
NAG Library Routine Document

D02BJF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02BJF integrates a system of first-order ordinary differential equations over an interval with suitable
initial conditions, using a fixed order Runge–Kutta method, until a user-specified function, if supplied,
of the solution is zero, and returns the solution at points specified by you, if desired.

2 Specification

SUBROUTINE D02BJF (X, XEND, N, Y, FCN, TOL, RELABS, OUTPUT, G, W, IFAIL)

INTEGER N, IFAIL
REAL (KIND=nag_wp) X, XEND, Y(N), TOL, G, W(20*N)
CHARACTER(1) RELABS
EXTERNAL FCN, OUTPUT, G

3 Description

D02BJF advances the solution of a system of ordinary differential equations

y0i ¼ fi x; y1; y2; . . . ; ynð Þ; i ¼ 1; 2; . . . ;n;

from x ¼ X to x ¼ XEND using a fixed order Runge–Kutta method. The system is defined by FCN,
which evaluates fi in terms of x and y ¼ y1; y2; . . . ; ynð Þ. The initial values of y ¼ y1; y2; . . . ; ynð Þ must
be given at x ¼ X.

The solution is returned via the OUTPUT supplied by you and at points specified by you, if desired: this
solution is obtained by C1 interpolation on solution values produced by the method. As the integration
proceeds a check can be made on the user-specified function g x; yð Þ to determine an interval where it
changes sign. The position of this sign change is then determined accurately by C1 interpolation to the
solution. It is assumed that g x; yð Þ is a continuous function of the variables, so that a solution of
g x; yð Þ ¼ 0 can be determined by searching for a change in sign in g x; yð Þ. The accuracy of the
integration, the interpolation and, indirectly, of the determination of the position where g x; yð Þ ¼ 0, is
controlled by the parameters TOL and RELABS.

4 References

Shampine L F (1994) Numerical solution of ordinary differential equations Chapman and Hall

5 Parameters

1: X – REAL (KIND=nag_wp) Input/Output

On entry: the initial value of the independent variable x.

On exit: if g is supplied by you, it contains the point where g x; yð Þ ¼ 0, unless g x; yð Þ 6¼ 0
anywhere on the range X to XEND, in which case, X will contain XEND (and the error indicator
IFAIL ¼ 6 is set); if g is not supplied by you it contains XEND. However, if an error has
occurred, it contains the value of x at which the error occurred.

D02 – Ordinary Differential D02BJF

Mark 25 D02BJF.1

2: XEND – REAL (KIND=nag_wp) Input

On entry: the final value of the independent variable. If XEND < X, integration will proceed in
the negative direction.

Constraint: XEND 6¼ X.

3: N – INTEGER Input

On entry: n, the number of equations.

Constraint: N > 0.

4: YðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the initial values of the solution y1; y2; . . . ; yn at x ¼ X.

On exit: the computed values of the solution at the final point x ¼ X.

5: FCN – SUBROUTINE, supplied by the user. External Procedure

FCN must evaluate the functions fi (i.e., the derivatives y0i) for given values of its arguments
x; y1; . . . ; yn .

The specification of FCN is:

SUBROUTINE FCN (X, Y, F)

REAL (KIND=nag_wp) X, Y(*), F(*)

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

3: Fð�Þ – REAL (KIND=nag_wp) array Output

On exit: the value of fi, for i ¼ 1; 2; . . . ; n.

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02BJF is called. Parameters denoted as Input must not be changed by
this procedure.

6: TOL – REAL (KIND=nag_wp) Input

On entry: a positive tolerance for controlling the error in the integration. Hence TOL affects the
determination of the position where g x; yð Þ ¼ 0, if g is supplied.

D02BJF has been designed so that, for most problems, a reduction in TOL leads to an
approximately proportional reduction in the error in the solution. However, the actual relation
between TOL and the accuracy achieved cannot be guaranteed. You are strongly recommended to
call D02BJF with more than one value for TOL and to compare the results obtained to estimate
their accuracy. In the absence of any prior knowledge, you might compare the results obtained by
calling D02BJF with RELABS ¼ D and with each of TOL ¼ 10:0�p and TOL ¼ 10:0�p�1 where
p correct significant digits are required in the solution, y. The accuracy of the value x such that
g x; yð Þ ¼ 0 is indirectly controlled by varying TOL. You should experiment to determine this
accuracy.

Constraint: 10:0�machine precision < TOL < 0:01.

D02BJF NAG Library Manual

D02BJF.2 Mark 25

7: RELABS – CHARACTER(1) Input

On entry: the type of error control. At each step in the numerical solution an estimate of the local
error, est, is made. For the current step to be accepted the following condition must be satisfied:

est ¼ max ei= �r �max yij j; �að Þð Þð Þ � 1:0

where �r and �a are defined by

RELABS �r �a

‘M’ TOL 1.0
‘A’ �r TOL=�r
‘R’ TOL �a
‘D’ TOL �a

where �r and �a are small machine-dependent numbers and ei is an estimate of the local error at
yi, computed internally. If the condition is not satisfied, the step size is reduced and the solution is
recomputed on the current step. If you wish to measure the error in the computed solution in terms
of the number of correct decimal places, then RELABS should be set to ‘A’ on entry, whereas if
the error requirement is in terms of the number of correct significant digits, then RELABS should
be set to ‘R’. If you prefer a mixed error test, then RELABS should be set to ‘M’, otherwise if
you have no preference, RELABS should be set to the default ‘D’. Note that in this case ‘D’ is
taken to be ‘R’.

Constraint: RELABS ¼ M , A , R or D .

8: OUTPUT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

OUTPUT permits access to intermediate values of the computed solution (for example to print or
plot them), at successive user-specified points. It is initially called by D02BJF with XSOL ¼ X
(the initial value of x). You must reset XSOL to the next point (between the current XSOL and
XEND) where OUTPUT is to be called, and so on at each call to OUTPUT. If, after a call to
OUTPUT, the reset point XSOL is beyond XEND, D02BJF will integrate to XEND with no
further calls to OUTPUT; if a call to OUTPUT is required at the point XSOL ¼ XEND, then
XSOL must be given precisely the value XEND.

The specification of OUTPUT is:

SUBROUTINE OUTPUT (XSOL, Y)

REAL (KIND=nag_wp) XSOL, Y(*)

1: XSOL – REAL (KIND=nag_wp) Input/Output

On entry: the output value of the independent variable x.

On exit: you must set XSOL to the next value of x at which OUTPUT is to be called.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the computed solution at the point XSOL.

OUTPUT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which D02BJF is called. Parameters denoted as Input must not be changed by
this procedure.

If you do not wish to access intermediate output, the actual parameter OUTPUT must be the
dummy routine D02BJX. (D02BJX is included in the NAG Library.)

9: G – REAL (KIND=nag_wp) FUNCTION, supplied by the user. External Procedure

G must evaluate the function g x; yð Þ for specified values x; y. It specifies the function g for which
the first position x where g x; yð Þ ¼ 0 is to be found.

D02 – Ordinary Differential D02BJF

Mark 25 D02BJF.3

The specification of G is:

FUNCTION G (X, Y)
REAL (KIND=nag_wp) G

REAL (KIND=nag_wp) X, Y(*)

where n is the value of N in the call of D02BJF.

1: X – REAL (KIND=nag_wp) Input

On entry: x, the value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: yi, for i ¼ 1; 2; . . . ; n, the value of the variable.

G must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02BJF is called. Parameters denoted as Input must not be changed by this
procedure.

If you do not require the root-finding option, the actual parameter G must be the dummy routine
D02BJW. (D02BJW is included in the NAG Library.)

10: Wð20� NÞ – REAL (KIND=nag_wp) array Workspace

11: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, TOL � 0:01,
or TOL is too small
or N � 0,
or RELABS 6¼ M , A , R or D ,
or X ¼ XEND.

IFAIL ¼ 2

With the given value of TOL, no further progress can be made across the integration range from
the current point x ¼ X. (See Section 9 for a discussion of this error exit.) The components
Yð1Þ;Yð2Þ; . . . ;YðNÞ contain the computed values of the solution at the current point x ¼ X. If
you have supplied g, then no point at which g x; yð Þ changes sign has been located up to the point
x ¼ X.

D02BJF NAG Library Manual

D02BJF.4 Mark 25

IFAIL ¼ 3

TOL is too small for D02BJF to take an initial step. X and Yð1Þ;Yð2Þ; . . . ;YðNÞ retain their
initial values.

IFAIL ¼ 4

XSOL has not been reset or XSOL lies behind X in the direction of integration, after the initial
call to OUTPUT, if the OUTPUT option was selected.

IFAIL ¼ 5

A value of XSOL returned by the OUTPUT has not been reset or lies behind the last value of
XSOL in the direction of integration, if the OUTPUT option was selected.

IFAIL ¼ 6

At no point in the range X to XEND did the function g x; yð Þ change sign, if g was supplied. It is
assumed that g x; yð Þ ¼ 0 has no solution.

IFAIL ¼ 7

A serious error has occurred in an internal call to an interpolation routine. Check all (sub)program
calls and array dimensions. Seek expert help.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of the computation of the solution vector Y may be controlled by varying the local error
tolerance TOL. In general, a decrease in local error tolerance should lead to an increase in accuracy. You
are advised to choose RELABS ¼ D unless you have a good reason for a different choice.

If the problem is a root-finding one, then the accuracy of the root determined will depend on the
properties of g x; yð Þ and on the values of TOL and RELABS. You should try to code G without
introducing any unnecessary cancellation errors.

8 Parallelism and Performance

D02BJF is not threaded by NAG in any implementation.

D02BJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

D02 – Ordinary Differential D02BJF

Mark 25 D02BJF.5

9 Further Comments

If more than one root is required, then to determine the second and later roots D02BJF may be called
again starting a short distance past the previously determined roots. Alternatively you may construct
your own root-finding code using C05AZF, D02PFF and D02PSF.

If D02BJF fails with IFAIL ¼ 3, then it can be called again with a larger value of TOL if this has not
already been tried. If the accuracy requested is really needed and cannot be obtained with this routine,
the system may be very stiff (see below) or so badly scaled that it cannot be solved to the required
accuracy.

If D02BJF fails with IFAIL ¼ 2, it is probable that it has been called with a value of TOL which is so
small that a solution cannot be obtained on the range X to XEND. This can happen for well-behaved
systems and very small values of TOL. You should, however, consider whether there is a more
fundamental difficulty. For example:

(a) in the region of a singularity (infinite value) of the solution, the routine will usually stop with
IFAIL ¼ 2, unless overflow occurs first. Numerical integration cannot be continued through a
singularity, and analytic treatment should be considered;

(b) for ‘stiff’ equations where the solution contains rapidly decaying components, the routine will use
very small steps in x (internally to D02BJF) to preserve stability. This will exhibit itself by making
the computing time excessively long, or occasionally by an exit with IFAIL ¼ 2. Runge–Kutta
methods are not efficient in such cases, and you should try D02EJF.

10 Example

This example illustrates the solution of four different problems. In each case the differential system (for a
projectile) is

y0 ¼ tan�

v0 ¼ �0:032 tan�

v
� 0:02v

cos�

�0 ¼ �0:032

v2

over an interval X ¼ 0:0 to XEND ¼ 10:0 starting with values y ¼ 0:5, v ¼ 0:5 and � ¼ �=5. We solve
each of the following problems with local error tolerances 1:0E�4 and 1:0E�5.

(i) To integrate to x ¼ 10:0 producing intermediate output at intervals of 2:0 until a root is encountered
where y ¼ 0:0.

(ii) As (i) but with no intermediate output.

(iii) As (i) but with no termination on a root-finding condition.

(iv) As (i) but with no intermediate output and no root-finding termination condition.

10.1 Program Text

! D02BJF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module d02bjfe_mod

! Data for D02BJF example program

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: fcn, g, output

D02BJF NAG Library Manual

D02BJF.6 Mark 25

! .. Parameters ..
Integer, Parameter, Public :: n = 3, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp), Public, Save :: h, xend

! n: number of differential equations
Contains

Subroutine output(xsol,y)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: xsol

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Local Scalars ..
Integer :: j

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,99999) xsol, (y(j),j=1,n)
xsol = xsol + h

! Make sure we exactly hit xsol = xend
If (abs(xsol-xend)<h/4.0E0_nag_wp) xsol = xend
Return

99999 Format (1X,F8.2,3F13.4)
End Subroutine output
Subroutine fcn(x,y,f)

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: alpha = -0.032E0_nag_wp
Real (Kind=nag_wp), Parameter :: beta = -0.02E0_nag_wp

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f(*)
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Intrinsic Procedures ..
Intrinsic :: cos, tan

! .. Executable Statements ..
f(1) = tan(y(3))
f(2) = alpha*tan(y(3))/y(2) + beta*y(2)/cos(y(3))
f(3) = alpha/y(2)**2
Return

End Subroutine fcn
Function g(x,y)

! .. Function Return Value ..
Real (Kind=nag_wp) :: g

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: x

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)

! .. Executable Statements ..
g = y(1)
Return

End Function g
End Module d02bjfe_mod
Program d02bjfe

! D02BJF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02bjf, d02bjw, d02bjx, nag_wp
Use d02bjfe_mod, Only: fcn, g, h, n, nin, nout, output, xend

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: tol, x, xinit
Integer :: i, icase, ifail, iw, j, kinit

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: w(:), y(:), yinit(:)

! .. Intrinsic Procedures ..

D02 – Ordinary Differential D02BJF

Mark 25 D02BJF.7

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’D02BJF Example Program Results’
iw = 20*n
Allocate (w(iw),y(n),yinit(n))

! Skip heading in data file
Read (nin,*)

! xinit: initial x value, xend: final x value.
! yinit: initial solution values

Read (nin,*) xinit, xend
Read (nin,*) yinit(1:n)
Read (nin,*) kinit
Do icase = 1, 4

Write (nout,*)
Select Case (icase)
Case (1)

Write (nout,99995) icase, ’intermediate output, root-finding’
Case (2)

Write (nout,99995) icase, ’no intermediate output, root-finding’
Case (3)

Write (nout,99995) icase, ’intermediate output, no root-finding’
Case (4)

Write (nout,99995) icase, &
’no intermediate output, no root-finding (integrate to XEND)’

End Select
Do j = 4, 5

tol = 10.0E0_nag_wp**(-j)
Write (nout,*)
Write (nout,99999) ’ Calculation with TOL =’, tol
x = xinit
y(1:n) = yinit(1:n)
If (icase/=2) Then

Write (nout,*) ’ X Y(1) Y(2) Y(3)’
h = (xend-x)/real(kinit+1,kind=nag_wp)

End If
! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Select Case (icase)
Case (1)

Call d02bjf(x,xend,n,y,fcn,tol,’Default’,output,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (2)
Call d02bjf(x,xend,n,y,fcn,tol,’Default’,d02bjx,g,w,ifail)
Write (nout,99998) ’ Root of Y(1) = 0.0 at’, x
Write (nout,99997) ’ Solution is’, (y(i),i=1,n)

Case (3)
Call d02bjf(x,xend,n,y,fcn,tol,’Default’,output,d02bjw,w,ifail)

Case (4)
Write (nout,99996) x, (y(i),i=1,n)
Call d02bjf(x,xend,n,y,fcn,tol,’Default’,d02bjx,d02bjw,w,ifail)
Write (nout,99996) x, (y(i),i=1,n)

End Select
End Do
If (icase<4) Then

Write (nout,*)
End If

End Do

99999 Format (1X,A,E8.1)
99998 Format (1X,A,F7.3)
99997 Format (1X,A,3F13.4)
99996 Format (1X,F8.2,3F13.4)
99995 Format (1X,’Case ’,I1,’: ’,A)

End Program d02bjfe

D02BJF NAG Library Manual

D02BJF.8 Mark 25

10.2 Program Data

D02BJF Example Program Data
0.0 10.0 : xinit
0.5 0.5 6.28318530717958647692E-1 : yinit
4 : kinit

10.3 Program Results

D02BJF Example Program Results

Case 1: intermediate output, root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507

Root of Y(1) = 0.0 at 7.288
Solution is -0.0000 0.4749 -0.7601

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507

Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0.7601

Case 2: no intermediate output, root-finding

Calculation with TOL = 0.1E-03
Root of Y(1) = 0.0 at 7.288
Solution is -0.0000 0.4749 -0.7601

Calculation with TOL = 0.1E-04
Root of Y(1) = 0.0 at 7.288
Solution is 0.0000 0.4749 -0.7601

Case 3: intermediate output, no root-finding

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507
8.00 -0.7460 0.5130 -0.8537

10.00 -3.6283 0.6333 -1.0515

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
2.00 1.5493 0.4055 0.3066
4.00 1.7423 0.3743 -0.1289
6.00 1.0055 0.4173 -0.5507
8.00 -0.7459 0.5130 -0.8537

10.00 -3.6282 0.6333 -1.0515

Case 4: no intermediate output, no root-finding (integrate to XEND)

Calculation with TOL = 0.1E-03
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
10.00 -3.6283 0.6333 -1.0515

D02 – Ordinary Differential D02BJF

Mark 25 D02BJF.9

Calculation with TOL = 0.1E-04
X Y(1) Y(2) Y(3)

0.00 0.5000 0.5000 0.6283
10.00 -3.6282 0.6333 -1.0515

-4

-3

-2

-1

 0

 1

 2

 0 2 4 6 8 10

So
lu

ti
on

x

Example Program
ODE Solution using Runge-Kutta with Root-finding

height

velocity

angle

he
ig

ht
 =

 0

D02BJF NAG Library Manual

D02BJF.10 (last) Mark 25

	D02BJF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Shampine (1994)

	5 Parameters
	X
	XEND
	N
	Y
	FCN
	X
	Y
	F

	TOL
	RELABS
	OUTPUT
	XSOL
	Y

	G
	X
	Y

	W
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

