
NAG Library Routine Document

E02AFF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E02AFF computes the coefficients of a polynomial, in its Chebyshev series form, which interpolates
(passes exactly through) data at a special set of points. Least squares polynomial approximations can
also be obtained.

2 Specification

SUBROUTINE E02AFF (NPLUS1, F, A, IFAIL)

INTEGER NPLUS1, IFAIL
REAL (KIND=nag_wp) F(NPLUS1), A(NPLUS1)

3 Description

E02AFF computes the coefficients aj , for j ¼ 1; 2; . . . ; nþ 1, in the Chebyshev series

1
2a1T0 �xð Þ þ a2T1 �xð Þ þ a3T2 �xð Þ þ � � � þ anþ1Tn �xð Þ;

which interpolates the data fr at the points

�xr ¼ cos r� 1ð Þ�=nð Þ; r ¼ 1; 2; . . . ; nþ 1:

Here Tj �xð Þ denotes the Chebyshev polynomial of the first kind of degree j with argument �x. The use of
these points minimizes the risk of unwanted fluctuations in the polynomial and is recommended when
the data abscissae can be chosen by you, e.g., when the data is given as a graph. For further advantages
of this choice of points, see Clenshaw (1962).

In terms of your original variables, x say, the values of x at which the data fr are to be provided are

xr ¼ 1
2 xmax � xminð Þ cos � r� 1ð Þ=nð Þ þ 1

2 xmax þ xminð Þ; r ¼ 1; 2; . . . ; nþ 1

where xmax and xmin are respectively the upper and lower ends of the range of x over which you wish to
interpolate.

Truncation of the resulting series after the term involving aiþ1, say, yields a least squares approximation
to the data. This approximation, p �xð Þ, say, is the polynomial of degree i which minimizes

1
2�

2
1 þ �2

2 þ �2
3 þ � � � þ �2

n þ 1
2�

2
nþ1;

where the residual �r ¼ p �xrð Þ � fr , for r ¼ 1; 2; . . . ; nþ 1.

The method employed is based on the application of the three-term recurrence relation due to Clenshaw
(1955) for the evaluation of the defining expression for the Chebyshev coefficients (see, for example,
Clenshaw (1962)). The modifications to this recurrence relation suggested by Reinsch and Gentleman
(see Gentleman (1969)) are used to give greater numerical stability.

For further details of the algorithm and its use see Cox (1974) and Cox and Hayes (1973).

Subsequent evaluation of the computed polynomial, perhaps truncated after an appropriate number of
terms, should be carried out using E02AEF.
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5 Parameters

1: NPLUS1 – INTEGER Input

On entry: the number nþ 1 of data points (one greater than the degree n of the interpolating
polynomial).

Constraint: NPLUS1 � 2.

2: FðNPLUS1Þ – REAL (KIND=nag_wp) array Input

On entry: for r ¼ 1; 2; . . . ; nþ 1, FðrÞ must contain fr the value of the dependent variable
(ordinate) corresponding to the value

�xr ¼ cos � r� 1ð Þ=nð Þ

of the independent variable (abscissa) �x, or equivalently to the value

x rð Þ ¼ 1
2 xmax � xminð Þ cos � r� 1ð Þ=nð Þ þ 1

2 xmax þ xminð Þ

of your original variable x. Here xmax and xmin are respectively the upper and lower ends of the
range over which you wish to interpolate.

3: AðNPLUS1Þ – REAL (KIND=nag_wp) array Output

On exit: AðjÞ is the coefficient aj in the interpolating polynomial, for j ¼ 1; 2; . . . ; nþ 1.

4: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).
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6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, NPLUS1 < 2.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The rounding errors committed are such that the computed coefficients are exact for a slightly perturbed
set of ordinates fr þ �fr. The ratio of the sum of the absolute values of the �fr to the sum of the absolute
values of the fr is less than a small multiple of nþ 1ð Þ�, where � is the machine precision.

8 Parallelism and Performance

Not applicable.

9 Further Comments

The time taken is approximately proportional to nþ 1ð Þ2 þ 30.

For choice of degree when using the routine for least squares approximation, see Section 3.2 in the E02
Chapter Introduction.

10 Example

Determine the Chebyshev coefficients of the polynomial which interpolates the data �xr ; fr , for
r ¼ 1; 2; . . . ; 11, where �xr ¼ cos �� r� 1ð Þ=10ð Þ and fr ¼ e�xr . Evaluate, for comparison with the values
of fr , the resulting Chebyshev series at �xr , for r ¼ 1; 2; . . . ; 11.

The example program supplied is written in a general form that will enable polynomial interpolations of
arbitrary data at the cosine points cos �� r � 1ð Þ=nð Þ, for r ¼ 1; 2; . . . ; nþ 1, to be obtained for any n
( ¼ NPLUS1� 1). Note that E02AEF is used to evaluate the interpolating polynomial. The program is
self-starting in that any number of datasets can be supplied.
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10.1 Program Text

Program e02affe

! E02AFF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: e02aef, e02aff, nag_wp, x01aaf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: fit, pi, piby2n
Integer :: i, ifail, j, n, nplus1, r

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:), f(:), xcap(:)

! .. Intrinsic Procedures ..
Intrinsic :: real, sin

! .. Executable Statements ..
Write (nout,*) ’E02AFF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) n
nplus1 = n + 1
Allocate (a(nplus1),f(nplus1),xcap(nplus1))

piby2n = 0.5E0_nag_wp*x01aaf(pi)/real(n,kind=nag_wp)

Read (nin,*)(f(r),r=1,nplus1)

Do r = 1, nplus1
i = r - 1

! The following method of evaluating XCAP = cos(PI*I/N)
! ensures that the computed value has a small relative error
! and, moreover, is bounded in modulus by unity for all
! I = 0, 1, ..., N. (It is assumed that the sine routine
! produces a result with a small relative error for values
! of the argument between -PI/4 and PI/4).

If (4*i<=n) Then
xcap(i+1) = 1.0E0_nag_wp - 2.0E0_nag_wp*sin(piby2n*real(i,kind= &

nag_wp))**2
Else If (4*i>3*n) Then

xcap(i+1) = 2.0E0_nag_wp*sin(piby2n*real(n-i,kind=nag_wp))**2 - &
1.0E0_nag_wp

Else
xcap(i+1) = sin(piby2n*real(n-2*i,kind=nag_wp))

End If

End Do

ifail = 0
Call e02aff(nplus1,f,a,ifail)

Write (nout,*)
Write (nout,*) ’ Chebyshev’
Write (nout,*) ’ J coefficient A(J)’
Write (nout,99998)(j,a(j),j=1,nplus1)
Write (nout,*)
Write (nout,*) ’ R Abscissa Ordinate Fit’

Do r = 1, nplus1

ifail = 0
Call e02aef(nplus1,a,xcap(r),fit,ifail)
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Write (nout,99999) r, xcap(r), f(r), fit
End Do

99999 Format (1X,I3,3F11.4)
99998 Format (1X,I3,F14.7)

End Program e02affe

10.2 Program Data

E02AFF Example Program Data
10

2.7182
2.5884
2.2456
1.7999
1.3620
1.0000
0.7341
0.5555
0.4452
0.3863
0.3678

10.3 Program Results

E02AFF Example Program Results

Chebyshev
J coefficient A(J)
1 2.5320000
2 1.1303095
3 0.2714893
4 0.0443462
5 0.0055004
6 0.0005400
7 0.0000307
8 -0.0000006
9 -0.0000004

10 0.0000049
11 -0.0000200

R Abscissa Ordinate Fit
1 1.0000 2.7182 2.7182
2 0.9511 2.5884 2.5884
3 0.8090 2.2456 2.2456
4 0.5878 1.7999 1.7999
5 0.3090 1.3620 1.3620
6 0.0000 1.0000 1.0000
7 -0.3090 0.7341 0.7341
8 -0.5878 0.5555 0.5555
9 -0.8090 0.4452 0.4452

10 -0.9511 0.3863 0.3863
11 -1.0000 0.3678 0.3678
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