
NAG Library Routine Document

D06AAF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

D06AAF generates a triangular mesh of a closed polygonal region in R
2, given a mesh of its boundary.

It uses a simple incremental method.

2 Specification

SUBROUTINE D06AAF (NVB, NVMAX, NEDGE, EDGE, NV, NELT, COOR, CONN,
BSPACE, SMOOTH, COEF, POWER, ITRACE, RWORK, LRWORK,
IWORK, LIWORK, IFAIL)

&
&

INTEGER NVB, NVMAX, NEDGE, EDGE(3,NEDGE), NV, NELT,
CONN(3,2*(NVMAX-1)), ITRACE, LRWORK, IWORK(LIWORK),
LIWORK, IFAIL

&
&

REAL (KIND=nag_wp) COOR(2,NVMAX), BSPACE(NVB), COEF, POWER,
RWORK(LRWORK)

&

LOGICAL SMOOTH

3 Description

D06AAF generates the set of interior vertices using a process based on a simple incremental method. A
smoothing of the mesh is optionally available. For more details about the triangulation method, consult
the D06 Chapter Introduction as well as George and Borouchaki (1998).

This routine is derived from material in the MODULEF package from INRIA (Institut National de
Recherche en Informatique et Automatique).

4 References

George P L and Borouchaki H (1998) Delaunay Triangulation and Meshing: Application to Finite
Elements Editions HERMES, Paris

5 Parameters

1: NVB – INTEGER Input

On entry: the number of vertices in the input boundary mesh.

Constraint: 3 � NVB � NVMAX.

2: NVMAX – INTEGER Input

On entry: the maximum number of vertices in the mesh to be generated.

3: NEDGE – INTEGER Input

On entry: the number of boundary edges in the input mesh.

Constraint: NEDGE � 1.

D06 – Mesh Generation D06AAF

Mark 25 D06AAF.1



4: EDGEð3;NEDGEÞ – INTEGER array Input

On entry: the specification of the boundary edges. EDGEð1; jÞ and EDGEð2; jÞ contain the vertex
numbers of the two end points of the jth boundary edge. EDGEð3; jÞ is a user-supplied tag for the
jth boundary edge and is not used by D06AAF.

C o n s t r a i n t : 1 � EDGEði; jÞ � NVB a n d EDGEð1; jÞ 6¼ EDGEð2; jÞ, f o r i ¼ 1; 2 a n d
j ¼ 1; 2; . . . ;NEDGE.

5: NV – INTEGER Output

On exit: the total number of vertices in the output mesh (including both boundary and interior
vertices). If NVB ¼ NVMAX, no interior vertices will be generated and NV ¼ NVB.

6: NELT – INTEGER Output

On exit: the number of triangular elements in the mesh.

7: COORð2;NVMAXÞ – REAL (KIND=nag_wp) array Input/Output

On entry: COORð1; iÞ contains the x coordinate of the ith input boundary mesh vertex; while
COORð2; iÞ contains the corresponding y coordinate, for i ¼ 1; 2; . . . ;NVB.

On exit: COORð1; iÞ will contain the x coordinate of the i � NVBð Þth generated interior mesh
vertex; while COORð2; iÞ will contain the corresponding y coordinate, for i ¼ NVBþ 1; . . . ;NV.
The remaining elements are unchanged.

8: CONNð3; 2� NVMAX� 1ð ÞÞ – INTEGER array Output

On exit: the connectivity of the mesh between triangles and vertices. For each triangle j,
CONNði; jÞ gives the indices of its three vertices (in anticlockwise order), for i ¼ 1; 2; 3 and
j ¼ 1; 2; . . . ;NELT.

9: BSPACEðNVBÞ – REAL (KIND=nag_wp) array Input

On entry: the desired mesh spacing (triangle diameter, which is the length of the longer edge of
the triangle) near the boundary vertices.

Constraint: BSPACEðiÞ > 0:0, for i ¼ 1; 2; . . . ;NVB.

10: SMOOTH – LOGICAL Input

On entry: indicates whether or not mesh smoothing should be performed.

If SMOOTH ¼ :TRUE:, the smoothing is performed; otherwise no smoothing is performed.

11: COEF – REAL (KIND=nag_wp) Input

On entry: the coefficient in the stopping criteria for the generation of interior vertices. This
parameter controls the triangle density and the number of triangles generated is in O COEF2

� �
.

The mesh will be finer if COEF is greater than 0:7165 and 0:75 is a good value.

Suggested value: 0:75.

12: POWER – REAL (KIND=nag_wp) Input

On entry: controls the rate of change of the mesh size during the generation of interior vertices.
The smaller the value of POWER, the faster the decrease in element size away from the boundary.

Suggested value: 0:25.

Constraint: 0:1 � POWER � 10:0.

D06AAF NAG Library Manual

D06AAF.2 Mark 25



13: ITRACE – INTEGER Input

On entry: the level of trace information required from D06AAF.

ITRACE � 0
No output is generated.

ITRACE � 1
Output from the meshing solver is printed on the current advisory message unit (see
X04ABF). This output contains details of the vertices and triangles generated by the
process.

You are advised to set ITRACE ¼ 0, unless you are experienced with finite element mesh
generation.

14: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Workspace
15: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
D06AAF is called.

Constraint: LRWORK � NVMAX.

16: IWORKðLIWORKÞ – INTEGER array Workspace
17: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
D06AAF is called.

Constraint: LIWORK � 16� NVMAXþ 2� NEDGEþmax 4� NVMAXþ 2;NEDGEð Þ � 14.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NVB < 3 or NVB > NVMAX,
or NEDGE < 1,
or EDGEði; jÞ < 1 or EDGEði; jÞ > NVB, for some i ¼ 1; 2 and j ¼ 1; 2; . . . ;NEDGE,
or EDGEð1; jÞ ¼ EDGEð2; jÞ, for some j ¼ 1; 2; . . . ;NEDGE,
or BSPACEðiÞ � 0:0, for some i ¼ 1; 2; . . . ;NVB,
or POWER < 0:1 or POWER > 10:0,
or LIWORK < 16� NVMAXþ 2� NEDGEþmax 4� NVMAXþ 2;NEDGEð Þ � 14,
or LRWORK < NVMAX.

D06 – Mesh Generation D06AAF

Mark 25 D06AAF.3



IFAIL ¼ 2

An error has occurred during the generation of the interior mesh. Check the definition of the
boundary (arguments COOR and EDGE) as well as the orientation of the boundary (especially in
the case of a multiple connected component boundary). Setting ITRACE > 0 may provide more
details.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The position of the internal vertices is a function of the positions of the vertices on the given boundary.
A fine mesh on the boundary results in a fine mesh in the interior. The algorithm allows you to obtain a
denser interior mesh by varying NVMAX, BSPACE, COEF and POWER. But you are advised to
manipulate the last two parameters with care.

You are advised to take care to set the boundary inputs properly, especially for a boundary with multiply
connected components. The orientation of the interior boundaries should be in clockwise order and
opposite to that of the exterior boundary. If the boundary has only one connected component, its
orientation should be anticlockwise.

10 Example

In this example, a geometry with two holes (two interior circles inside an exterior one) is meshed using
the simple incremental method (see the D06 Chapter Introduction). The exterior circle is centred at the
origin with a radius 1:0, the first interior circle is centred at the point �0:5; 0:0ð Þ with a radius 0:49, and
the second one is centred at the point �0:5; 0:65ð Þ with a radius 0:15. Note that the points �1:0; 0:0ð Þ
and �0:5; 0:5ð Þ) are points of ‘near tangency’ between the exterior circle and the first and second circles.

The boundary mesh has 100 vertices and 100 edges (see Figure 1 in Section 10.3). Note that the
particular mesh generated could be sensitive to the machine precision and therefore may differ from one
implementation to another. Figure 2 in Section 10.3 contains the output mesh.

D06AAF NAG Library Manual

D06AAF.4 Mark 25



10.1 Program Text

Program d06aafe

! D06AAF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: d06aaf, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: meshout = 7, nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: coef, pi2, power, r, theta, theta_i, &

x0, y0
Integer :: i, ifail, itrace, liwork, lrwork, &

nedge, nelt, nv, nvb, nvb1, nvb2, &
nvb3, nvmax

Logical :: smooth
Character (1) :: pmesh

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: bspace(:), coor(:,:), rwork(:)
Integer, Allocatable :: conn(:,:), edge(:,:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: cos, max, real, sin

! .. Executable Statements ..
Write (nout,*) ’D06AAF Example Program Results’

! Skip heading in data file
Read (nin,*)

! Reading of the geometry
! Coordinates of the boundary mesh vertices and
! edges references.

Read (nin,*) nvb1, nvb2, nvb3, nvmax
nvb = nvb1 + nvb2 + nvb3
nedge = nvb

lrwork = nvmax
liwork = 16*nvmax + 2*nedge + max(4*nvmax+2,nedge-14)
Allocate (bspace(nvb),coor(2,nvmax),rwork(lrwork),conn(3,2*(nvmax- &

1)),edge(3,nedge),iwork(liwork))

! Outer circle
pi2 = 2.0_nag_wp*x01aaf(theta)
theta = pi2/real(nvb1,kind=nag_wp)
r = 1.0_nag_wp
x0 = 0.0_nag_wp
y0 = 0.0_nag_wp
Do i = 1, nvb1

theta_i = theta*real(i,kind=nag_wp)
coor(1,i) = x0 + r*cos(theta_i)
coor(2,i) = y0 + r*sin(theta_i)

End Do
! Larger inner circle

theta = pi2/real(nvb2,kind=nag_wp)
r = 0.49_nag_wp
x0 = -0.5_nag_wp
y0 = 0.0_nag_wp
Do i = 1, nvb2

theta_i = theta*real(i,kind=nag_wp)
coor(1,nvb1+i) = x0 + r*cos(theta_i)
coor(2,nvb1+i) = y0 + r*sin(theta_i)

End Do
! Smaller inner circle

theta = pi2/real(nvb3,kind=nag_wp)
r = 0.15_nag_wp
x0 = -0.5_nag_wp

D06 – Mesh Generation D06AAF

Mark 25 D06AAF.5



y0 = 0.65_nag_wp
Do i = 1, nvb3

theta_i = theta*real(i,kind=nag_wp)
coor(1,nvb1+nvb2+i) = x0 + r*cos(theta_i)
coor(2,nvb1+nvb2+i) = y0 + r*sin(theta_i)

End Do

! Boundary edges

Do i = 1, nedge
edge(1,i) = i
edge(2,i) = i + 1
edge(3,i) = 1

End Do
edge(2,nvb1) = 1
edge(2,nvb1+nvb2) = nvb1 + 1
edge(2,nvb) = nvb1 + nvb2 + 1

! Initialise mesh control parameters

bspace(1:nvb) = 0.05E0_nag_wp
smooth = .True.
itrace = 0
coef = 0.75E0_nag_wp
power = 0.25E0_nag_wp

! Call to the mesh generator

ifail = 0
Call d06aaf(nvb,nvmax,nedge,edge,nv,nelt,coor,conn,bspace,smooth,coef, &

power,itrace,rwork,lrwork,iwork,liwork,ifail)

Write (nout,*)
Read (nin,*) pmesh

Select Case (pmesh)
Case (’N’)

Write (nout,99999) ’NV =’, nv
Write (nout,99999) ’NELT =’, nelt

Case (’Y’)

! Output the mesh in a form suitable for printing

Write (meshout,*) ’# D06ABF Example Program Mesh results’
Do i = 1, nelt

Write (meshout,99998) coor(1,conn(1,i)), coor(2,conn(1,i))
Write (meshout,99998) coor(1,conn(2,i)), coor(2,conn(2,i))
Write (meshout,99998) coor(1,conn(3,i)), coor(2,conn(3,i))
Write (meshout,99998) coor(1,conn(1,i)), coor(2,conn(1,i))
Write (meshout,*)

End Do
Write (meshout,*)

Case Default
Write (nout,*) ’Problem with the printing option Y or N’

End Select

99999 Format (1X,A,I6)
99998 Format (2(2X,E13.6))

End Program d06aafe

10.2 Program Data

Note 1: since the data file for this example is quite large only a section of it is reproduced in this
document. The full data file is distributed with your implementation.

D06AAF Example Program Data
40 30 30 250 : nvb1, nvb2, nvb3, nvmax
’N’ : Print mesh? ’Y’ or ’N’

D06AAF NAG Library Manual

D06AAF.6 Mark 25



10.3 Program Results

D06AAF Example Program Results

NV = 250
NELT = 402

Example Program
Figure 1: The Geometry of Circular Region With Two Holes

D06 – Mesh Generation D06AAF

Mark 25 D06AAF.7



Figure 2: Mesh Generated on the Geometry With Two Holes

D06AAF NAG Library Manual

D06AAF.8 (last) Mark 25


	D06AAF
	1 Purpose
	2 Specification
	3 Description
	4 References
	George and Borouchaki (1998)

	5 Parameters
	NVB
	NVMAX
	NEDGE
	EDGE
	NV
	NELT
	COOR
	CONN
	BSPACE
	SMOOTH
	COEF
	POWER
	ITRACE
	RWORK
	LRWORK
	IWORK
	LIWORK
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results


	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction




