
NAG Library Routine Document

D02PCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D02PCF solves an initial value problem for a first-order system of ordinary differential equations using
Runge–Kutta methods.

2 Specification

SUBROUTINE D02PCF (F, TWANT, TGOT, YGOT, YPGOT, YMAX, WORK, IFAIL)

INTEGER IFAIL
REAL (KIND=nag_wp) TWANT, TGOT, YGOT(*), YPGOT(*), YMAX(*), WORK(*)
EXTERNAL F

3 Description

D02PCF and its associated routines (D02PVF, D02PYF and D02PZF) solve an initial value problem for
a first-order system of ordinary differential equations. The routines, based on Runge–Kutta methods and
derived from RKSUITE (see Brankin et al. (1991)), integrate

y0 ¼ f t; yð Þ given y t0ð Þ ¼ y0

where y is the vector of n solution components and t is the independent variable.

D02PCF is designed for the usual task, namely to compute an approximate solution at a sequence of
points. You must first call D02PVF to specify the problem and how it is to be solved. Thereafter you call
D02PCF repeatedly with successive values of TWANT, the points at which you require the solution, in
the range from TSTART to TEND (as specified in D02PVF). In this manner D02PCF returns the point at
which it has computed a solution TGOT (usually TWANT), the solution there (YGOT) and its derivative
(YPGOT). If D02PCF encounters some difficulty in taking a step toward TWANT, then it returns the
point of difficulty (TGOT) and the solution and derivative computed there (YGOT and YPGOT,
respectively).

In the call to D02PVF you can specify either the first step size for D02PCF to attempt or that it compute
automatically an appropriate value. Thereafter D02PCF estimates an appropriate step size for its next
step. This value and other details of the integration can be obtained after any call to D02PCF by a call to
D02PYF. The local error is controlled at every step as specified in D02PVF. If you wish to assess the
true error, you must set ERRASS ¼ :TRUE: in the call to D02PVF. This assessment can be obtained
after any call to D02PCF by a call to D02PZF.

For more complicated tasks, you are referred to routines D02PDF, D02PWF and D02PXF, all of which
are used by D02PCF.

4 References

Brankin R W, Gladwell I and Shampine L F (1991) RKSUITE: A suite of Runge–Kutta codes for the
initial value problems for ODEs SoftReport 91-S1 Southern Methodist University

5 Parameters

1: F – SUBROUTINE, supplied by the user. External Procedure

F must evaluate the functions fi (that is the first derivatives y0i) for given values of the arguments
t, yi.

D02 – Ordinary Differential D02PCF

Mark 25 D02PCF.1

The specification of F is:

SUBROUTINE F (T, Y, YP)

REAL (KIND=nag_wp) T, Y(*), YP(*)

In the description of the parameters of D02PCF below, n denotes the value of NEQ in the call
of D02PVF.

1: T – REAL (KIND=nag_wp) Input

On entry: t, the current value of the independent variable.

2: Yð�Þ – REAL (KIND=nag_wp) array Input

On entry: the current values of the dependent variables, yi, for i ¼ 1; 2; . . . ; n.

3: YPð�Þ – REAL (KIND=nag_wp) array Output

On exit: the values of fi, for i ¼ 1; 2; . . . ; n.

F must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)program
from which D02PCF is called. Parameters denoted as Input must not be changed by this
procedure.

2: TWANT – REAL (KIND=nag_wp) Input

On entry: t, the next value of the independent variable where a solution is desired.

Constraint: TWANT must be closer to TEND than the previous value of TGOT (or TSTART on
the first call to D02PCF); see D02PVF for a description of TSTART and TEND. TWANT must
not lie beyond TEND in the direction of integration.

3: TGOT – REAL (KIND=nag_wp) Output

On exit: t, the value of the independent variable at which a solution has been computed. On
successful exit with IFAIL ¼ 0, TGOT will equal TWANT. On exit with IFAIL > 1, a solution
has still been computed at the value of TGOT but in general TGOT will not equal TWANT.

4: YGOTð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array YGOT must be at least n.

On entry: on the first call to D02PCF, YGOT need not be set. On all subsequent calls YGOT must
remain unchanged.

On exit: an approximation to the true solution at the value of TGOT. At each step of the
integration to TGOT, the local error has been controlled as specified in D02PVF. The local error
has still been controlled even when TGOT 6¼ TWANT, that is after a return with IFAIL > 1.

5: YPGOTð�Þ – REAL (KIND=nag_wp) array Output

Note: the dimension of the array YPGOT must be at least n.

On exit: an approximation to the first derivative of the true solution at TGOT.

6: YMAXð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array YMAX must be at least n.

On entry: on the first call to D02PCF, YMAX need not be set. On all subsequent calls YMAX
must remain unchanged.

On exit: YMAXðiÞ contains the largest value of yij j computed at any step in the integration so far.

D02PCF NAG Library Manual

D02PCF.2 Mark 25

7: WORKð�Þ – REAL (KIND=nag_wp) array Input/Output

Note: the dimension of the array WORK must be at least LENWRK (see D02PVF).

On entry: this must be the same array as supplied to D02PVF. It must remain unchanged between
calls.

On exit: information about the integration for use on subsequent calls to D02PCF or other
associated routines.

8: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, an invalid input value for TWANT was detected or an invalid call to D02PCF was
made, for example without a previous call to the setup routine D02PVF. You cannot continue
integrating the problem.

IFAIL ¼ 2

This return is possible only when METHOD ¼ 3 has been selected in the preceding call of
D02PVF. D02PCF is being used inefficiently because the step size has been reduced drastically
many times to get answers at many values of TWANT. If you really need the solution at this many
points, you should change to METHOD ¼ 2 because it is (much) more efficient in this situation.
To change METHOD, restart the integration from TGOT, YGOT by a call to D02PVF. If you
wish to continue with METHOD ¼ 3, just call D02PCF again without altering any of the
arguments other than IFAIL. The monitor of this kind of inefficiency will be reset automatically so
that the integration can proceed.

IFAIL ¼ 3

A considerable amount of work has been expended in the (primary) integration. This is measured
by counting the number of calls to the supplied routine F. At least 5000 calls have been made
since the last time this counter was reset. Calls to F in a secondary integration for global error
assessment (when ERRASS ¼ :TRUE: in the call to D02PVF) are not counted in this total. The
integration was interrupted, so TGOT is not equal to TWANT. If you wish to continue on towards
TWANT, just call D02PCF again without altering any of the arguments other than IFAIL. The
counter measuring work will be reset to zero automatically.

IFAIL ¼ 4

It appears that this problem is stiff. The methods implemented in D02PCF can solve such
problems, but they are inefficient. You should change to another code based on methods
appropriate for stiff problems. The integration was interrupted so TGOT is not equal to TWANT.

D02 – Ordinary Differential D02PCF

Mark 25 D02PCF.3

If you want to continue on towards TWANT, just call D02PCF again without altering any of the
arguments other than IFAIL. The stiffness monitor will be reset automatically.

IFAIL ¼ 5

It does not appear possible to achieve the accuracy specified by TOL and THRES in the call to
D02PVF with the precision available on the computer being used and with this value of
METHOD. You cannot continue integrating this problem. A larger value for METHOD, if
possible, will permit greater accuracy with this precision. To increase METHOD and/or continue
with larger values of TOL and/or THRES, restart the integration from TGOT, YGOT by a call to
D02PVF.

IFAIL ¼ 6

(This error exit can only occur if ERRASS ¼ :TRUE: in the call to D02PVF.) The global error
assessment may not be reliable beyond the current integration point TGOT. This may occur
because either too little or too much accuracy has been requested or because f t; yð Þ is not smooth
enough for values of t just past TGOT and current values of the solution y. The integration cannot
be continued. This return does not mean that you cannot integrate past TGOT, rather that you
cannot do it with ¼ :TRUE:. However, it may also indicate problems with the primary integration.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy of integration is determined by the parameters TOL and THRES in a prior call to D02PVF
(see the routine document for D02PVF for further details and advice). Note that only the local error at
each step is controlled by these parameters. The error estimates obtained are not strict bounds but are
usually reliable over one step. Over a number of steps the overall error may accumulate in various ways,
depending on the properties of the differential system.

8 Parallelism and Performance

D02PCF is not threaded by NAG in any implementation.

D02PCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

D02PCF NAG Library Manual

D02PCF.4 Mark 25

9 Further Comments

If D02PCF returns with IFAIL ¼ 5 and the accuracy specified by TOL and THRES is really required
then you should consider whether there is a more fundamental difficulty. For example, the solution may
contain a singularity. In such a region the solution components will usually be large in magnitude.
Successive output values of YGOT and YMAX should be monitored (or D02PDF should be used since
this takes one integration step at a time) with the aim of trapping the solution before the singularity. In
any case numerical integration cannot be continued through a singularity, and analytical treatment may
be necessary.

Performance statistics are available after any return from D02PCF by a call to D02PYF. If
ERRASS ¼ :TRUE: in the call to D02PVF, global error assessment is available after any return from
D02PCF (except when IFAIL ¼ 1) by a call to D02PZF.

After a failure with IFAIL ¼ 5 or 6 the diagnostic routines D02PYF and D02PZF may be called only
once.

If D02PCF returns with IFAIL ¼ 4 then it is advisable to change to another code more suited to the
solution of stiff problems. D02PCF will not return with IFAIL ¼ 4 if the problem is actually stiff but it
is estimated that integration can be completed using less function evaluations than already computed.

10 Example

This example solves the equation

y00 ¼ �y; y 0ð Þ ¼ 0; y0 0ð Þ ¼ 1

reposed as

y01 ¼ y2

y02 ¼ �y1

over the range 0; 2�½ � with initial conditions y1 ¼ 0:0 and y2 ¼ 1:0. Relative error control is used with
threshold values of 1:0E�8 for each solution component and compute the solution at intervals of length
�=4 across the range. A low-order Runge–Kutta method (METHOD ¼ 1, see D02PVF) is also used with
tolerances TOL ¼ 1:0E�3 and TOL ¼ 1:0E�4 in turn so that the solutions can be compared. The value
of � is obtained by using X01AAF.

Note that the length of WORK is large enough for any valid combination of input arguments to
D02PVF.

See also Section 10 in D02PZF.

10.1 Program Text

! D02PCF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module d02pcfe_mod

! D02PCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: f

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: tol1 = 1.0E-3_nag_wp
Real (Kind=nag_wp), Parameter, Public :: tol2 = 1.0E-4_nag_wp
Integer, Parameter, Public :: neq = 2, nin = 5, nout = 6, &

D02 – Ordinary Differential D02PCF

Mark 25 D02PCF.5

npts = 8
Integer, Parameter, Public :: lenwrk = 32*neq

Contains

Subroutine f(t,y,yp)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: t

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: y(*)
Real (Kind=nag_wp), Intent (Out) :: yp(*)

! .. Executable Statements ..
yp(1) = y(2)
yp(2) = -y(1)
Return

End Subroutine f
End Module d02pcfe_mod

Program d02pcfe

! D02PCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: d02pcf, d02pvf, d02pyf, nag_wp
Use d02pcfe_mod, Only: f, lenwrk, neq, nin, nout, npts, tol1, tol2

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: hnext, hstart, tend, tgot, tinc, &

tol, tstart, twant, waste
Integer :: i, ifail, j, method, stpcst, &

stpsok, totf
Logical :: errass

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: thres(:), work(:), ygot(:), &

ymax(:), ypgot(:), ystart(:)
! .. Intrinsic Procedures ..

Intrinsic :: real
! .. Executable Statements ..

Write (nout,*) ’D02PCF Example Program Results’
! Skip heading in data file

Read (nin,*)
Read (nin,*) method
Allocate (thres(neq),work(lenwrk),ygot(neq),ymax(neq),ypgot(neq), &

ystart(neq))

! Set initial conditions and input for D02PVF

Read (nin,*) tstart, tend
Read (nin,*) ystart(1:neq)
Read (nin,*) hstart
Read (nin,*) thres(1:neq)
Read (nin,*) errass

! Set control for output

tinc = (tend-tstart)/real(npts,kind=nag_wp)

loop: Do i = 1, 2
If (i==1) Then

tol = tol1
Else

tol = tol2
End If

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call d02pvf(neq,tstart,ystart,tend,tol,thres,method,’Usual Task’, &

errass,hstart,work,lenwrk,ifail)

D02PCF NAG Library Manual

D02PCF.6 Mark 25

Write (nout,99999) tol
Write (nout,99998)
Write (nout,99997) tstart, ystart(1:neq)
twant = tstart
Do j = 1, npts

twant = twant + tinc

ifail = -1
Call d02pcf(f,twant,tgot,ygot,ypgot,ymax,work,ifail)

Write (nout,99997) tgot, ygot(1:neq)
End Do

ifail = 0
Call d02pyf(totf,stpcst,waste,stpsok,hnext,ifail)
Write (nout,99996) totf

End Do loop

99999 Format (/’ Calculation with TOL = ’,E8.1)
99998 Format (/’ t y1 y2’/)
99997 Format (1X,F6.3,2(3X,F7.3))
99996 Format (/’ Cost of the integration in evaluations of F is’,I6)

End Program d02pcfe

10.2 Program Data

D02PCF Example Program Data
1 : method
0.0 6.28318530717958647692 : tstart, tend
0.0 1.0 : ystart(1:neq)
0.0 : hstart
1.0E-8 1.0E-8 : thres(1:neq)
.FALSE. : errass

10.3 Program Results

D02PCF Example Program Results

Calculation with TOL = 0.1E-02

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 0.999 -0.000
2.356 0.706 -0.706
3.142 -0.000 -0.999
3.927 -0.706 -0.706
4.712 -0.998 0.000
5.498 -0.705 0.706
6.283 0.001 0.997

Cost of the integration in evaluations of F is 124

Calculation with TOL = 0.1E-03

t y1 y2

0.000 0.000 1.000
0.785 0.707 0.707
1.571 1.000 -0.000
2.356 0.707 -0.707
3.142 -0.000 -1.000
3.927 -0.707 -0.707
4.712 -1.000 0.000
5.498 -0.707 0.707
6.283 0.000 1.000

Cost of the integration in evaluations of F is 235

D02 – Ordinary Differential D02PCF

Mark 25 D02PCF.7

-1

-0.5

 0

 0.5

 1

 0 2 4 6 8 10
 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

So
lu

ti
on

 (
y,

y’
)

ab
s(

E
rr

or
)

t

Example Program
First-order ODEs using Runge-Kutta

Low-order Method using Two Tolerances

y’

y-error (tol = 0.001)

y-error (tol = 0.0001)

y

D02PCF NAG Library Manual

D02PCF.8 (last) Mark 25

	D02PCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Brankin et al. (1991)

	5 Parameters
	F
	T
	Y
	YP

	TWANT
	TGOT
	YGOT
	YPGOT
	YMAX
	WORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

