chapter D01, D01ASF works only with an absolute error tolerance (EPSABS). Over the interval C_{k} it attempts to satisfy the absolute accuracy requirement

$$
E P S A_{k}=U_{k} \times \mathrm{EPSABS}
$$

where $U_{k}=(1-p) p^{k-1}$, for $k=1,2, \ldots$ and $p=0.9$.
However, when difficulties occur during the integration over the k th sub-interval C_{k} such that the error flag $\operatorname{IERLST}(k)$ is nonzero, the accuracy requirement over subsequent intervals is relaxed. See Piessens et al. (1983) for more details.

4 References

Malcolm M A and Simpson R B (1976) Local versus global strategies for adaptive quadrature ACM Trans. Math. Software 1 129-146

Piessens R, de Doncker-Kapenga E, Überhuber C and Kahaner D (1983) QUADPACK, A Subroutine Package for Automatic Integration Springer-Verlag
Wynn P (1956) On a device for computing the $e_{m}\left(S_{n}\right)$ transformation Math. Tables Aids Comput. 1091 96

5 Parameters

1: G - REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure G must return the value of the function g at a given point X.

```
The specification of G is:
FUNCTION G (X)
REAL (KIND=nag_wp) G
REAL (KIND=nag_wp) X
1: X - REAL (KIND=nag_wp) Input
On entry: the point at which the function \(g\) must be evaluated.
```

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D01ASF is called. Parameters denoted as Input must not be changed by this procedure.

2: \quad A - REAL (KIND=nag_wp)
Input
On entry: a, the lower limit of integration.

3: OMEGA - REAL (KIND=nag_wp)
Input
On entry: the parameter ω in the weight function of the transform.

4: KEY - INTEGER
Input
On entry: indicates which integral is to be computed.
$\mathrm{KEY}=1$

$$
w(x)=\cos (\omega x)
$$

$\mathrm{KEY}=2$

$$
w(x)=\sin (\omega x)
$$

Constraint: $\mathrm{KEY}=1$ or 2.
5: \quad EPSABS - REAL (KIND=nag_wp)
Input
On entry: the absolute accuracy required. If EPSABS is negative, the absolute value is used. See Section 7.

6: RESULT - REAL (KIND=nag_wp)
Output
On exit: the approximation to the integral I.
7: ABSERR - REAL (KIND=nag_wp)
Output
On exit: an estimate of the modulus of the absolute error, which should be an upper bound for $\mid I-$ RESULT \mid.

8: LIMLST - INTEGER
Input
On entry: an upper bound on the number of intervals C_{k} needed for the integration.
Suggested value: LIMLST $=50$ is adequate for most problems.
Constraint: LIMLST ≥ 3.
9: LST - INTEGER
Output
On exit: the number of intervals C_{k} actually used for the integration.
10: ERLST(LIMLST) - REAL (KIND=nag_wp) array
Output
On exit: $\operatorname{ERLST}(k)$ contains the error estimate corresponding to the integral contribution over the interval C_{k}, for $k=1,2, \ldots, \mathrm{LST}$.

11: $\operatorname{RSLST}($ LIMLST $) ~-~ R E A L ~\left(K I N D=n a g _w p\right) ~ a r r a y ~$
Output
On exit: RSLST (k) contains the integral contribution over the interval C_{k}, for $k=1,2, \ldots$, LST.
12: IERLST(LIMLST) - INTEGER array
Output
On exit: $\operatorname{IERLST}(k)$ contains the error flag corresponding to $\operatorname{RSLST}(k)$, for $k=1,2, \ldots$, LST. See Section 6.

13: $\mathrm{W}(\mathrm{LW})$ - REAL (KIND=nag_wp) array Workspace
14: LW - INTEGER Input
On entry: the dimension of the array W as declared in the (sub)program from which D01ASF is called. The value of LW (together with that of LIW) imposes a bound on the number of subintervals into which each interval C_{k} may be divided by the routine. The number of sub-intervals cannot exceed LW/4. The more difficult the integrand, the larger LW should be.

Suggested value: a value in the range 800 to 2000 is adequate for most problems.
Constraint: LW ≥ 4.
15: IW(LIW) - INTEGER array
Output
On exit: IW (1) contains the maximum number of sub-intervals actually used for integrating over any of the intervals C_{k}. The rest of the array is used as workspace.

16: LIW - INTEGER
Input
On entry: the dimension of the array IW as declared in the (sub)program from which D01ASF is called. The number of sub-intervals into which each interval C_{k} may be divided cannot exceed LIW/2.

Suggested value: LIW $=\mathrm{LW} / 2$.
Constraint: LIW ≥ 2.
17: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Note: D01ASF may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the routine:
IFAIL $=1$
The maximum number of subdivisions allowed with the given workspace has been reached without the accuracy requirements being achieved. Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity, etc.) you will probably gain from splitting up the interval at this point and calling D01ASF on the infinite subrange and an appropriate integrator on the finite subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS or increasing the amount of workspace.

IFAIL $=2$
Round-off error prevents the requested tolerance from being achieved. Consider requesting less accuracy.

IFAIL $=3$
Extremely bad local integrand behaviour causes a very strong subdivision around one (or more) points of the interval. The same advice applies as in the case of IFAIL $=1$.

IFAIL $=4$
The requested tolerance cannot be achieved because the extrapolation does not increase the accuracy satisfactorily; the returned result is the best which can be obtained. The same advice applies as in the case of IFAIL $=1$.

Look at the integrand in order to determine the integration difficulties. If the position of a local difficulty within the interval can be determined (e.g., a singularity of the integrand or its derivative, a peak, a discontinuity etc.) you will probably gain from splitting up the interval at this point and calling D01ASF on the infinite subrange and an appropriate integrator on the finite subrange. Alternatively, consider relaxing the accuracy requirements specified by EPSABS or increasing the amount of workspace.
Please note that divergence can occur with any nonzero value of IFAIL.
IFAIL $=5$
The integral is probably divergent, or slowly convergent. Please note that divergence can occur with any nonzero value of IFAIL.

IFAIL $=6$
On entry, KEY $\neq 1$ or 2 ,
or \quad LIMLST <3.
IFAIL $=7$
Bad integration behaviour occurs within one or more of the intervals C_{k}. Location and type of the difficulty involved can be determined from the vector IERLST.

IFAIL $=8$
Maximum number of intervals $C_{k}(=$ LIMLST $)$ allowed has been achieved. Increase the value of LIMLST to allow more cycles.

IFAIL $=9$

The extrapolation table constructed for convergence acceleration of the series formed by the integral contribution over the intervals C_{k}, does not converge to the required accuracy.

IFAIL $=10$
On entry, LW <4,
or \quad LIW <2.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.
In the cases IFAIL $=7,8$ or 9 , additional information about the cause of the error can be obtained from the array IERLST, as follows:
$\operatorname{IERLST}(k)=1$
The maximum number of subdivisions $=\min ($ LW $/ 4$, LIW $/ 2)$ has been achieved on the k th interval.

$\operatorname{IERLST}(k)=2$

Occurrence of round-off error is detected and prevents the tolerance imposed on the k th interval from being achieved.

$\operatorname{IERLST}(k)=3$

Extremely bad integrand behaviour occurs at some points of the k th interval.

$\operatorname{IERLST}(k)=4$

The integration procedure over the k th interval does not converge (to within the required accuracy) due to round-off in the extrapolation procedure invoked on this interval. It is assumed that the result on this interval is the best which can be obtained.

$\operatorname{IERLST}(k)=5$

The integral over the k th interval is probably divergent or slowly convergent. It must be noted that divergence can occur with any other value of $\operatorname{IERLST}(k)$.

7 Accuracy

D01ASF cannot guarantee, but in practice usually achieves, the following accuracy:

$$
|I-\operatorname{RESULT}| \leq|\mathrm{EPSABS}|
$$

where EPSABS is the user-specified absolute error tolerance. Moreover, it returns the quantity ABSERR, which, in normal circumstances, satisfies

$$
|I-\operatorname{RESULT}| \leq \operatorname{ABSERR} \leq|\operatorname{EPSABS}| .
$$

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

This example computes

$$
\int_{0}^{\infty} \frac{1}{\sqrt{x}} \cos (\pi x / 2) d x
$$

10.1 Program Text

```
D01ASF Example Program Text
Mark 25 Release. NAG Copyright 2014.
Module dOlasfe_mod
    D01ASF Example Program Module:
                Parameters and User-defined Routines
    .. Use Statements ..
    Use nag_library, Only: nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Accessibility Statements ..
    Private
    Public :: g
    Integer, Parameter, Public : : limlst = 50, lw = 800, nout = 6
    Integer, Parameter, Public :: liw = lw/2
Contains
    Function g(x)
            .. Function Return Value ..
            Real (Kind=nag_wp) :: g
            .. Scalar Arguments ..
            Real (Kind=nag_wp), Intent (In) :: x
            .. Intrinsic Procedures ..
            Intrinsic :: sqrt
            .. Executable Statements ..
            If (x>0.0EO_nag_wp) Then
                    g = 1.OEO_nag_wp/sqrt(x)
            Else
                    g = 0.0EO_nag_wp
            End If
            Return
    End Function g
    End Module dOlasfe_mod
    Program dOlasfe
    D01ASF Example Main Program
    .. Use Statements ..
    Use nag_library, Only: dOlasf, nag_wp, x0laaf
    Use dOlasfe_mod, Only: g, limlst, liw, lw, nout
    .. Implicit None Statement ..
    Implicit None
    .. Local Scalars ..
    Real (Kind=nag_wp) :: a, abserr, epsabs, omega, result
    Integer :: ifail, key, lst
! .. Local Arrays .
    Real (Kind=nag_wp), Allocatable :: erlst(:), rslst(:), w(:)
    Integer, Allocatable :: ierlst(:), iw(:)
    .. Executable Statements ..
    Write (nout,*) 'DO1ASF Example Program Results'
```

```
Allocate (erlst(limlst),rslst(limlst),w(lw),ierlst(limlst),iw(liw))
epsabs = 1.0E-03_nag_wp
a = 0.0EO_nag_wp
omega = 0.5E0_nag_wp*x01aaf(omega)
key = 1
ifail = -1
Call dOlasf(g,a,omega,key,epsabs,result,abserr,limlst,lst,erlst,rslst, &
    ierlst,w,lw,iw,liw,ifail)
If (ifail>=0) Then
    Write (nout,*)
    Write (nout,99999) 'A - lower limit of integration = ', a
    Write (nout,*) 'B - upper limit of integration = infinity'
    Write (nout,99998) 'EPSABS - absolute accuracy requested = ', epsabs
    If (ifail/=6 .And. ifail/=10) Then
        Write (nout,*)
        Write (nout,99997) 'RESULT - approximation to the integral = ', &
                result
            Write (nout,99998) 'ABSERR - estimate of the absolute error = ', &
                abserr
            Write (nout,99996) 'LST - number of intervals used = ', lst
            Write (nout,99996) &
                'IW(1) - max. no. of subintervals used in any one interval = ', &
                iw(1)
    End If
End If
99999 Format (1X,A,F10.4)
99998 Format (1X,A,E9.2)
99997 Format (1X,A,F9.5)
9 9 9 9 6 ~ F o r m a t ~ ( 1 X , A , I 4 )
End Program dOlasfe
```


10.2 Program Data

None.

10.3 Program Results

```
D01ASF Example Program Results
A - lower limit of integration = 0.0000
B - upper limit of integration = infinity
EPSABS - absolute accuracy requested = 0.10E-02
RESULT - approximation to the integral = 1.00000
ABSERR - estimate of the absolute error = 0.59E-03
LST - number of intervals used = 6
IW(1) - max. no. of subintervals used in any one interval = 8
```

