NAG Library Routine Document
 D02GAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D02GAF solves a two-point boundary value problem with assigned boundary values for a system of ordinary differential equations, using a deferred correction technique and a Newton iteration.

2 Specification

```
SUBROUTINE DO2GAF (U, V, N, A, B, TOL, FCN, MNP, X, Y, NP, W, LW, IW,
    LIW, IFAIL)
INTEGER N, MNP, NP, LW, IW(LIW), LIW, IFAIL
REAL (KIND=nag_wp) U(N,2),V(N,2), A, B, TOL, X(MNP), Y(N,MNP), W(LW)
EXTERNAL
    FCN
```


3 Description

D02GAF solves a two-point boundary value problem for a system of n differential equations in the interval $[a, b]$. The system is written in the form:

$$
\begin{equation*}
y_{i}^{\prime}=f_{i}\left(x, y_{1}, y_{2}, \ldots, y_{n}\right), \quad i=1,2, \ldots, n \tag{1}
\end{equation*}
$$

and the derivatives f_{i} are evaluated by FCN. Initially, n boundary values of the variables y_{i} must be specified, some at a and some at b. You must supply estimates of the remaining n boundary values and all the boundary values are used in constructing an initial approximation to the solution. This approximate solution is corrected by a finite difference technique with deferred correction allied with a Newton iteration to solve the finite difference equations. The technique used is described fully in Pereyra (1979). The Newton iteration requires a Jacobian matrix $\frac{\partial f_{i}}{\partial y_{j}}$ and this is calculated by numerical differentiation using an algorithm described in Curtis et al. (1974).
You supply an absolute error tolerance and may also supply an initial mesh for the construction of the finite difference equations (alternatively a default mesh is used). The algorithm constructs a solution on a mesh defined by adding points to the initial mesh. This solution is chosen so that the error is everywhere less than your tolerance and so that the error is approximately equidistributed on the final mesh. The solution is returned on this final mesh.
If the solution is required at a few specific points then these should be included in the initial mesh. If on the other hand the solution is required at several specific points then you should use the interpolation routines provided in Chapter E01 if these points do not themselves form a convenient mesh.

4 References

Curtis A R, Powell M J D and Reid J K (1974) On the estimation of sparse Jacobian matrices J. Inst. Maths. Applics. 13 117-119
Pereyra V (1979) PASVA3: An adaptive finite-difference Fortran program for first order nonlinear, ordinary boundary problems Codes for Boundary Value Problems in Ordinary Differential Equations. Lecture Notes in Computer Science (eds B Childs, M Scott, J W Daniel, E Denman and P Nelson) 76 Springer-Verlag

5 Parameters

1: $\quad \mathrm{U}(\mathrm{N}, 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: $\mathrm{U}(i, 1)$ must be set to the known or estimated value of y_{i} at a and $\mathrm{U}(i, 2)$ must be set to the known or estimated value of y_{i} at b, for $i=1,2, \ldots, n$.

2: $\quad \mathrm{V}(\mathrm{N}, 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: $\mathrm{V}(i, j)$ must be set to 0.0 if $\mathrm{U}(i, j)$ is a known value and to 1.0 if $\mathrm{U}(i, j)$ is an estimated value, for $i=1,2, \ldots, n$ and $j=1,2$.
Constraint: precisely n of the $\mathrm{V}(i, j)$ must be set to 0.0 , i.e., precisely n of the $\mathrm{U}(i, j)$ must be known values, and these must not be all at a or all at b.

3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of equations.
Constraint: $\mathrm{N} \geq 2$.
4: \quad A - REAL (KIND=nag_wp)
Input
On entry: a, the left-hand boundary point.
5: $\quad \mathrm{B}-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: b, the right-hand boundary point.
Constraint: B > A.

6: \quad TOL - REAL (KIND=nag_wp)
Input
On entry: a positive absolute error tolerance. If

$$
a=x_{1}<x_{2}<\cdots<x_{\mathrm{NP}}=b
$$

is the final mesh, $z_{j}\left(x_{i}\right)$ is the j th component of the approximate solution at x_{i}, and $y_{j}(x)$ is the j th component of the true solution of equation (1) (see Section 3) and the boundary conditions, then, except in extreme cases, it is expected that

$$
\begin{equation*}
\left|z_{j}\left(x_{i}\right)-y_{j}\left(x_{i}\right)\right| \leq \mathrm{TOL}, \quad i=1,2, \ldots, \mathrm{NP} \text { and } j=1,2, \ldots, n \tag{2}
\end{equation*}
$$

Constraint: TOL >0.0.
7: \quad FCN - SUBROUTINE, supplied by the user.
External Procedure
FCN must evaluate the functions f_{i} (i.e., the derivatives y_{i}^{\prime}), for $i=1,2, \ldots, n$, at a general point x.

The specification of $F C N$ is:

```
SUBROUTINE FCN (X, Y, F)
```

REAL (KIND=nag_wp) $\mathrm{X}, \mathrm{Y}(*), \mathrm{F}(*)$

In the description of the parameters of D02GAF below, n denotes the actual value of N in the call of D02GAF.

1:	$\mathrm{X}-\mathrm{REAL}\left(\mathrm{KIND}=\right.$ nag_wp 2	Input
On entry: x, the value of the argument.		
2:	$\mathrm{Y}(*)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array	Input
	On entry: y_{i}, for $i=1,2, \ldots, n$, the value of the argument.	

$$
\begin{array}{|ll|}
\text { 3: } & \mathrm{F}(*)-\mathrm{REAL}(\mathrm{KIND}=\text { nag_wp }) \text { array } \\
& \text { On exit: the values of } f_{i} \text {, for } i=1,2, \ldots, n .
\end{array} \text { Output } \mid
$$

FCN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program from which D02GAF is called. Parameters denoted as Input must not be changed by this procedure.

8: MNP - INTEGER
Input
On entry: the maximum permitted number of mesh points.
Constraint: MNP ≥ 32.
9: $\quad \mathrm{X}(\mathrm{MNP})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: if $\mathrm{NP} \geq 4$ (see NP), the first NP elements must define an initial mesh. Otherwise the elements of X need not be set.

Constraint:

$$
\begin{equation*}
A=X(1)<X(2)<\cdots<X(N P)=B, \quad N P \geq 4 \tag{3}
\end{equation*}
$$

On exit: $\mathrm{X}(1), \mathrm{X}(2), \ldots, \mathrm{X}(\mathrm{NP})$ define the final mesh (with the returned value of NP) satisfying the relation (3).

10: $\mathrm{Y}(\mathrm{N}, \mathrm{MNP})$ - REAL (KIND=nag_wp) array
Output
On exit: the approximate solution $z_{j}\left(x_{i}\right)$ satisfying (2), on the final mesh, that is

$$
\mathrm{Y}(j, i)=z_{j}\left(x_{i}\right), \quad i=1,2, \ldots, \mathrm{NP} \text { and } j=1,2, \ldots, n
$$

where NP is the number of points in the final mesh.
The remaining columns of Y are not used.
11: NP - INTEGER
Input/Output
On entry: determines whether a default or user-supplied mesh is used.
$\mathrm{NP}=0$
A default value of 4 for $N P$ and a corresponding equispaced mesh $X(1), X(2), \ldots, X(N P)$ are used.
$\mathrm{NP} \geq 4$
You must define an initial mesh using the array X as described.
Constraint: NP $=0$ or $4 \leq \mathrm{NP} \leq \mathrm{MNP}$.
On exit: the number of points in the final (returned) mesh.
12: W(LW) - REAL (KIND=nag_wp) array Workspace
13: LW - INTEGER
Input
On entry: the dimension of the array W as declared in the (sub)program from which D02GAF is called.
Constraint: $\mathrm{LW} \geq \mathrm{MNP} \times\left(3 \mathrm{~N}^{2}+6 \mathrm{~N}+2\right)+4 \mathrm{~N}^{2}+4 \mathrm{~N}$.
14: IW(LIW) - INTEGER array Workspace
15: LIW - INTEGER Input
On entry: the dimension of the array IW as declared in the (sub)program from which D02GAF is called.

Constraint: LIW $\geq \mathrm{MNP} \times(2 \mathrm{~N}+1)+\mathrm{N}^{2}+4 \mathrm{~N}+2$.

16: IFAIL - INTEGER
For this routine, the normal use of IFAIL is extended to control the printing of error and warning messages as well as specifying hard or soft failure (see Section 3.3 in the Essential Introduction).
On entry: IFAIL must be set to a value with the decimal expansion $c b a$, where each of the decimal digits c, b and a must have a value of 0 or 1 .
$a=0$ specifies hard failure, otherwise soft failure;
$b=0$ suppresses error messages, otherwise error messages will be printed (see Section 6);
$c=0$ suppresses warning messages, otherwise warning messages will be printed (see Section 6).
The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
One or more of the parameters N, TOL, NP, MNP, LW or LIW has been incorrectly set, or B $\leq \mathrm{A}$, or the condition (3) on X is not satisfied, or the number of known boundary values (specified by V) is not N .

IFAIL $=2$
The Newton iteration has failed to converge. This could be due to there being too few points in the initial mesh or to the initial approximate solution being too inaccurate. If this latter reason is suspected you should use D02RAF instead. If the warning 'Jacobian matrix is singular' is printed this could be due to specifying zero estimated boundary values and these should be varied. This warning could also be printed in the unlikely event of the Jacobian matrix being calculated inaccurately. If you cannot make changes to prevent the warning then D02RAF should be used.

IFAIL $=3$
The Newton iteration has reached round-off level. It could be, however, that the answer returned is satisfactory. This error might occur if too much accuracy is requested.

IFAIL $=4$
A finer mesh is required for the accuracy requested; that is MNP is not large enough.
IFAIL $=5$
A serious error has occurred in a call to D02GAF. Check all array subscripts and subroutine parameter lists in calls to D02GAF. Seek expert help.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

The solution returned by the routine will be accurate to your tolerance as defined by the relation (2) except in extreme circumstances. If too many points are specified in the initial mesh, the solution may be more accurate than requested and the error may not be approximately equidistributed.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken by D02GAF depends on the difficulty of the problem, the number of mesh points (and meshes) used, the number of Newton iterations and the number of deferred corrections.

You are strongly recommended to set IFAIL to obtain self-explanatory error messages, and also monitoring information about the course of the computation. You may select the unit numbers on which this output is to appear by calls of X04AAF (for error messages) or X04ABF (for monitoring information) - see Section 10 for an example. Otherwise the default unit numbers will be used, as specified in the Users' Note.

A common cause of convergence problems in the Newton iteration is that you have specified too few points in the initial mesh. Although the routine adds points to the mesh to improve accuracy it is unable to do so until the solution on the initial mesh has been calculated in the Newton iteration.
If you specify zero known and estimated boundary values, the routine constructs a zero initial approximation and in many cases the Jacobian is singular when evaluated for this approximation, leading to the breakdown of the Newton iteration.

You may be unable to provide a sufficiently good choice of initial mesh and estimated boundary values, and hence the Newton iteration may never converge. In this case the continuation facility provided in D02RAF is recommended.

In the case where you wish to solve a sequence of similar problems, the final mesh from solving one case is strongly recommended as the initial mesh for the next.

10 Example

This example solves the differential equation

$$
y^{\prime \prime \prime}=-y y^{\prime \prime}-\beta\left(1-y^{\prime 2}\right)
$$

with boundary conditions

$$
y(0)=y^{\prime}(0)=0, \quad y^{\prime}(10)=1
$$

for $\beta=0.0$ and $\beta=0.2$ to an accuracy specified by TOL $=1.0 \mathrm{E}-3$. We solve first the simpler problem with $\beta=0.0$ using an equispaced mesh of 26 points and then we solve the problem with $\beta=0.2$ using the final mesh from the first problem.

Note the call to X 04 ABF prior to the call to D02GAF.

10.1 Program Text

D02GAF Example Program Text
Mark 25 Release. NAG Copyright 2014.
Module dO2gafe_mod
Data for D02GAF example program
.. Use Statements ..
Use nag_library, Only: nag_wp
.. Implicit None Statement ..
Implicit None
.. Accessibility Statements ..
Private
Public :: fcn
.. Parameters ..
Real (Kind=nag_wp), Parameter, Public : : one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter, Public : : zero = 0.0_nag_wp
Integer, Parameter, Public : iset $=1, \mathrm{n}=3$, $\mathrm{nin}=5$, nout $=6$
.. Local Scalars ..
Real (Kind=nag_wp), Public, Save : beta
Contains
Subroutine fon(x,y,f)
$!$
! D02GAF Example Main Program
! .. Use Statements ..
Use nag_library, Only: d02gaf, nag_wp, x04abf
Use do2gafe_mod, Only: beta, fcn, iset, n, nin, nout, one, zero
.. Implicit None Statement ..
Implicit None
! .. Local Scalars .
Real (Kind=nag_wp) :: a, b, h, tol
Integer : : i, ifail, j, k, liw, lw, mnp, \& np, outchn
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : u(:,:), v(:,:), w(:), x(:), y(:,:)
Integer, Allocatable : iw(:)
.. Intrinsic Procedures ..
Intrinsic : real
.. Executable Statements ..
Write (nout,*) 'D02GAF Example Program Results'
! Skip heading in data file
Read (nin,*)
n : number of differential equations
mnp: maximum permitted number of mesh points.
Read (nin,*) mnp
liw $=\operatorname{mnp} *(2 * n+1)+n * n+4 * n+2$
$1 \mathrm{w}=\mathrm{mnp} *\left(3 *_{\mathrm{n}} *_{\mathrm{n}}+6 *_{\mathrm{n}}+2\right)+4 *_{\mathrm{n}} *_{\mathrm{n}}+4 *_{\mathrm{n}}$
Allocate (iw(liw), u(n, 2),v(n, 2),w(lw),x(mnp),y(n,mnp))
tol: positive absolute error tolerance
np : determines whether a default or user-supplied mesh is used.
a : left-hand boundary point, b: right-hand boundary point.
Read (nin,*) tol
Read (nin,*) np
Read (nin,*) a, b

```
    outchn = nout
    Call x04abf(iset,outchn)
    beta = zero
    u(1:n,1:2) = zero
    v(1:n,1:2) = zero
    v(1,2) = one
    v(3,1) = one
    v}(3,2) = on
    u(2,2) = one
    u(1, 2) = b
    x(1) = a
    h = (b-a)/real(np-1,kind=nag_wp)
    Do i = 2, np - 1
        x(i) = x(i-1) + h
    End Do
    x(np) = b
loop: Do k = 1, 2
            Select Case (k)
            Case (1)
                beta = zero
            Case (2)
                beta = 0.2_nag_wp
            End Select
            ifail: behaviour on error exit
                    =1 for quiet-soft exit
            * Set ifail to }111\mathrm{ to obtain monitoring information *
            ifail = 1
            Call d02gaf(u,v,n,a,b,tol,fcn,mnp,x,y,np,w,lw,iw,liw,ifail)
            If (ifail>=0) Write (nout,99999) 'Problem with BETA = ', beta
            If (ifail==0 .Or. ifail==3) Then
                Write (nout,*)
            If (ifail==3) Write (nout,*) ' IFAIL = 3'
            Write (nout,99998) np
            Write (nout,99997)
            Write (nout,99996)(x(i),(y(j,i),j=1,n),i=1,np)
            beta = beta + 0.2EO_nag_wp
            Else
                Write (nout,99995) ifail
            Exit loop
            End If
End Do loop
```

```
99999 Format (/IX,A,F7.2)
```

99999 Format (/IX,A,F7.2)
99998 Format (1X,'Solution on final mesh of ',I2,' points')
99997 Format (1X,' X(I) Y1(I) Y2(I) Y3(I)')
99996 Format (1X,F11.3,3F13.4)
99995 Format (1X/1X,' ** D02GAF returned with IFAIL = ',I5)
End Program d02gafe

```

\subsection*{10.2 Program Data}
\begin{tabular}{ll} 
D02GAF Example Program Data \\
40 & \(: \mathrm{mnp}\) \\
\(1.0 \mathrm{E}-3\) & \(:\) tol \\
26 & \(: \mathrm{np}\) \\
0.0 10.0 & \(: \mathrm{a}, \mathrm{b}\)
\end{tabular}

\subsection*{10.3 Program Results}
\begin{tabular}{lll} 
D02GAF Example Program Results \\
Problem with BETA \(=\) & 0.00 & \\
Solution on final mesh of & 26 points & \\
X(I) & Y1(I) & Y2 (I) \\
0.000 & 0.0000 & 0.0000 \\
0.400 & 0.0375 & 0.1876 \\
0.800 & 0.1497 & 0.3719
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 1.200 & 0.3336 & 0.5450 & 0.4104 \\
\hline 1.600 & 0.5828 & 0.6963 & 0.3424 \\
\hline 2.000 & 0.8864 & 0.8163 & 0.2558 \\
\hline 2.400 & 1.2309 & 0.9009 & 0.1678 \\
\hline 2.800 & 1.6026 & 0.9529 & 0.0953 \\
\hline 3.200 & 1.9900 & 0.9805 & 0.0464 \\
\hline 3.600 & 2.3851 & 0.9930 & 0.0193 \\
\hline 4.000 & 2.7834 & 0.9978 & 0.0069 \\
\hline 4.400 & 3.1829 & 0.9994 & 0.0021 \\
\hline 4.800 & 3.5828 & 0.9999 & 0.0006 \\
\hline 5.200 & 3.9828 & 1.0000 & 0.0001 \\
\hline 5.600 & 4.3828 & 1.0000 & 0.0000 \\
\hline 6.000 & 4.7828 & 1.0000 & 0.0000 \\
\hline 6.400 & 5.1828 & 1.0000 & 0.0000 \\
\hline 6.800 & 5.5828 & 1.0000 & 0.0000 \\
\hline 7.200 & 5.9828 & 1.0000 & -0.0000 \\
\hline 7.600 & 6.3828 & 1.0000 & 0.0000 \\
\hline 8.000 & 6.7828 & 1.0000 & -0.0000 \\
\hline 8.400 & 7.1828 & 1.0000 & 0.0000 \\
\hline 8.800 & 7.5828 & 1.0000 & -0.0000 \\
\hline 9.200 & 7.9828 & 1.0000 & 0.0000 \\
\hline 9.600 & 8.3828 & 1.0000 & -0.0000 \\
\hline 10.000 & 8.7828 & 1.0000 & -0.0000 \\
\hline Problem with BETA & \multicolumn{2}{|l|}{\(=0.20\)} & \\
\hline \multicolumn{4}{|l|}{Solution on final mesh of 26 points} \\
\hline X ( I ) & Y1 ( I ) & Y2 ( I ) & Y3 ( I ) \\
\hline 0.000 & 0.0000 & 0.0000 & 0.6865 \\
\hline 0.400 & 0.0528 & 0.2584 & 0.6040 \\
\hline 0.800 & 0.2020 & 0.4814 & 0.5091 \\
\hline 1.200 & 0.4324 & 0.6636 & 0.4001 \\
\hline 1.600 & 0.7268 & 0.8007 & 0.2860 \\
\hline 2.000 & 1.0670 & 0.8939 & 0.1821 \\
\hline 2.400 & 1.4368 & 0.9498 & 0.1017 \\
\hline 2.800 & 1.8233 & 0.9791 & 0.0492 \\
\hline 3.200 & 2.2180 & 0.9924 & 0.0206 \\
\hline 3.600 & 2.6162 & 0.9976 & 0.0074 \\
\hline 4.000 & 3.0157 & 0.9993 & 0.0023 \\
\hline 4.400 & 3.4156 & 0.9998 & 0.0006 \\
\hline 4.800 & 3.8155 & 1.0000 & 0.0001 \\
\hline 5.200 & 4.2155 & 1.0000 & 0.0000 \\
\hline 5.600 & 4.6155 & 1.0000 & 0.0000 \\
\hline 6.000 & 5.0155 & 1.0000 & 0.0000 \\
\hline 6.400 & 5.4155 & 1.0000 & -0.0000 \\
\hline 6.800 & 5.8155 & 1.0000 & -0.0000 \\
\hline 7.200 & 6.2155 & 1.0000 & -0.0000 \\
\hline 7.600 & 6.6155 & 1.0000 & -0.0000 \\
\hline 8.000 & 7.0155 & 1.0000 & -0.0000 \\
\hline 8.400 & 7.4155 & 1.0000 & -0.0000 \\
\hline 8.800 & 7.8155 & 1.0000 & -0.0000 \\
\hline 9.200 & 8.2155 & 1.0000 & -0.0000 \\
\hline 9.600 & 8.6155 & 1.0000 & -0.0000 \\
\hline 10.000 & 9.0155 & 1.0000 & -0.0000 \\
\hline
\end{tabular}

Example Program
Two-point Boundary-value Problem using Deferred Correction Technique ( \(\beta=0.0\) )


Two-point Boundary-value Problem using Deferred Correction Technique ( \(\beta=0.2\) )
```

