NAG Library Routine Document D02NWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

D02NWF is a setup routine which must be called prior to linear algebra setup routines and integrators from the SPRINT suite of routines, if the BLEND formulae are to be used.

2 Specification

```
SUBROUTINE DO2NWF (NEQMAX, SDYSAV, MAXORD, CON, TCRIT, HMIN, HMAX, HO,
    MAXSTP, MXHNIL, NORM, RWORK, IFAIL)
INTEGER NEQMAX, SDYSAV, MAXORD, MAXSTP, MXHNIL, IFAIL
REAL (KIND=nag_wp) CON(6), TCRIT, HMIN, HMAX, HO, RWORK(50+4*NEQMAX)
CHARACTER(1) NORM
```


3 Description

An integrator setup routine must be called before the call to any linear algebra setup routine or integrator from the SPRINT suite of routines in this sub-chapter. This setup routine, D02NWF, makes the choice of the BLEND integrator and permits you to define options appropriate to this choice. Alternative choices of integrator from this suite are the BDF method and the DASSL implementation of the BDF method which can be chosen by initial calls to D02NVF or D02MVF respectively.

4 References

See the D02M-N sub-chapter Introduction.

5 Parameters

1: NEQMAX - INTEGER Input
On entry: a bound on the maximum number of differential equations to be solved.
Constraint: NEQMAX ≥ 1.
2: SDYSAV - INTEGER Input
On entry: the second dimension of the array YSAV that will be supplied to the integrator, as declared in the (sub)program from which the integrator is called (e.g., see D02NBF).
Constraint: SDYSAV \geq MAXORD +3 .
3: MAXORD - INTEGER
Input
On entry: the maximum order to be used for the BLEND method.
Constraint: $0<$ MAXORD ≤ 11.
4: $\operatorname{CON}(6)$ - REAL (KIND=nag_wp) array Input/Output
On entry: values to be used to control step size choice during integration. If any $\operatorname{CON}(i)=0.0$ on entry, it is replaced by its default value described below. In most cases this is the recommended setting.
$\operatorname{CON}(1), \operatorname{CON}(2)$, and $\operatorname{CON}(3)$ are factors used to bound step size changes. If the current step size h fails, then the modulus of the next step size is bounded by $\operatorname{CON}(1) \times|h|$. The default value of $\operatorname{CON}(1)$ is 2.0 . Note that the new step size may be used with a method of different order to the failed step. If the initial step size is h, then the modulus of the step size on the second step is bounded by $\operatorname{CON}(3) \times|h|$. At any other stage in the integration, if the current step size is h, then the modulus of the next step size is bounded by $\operatorname{CON}(2) \times|h|$. The default values are 10.0 for $\operatorname{CON}(2)$ and 1000.0 for $\operatorname{CON}(3)$.
$\operatorname{CON}(4), \operatorname{CON}(5)$ and $\operatorname{CON}(6)$ are 'tuning' constants used in determining the next order and step size. They are used to scale the error estimates used in determining whether to keep the same order of the BLEND method, decrease the order or increase the order respectively. The larger the value of $\operatorname{CON}(i)$, for $i=4,5,6$, the less likely the choice of the corresponding order. The default values are: $\operatorname{CON}(4)=1.2, \operatorname{CON}(5)=1.3, \operatorname{CON}(6)=1.4$.

Constraints:

These constraints must be satisfied after any zero values have been replaced by their default values.

$$
\begin{aligned}
& 0.0<\operatorname{CON}(1) \leq \operatorname{CON}(2) \leq \operatorname{CON}(3) \\
& \mathrm{CON}(i) \geq 1.0, \text { for } i=2,3, \ldots, 6
\end{aligned}
$$

On exit: the values actually used by D02NWF.
5: \quad TCRIT - REAL (KIND=nag_wp)
Input
On entry: a point beyond which integration must not be attempted. The use of TCRIT is described under the parameter ITASK in the specification for the integrator (e.g., see D02NBF). A value, 0.0 say, must be specified even if ITASK subsequently specifies that TCRIT will not be used.

6: \quad HMIN - REAL (KIND=nag_wp)
Input
On entry: the minimum absolute step size to be allowed. Set HMIN $=0.0$ if this option is not required.

7: HMAX - REAL (KIND=nag_wp) Input
On entry: the maximum absolute step size to be allowed. Set $\mathrm{HMAX}=0.0$ if this option is not required.

8: $\quad \mathrm{H} 0-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$
Input
On entry: the step size to be attempted on the first step. Set $\mathrm{H} 0=0.0$ if the initial step size is calculated internally.

9: MAXSTP - INTEGER
Input
On entry: the maximum number of steps to be attempted during one call to the integrator after which it will return with IFAIL $=2$. Set MAXSTP $=0$ if no limit is to be imposed.

10: MXHNIL - INTEGER Input
On entry: the maximum number of warnings printed (if ITRACE ≥ 0, e.g., see D02NBF) per problem when $t+h=t$ on a step ($h=$ current step size). If MXHNIL ≤ 0, a default value of 10 is assumed.

11: NORM - CHARACTER(1)
Input
On entry: indicates the type of norm to be used.
NORM $=$ ' M^{\prime}
Maximum norm.
NORM $=$ ' A^{\prime}
Averaged L2 norm.

NORM $=$ ' D^{\prime}
Is the same as ' A '.
If vnorm denotes the norm of the vector v of length n, then for the averaged L 2 norm

$$
\text { vnorm }=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(v_{i} / w_{i}\right)^{2}}
$$

while for the maximum norm

$$
v n o r m=\max _{i}\left|v_{i} / w_{i}\right|
$$

If you wish to weight the maximum norm or the L2 norm, then RTOL and ATOL should be scaled appropriately on input to the integrator (see under ITOL in the specification of the integrator for the formulation of the weight vector w_{i} from RTOL and ATOL, e.g., D02NBF).
Only the first character of the actual parameter NORM is passed to D02NWF; hence it is permissible for the actual argument to be more descriptive e.g., 'Maximum', 'Average L2' or 'Default' in a call to D02NWF.

Constraint: NORM = 'M', 'A' or 'D'.
12: $\operatorname{RWORK}(50+4 \times$ NEQMAX $)-\operatorname{REAL}\left(K I N D=n a g _w p\right)$ array
Communication Array
This must be the same workspace array as the array RWORK supplied to the integrator. It is used to pass information from the setup routine to the integrator and therefore the contents of this array must not be changed before calling the integrator.

13: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, an illegal input was detected.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.

IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

See Section 10 in D02NCF.

