
NAG Library Routine Document

E05JBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm, and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E05JBF is designed to find the global minimum or maximum of an arbitrary function, subject to simple
bound-constraints using a multi-level coordinate search method. Derivatives are not required, but
convergence is only guaranteed if the objective function is continuous in a neighbourhood of a global
optimum. It is not intended for large problems.

The initialization routine E05JAF must have been called before calling E05JBF.

2 Specification

SUBROUTINE E05JBF (N, OBJFUN, IBOUND, IINIT, BL, BU, SDLIST, LIST,
NUMPTS, INITPT, MONIT, X, OBJ, COMM, LCOMM, IUSER,
RUSER, IFAIL)

&
&

INTEGER N, IBOUND, IINIT, SDLIST, NUMPTS(N), INITPT(N),
LCOMM, IUSER(*), IFAIL

&

REAL (KIND=nag_wp) BL(N), BU(N), LIST(N,SDLIST), X(N), OBJ,
COMM(LCOMM), RUSER(*)

&

EXTERNAL OBJFUN, MONIT

E05JAF must be called before calling E05JBF, or any of the option-setting or option-getting routines
E05JCF, E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF or E05JLF.

You must not alter the number of non-fixed variables in your problem or the contents of the array
COMM between calls of the routines E05JAF, E05JBF, E05JCF, E05JDF, E05JEF, E05JFF, E05JGF,
E05JHF, E05JJF, E05JKF or E05JLF.

3 Description

E05JBF is designed to solve modestly sized global optimization problems having simple bound-
constraints only; it finds the global optimum of a nonlinear function subject to a set of bound constraints
on the variables. Without loss of generality, the problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ subject to l � x � u and l � u;

where F xð Þ (the objective function) is a nonlinear scalar function (assumed to be continuous in a
neighbourhood of a global minimum), and the bound vectors are elements of �Rn, where �R denotes the
extended reals R [�1;1f g. Relational operators between vectors are interpreted elementwise.

The optional parameter Maximize should be set if you wish to solve maximization, rather than
minimization, problems.

If certain bounds are not present, the associated elements of l or u can be set to special values that will
be treated as �1 or þ1. See the description of the optional parameter Infinite Bound Size. Phrases in
this document containing terms like ‘unbounded values’ should be understood to be taken relative to this
optional parameter.

Fixing variables (that is, setting li ¼ ui for some i) is allowed in E05JBF.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.1

A typical excerpt from a routine calling E05JBF is:

CALL E05JAF (N_R, COMM, LCOMM, ...)
CALL E05JDF (OPTSTR, COMM, LCOMM, ...)
CALL E05JBF (N, OBJFUN, ...)

where E05JDF sets the optional parameter and value specified in OPTSTR.

The initialization routine E05JAF does not need to be called before each invocation of E05JBF. You
should be aware that a call to the initialization routine will reset each optional parameter to its default
value, and, if you are using repeatable randomized initialization lists (see the description of the
parameter IINIT), the random state stored in the array COMM will be destroyed.

You must supply a subroutine that evaluates F xð Þ; derivatives are not required.

The method used by E05JBF is based on MCS, the Multi-level Coordinate Search method described in
Huyer and Neumaier (1999), and the algorithm it uses is described in detail in Section 11.

4 References

Huyer W and Neumaier A (1999) Global optimization by multi-level coordinate search Journal of Global
Optimization 14 331–355

5 Parameters

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must evaluate the objective function F xð Þ for a specified n-vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (N, X, F, NSTATE, IUSER, RUSER, INFORM)

INTEGER N, NSTATE, IUSER(*), INFORM
REAL (KIND=nag_wp) X(N), F, RUSER(*)

1: N – INTEGER Input

On entry: n, the number of variables.

2: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector at which the objective function is to be evaluated.

3: F – REAL (KIND=nag_wp) Output

On exit: must be set to the value of the objective function at x, unless you have specified
termination of the current problem using INFORM.

4: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05JBF is calling OBJFUN for the first time. This
parameter setting allows you to save computation time if certain data must be read or
calculated only once.

E05JBF NAG Library Manual

E05JBF.2 Mark 25

5: IUSERð�Þ – INTEGER array User Workspace
6: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the parameters IUSER and RUSER as supplied to E05JBF. You
are free to use the arrays IUSER and RUSER to supply information to OBJFUN as an
alternative to using COMMON global variables.

7: INFORM – INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from OBJFUN. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05JBF is called. Parameters denoted as Input must not be changed by
this procedure.

3: IBOUND – INTEGER Input

On entry: indicates whether the facility for dealing with bounds of special forms is to be used.
IBOUND must be set to one of the following values.

IBOUND ¼ 0
You will supply l and u individually.

IBOUND ¼ 1
There are no bounds on x.

IBOUND ¼ 2
There are semi-infinite bounds 0 � x.

IBOUND ¼ 3
There are constant bounds l ¼ ‘1 and u ¼ u1.

Note that it only makes sense to fix any components of x when IBOUND ¼ 0.

Constraint: IBOUND ¼ 0, 1, 2 or 3.

4: IINIT – INTEGER Input

On entry: selects which initialization method to use.

IINIT ¼ 0
Simple initialization (boundary and midpoint), with
NUMPTSðiÞ ¼ 3, INITPTðiÞ ¼ 2 and
LISTði; jÞ ¼ BLðiÞ; BLðiÞ þ BUðiÞð Þ=2;BUðiÞð Þ,
for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; 3.

IINIT ¼ 1
Simple initialization (off-boundary and midpoint), with
NUMPTSðiÞ ¼ 3, INITPTðiÞ ¼ 2 and
LISTði; jÞ ¼

5BLðiÞ þ BUðiÞð Þ=6; BLðiÞ þ BUðiÞð Þ=2; BLðiÞ þ 5BUðiÞð Þ=6ð Þ,
for i ¼ 1; 2; . . . ;N and j ¼ 1; 2; 3.

IINIT ¼ 2
Initialization using linesearches.

IINIT ¼ 3
You are providing your own initialization list.

IINIT ¼ 4
Generate a random initialization list.

For more information on methods IINIT ¼ 2, 3 or 4 see Section 11.1.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.3

If ‘infinite’ values (as determined by the value of the optional parameter Infinite Bound Size) are
detected by E05JBF when you are using a simple initialization method (IINIT ¼ 0 or 1), a
safeguarded initialization procedure will be attempted, to avoid overflow.

Suggested value: IINIT ¼ 0

Constraint: IINIT ¼ 0, 1, 2, 3 or 4.

5: BLðNÞ – REAL (KIND=nag_wp) array Input/Output
6: BUðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: BL is l, the array of lower bounds. BU is u, the array of upper bounds.

If IBOUND ¼ 0, you must set BLðiÞ to ‘i and BUðiÞ to ui, for i ¼ 1; 2; . . . ;N. If a particular xi is
to be unbounded below, the corresponding BLðiÞ should be set to �infbnd, where infbnd is the
value of the optional parameter Infinite Bound Size. Similarly, if a particular xi is to be
unbounded above, the corresponding BUðiÞ should be set to infbnd.

If IBOUND ¼ 1 or 2, arrays BL and BU need not be set on input.

If IBOUND ¼ 3, you must set BLð1Þ to ‘1 and BUð1Þ to u1. The remaining elements of BL and
BU will then be populated by these initial values.

On exit: unless IFAIL ¼ 1 or 2 on exit, BL and BU are the actual arrays of bounds used by
E05JBF.

Constraints:

if IBOUND ¼ 0, BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N;
if IBOUND ¼ 3, BLð1Þ < BUð1Þ.

7: SDLIST – INTEGER Input

On entry: the second dimension of the array LIST as declared in the (sub)program from which
E05JBF is called. SDLIST is, at least, the maximum over i of the number of points in coordinate i
at which to split according to the initialization list LIST; that is, SDLIST � max

i
NUMPTSðiÞ.

Internally, E05JBF uses LIST to determine sets of points along each coordinate direction to which
it fits quadratic interpolants. Since fitting a quadratic requires at least three distinct points, this
puts a lower bound on SDLIST. Furthermore, in the case of initialization by linesearches
(IINIT ¼ 2) internal storage considerations require that SDLIST be at least 192, but not all of this
space may be used.

Constraints:

if IINIT 6¼ 2, SDLIST � 3;
if IINIT ¼ 2, SDLIST � 192;
if IINIT ¼ 3, SDLIST � max

i
NUMPTSðiÞf g.

8: LISTðN; SDLISTÞ – REAL (KIND=nag_wp) array Input/Output

On entry: this parameter need not be set on entry if you wish to use one of the preset initialization
methods (IINIT 6¼ 3).

LIST is the ‘initialization list’: whenever a sub-box in the algorithm is split for the first time
(either during the initialization procedure or later), for each non-fixed coordinate i the split is done
at the values LISTði; 1 : NUMPTSðiÞÞ, as well as at some adaptively chosen intermediate points.
The array sections LISTði; 1 : NUMPTSðiÞÞ, for i ¼ 1; 2; . . . ;N, must be in ascending order with
each entry being distinct. In this context, ‘distinct’ should be taken to mean relative to the safe-
range parameter (see X02AMF).

E05JBF NAG Library Manual

E05JBF.4 Mark 25

On exit: unless IFAIL ¼ 1, 2 or �999 on exit, the actual initialization data used by E05JBF. If you
wish to monitor the contents of LIST you are advised to do so solely through MONIT, not through
the output value here.

Constraint: if XðiÞ is not fixed, LISTði; 1 : NUMPTSðiÞÞ is in ascending order with each entry
be ing d i s t i nc t , fo r i ¼ 1; 2; . . . ;NBLðiÞ � LISTði; jÞ � BUðiÞ, fo r i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;NUMPTSðiÞ.

9: NUMPTSðNÞ – INTEGER array Input/Output

On entry: this parameter need not be set on entry if you wish to use one of the preset initialization
methods (IINIT 6¼ 3).

NUMPTS encodes the number of splitting points in each non-fixed dimension.

On exit: unless IFAIL ¼ 1, 2 or �999 on exit, the actual initialization data used by E05JBF.

Constraints:

if XðiÞ is not fixed, NUMPTSðiÞ � SDLIST;
NUMPTSðiÞ � 3, for i ¼ 1; 2; . . . ;N.

10: INITPTðNÞ – INTEGER array Input/Output

On entry: this parameter need not be set on entry if you wish to use one of the preset initialization
methods (IINIT 6¼ 3).

You must designate a point stored in LIST that you wish E05JBF to consider as an ‘initial point’
for the purposes of the splitting procedure. Call this initial point x�. The coordinates of x�

correspond to a set of indices Ji, for i ¼ 1; 2; . . . ; n, such that x�i is stored in LISTði; JiÞ, for
i ¼ 1; 2; . . . ; n. You must set INITPTðiÞ ¼ Ji, for i ¼ 1; 2; . . . ; n.

On exit: unless IFAIL ¼ 1, 2 or �999 on exit, the actual initialization data used by E05JBF.

Constraint: if XðiÞ is not fixed, 1 � INITPTðiÞ � SDLIST, for i ¼ 1; 2; . . . ;N.

11: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT may be used to monitor the optimization process. It is invoked upon every successful
completion of the procedure in which a sub-box is considered for splitting. It will also be called
just before E05JBF exits if that splitting procedure was not successful.

If no monitoring is required, MONIT may be the dummy monitoring routine E05JBK supplied by
the NAG Library.

The specification of MONIT is:

SUBROUTINE MONIT (N, NCALL, XBEST, ICOUNT, NINIT, LIST, NUMPTS,
INITPT, NBASKT, XBASKT, BOXL, BOXU, NSTATE,
IUSER, RUSER, INFORM)

&
&

INTEGER N, NCALL, ICOUNT(6), NINIT, NUMPTS(N),
INITPT(N), NBASKT, NSTATE, IUSER(*), INFORM

&

REAL (KIND=nag_wp) XBEST(N), LIST(N,NINIT), XBASKT(N,NBASKT),
BOXL(N), BOXU(N), RUSER(*)

&

1: N – INTEGER Input

On entry: n, the number of variables.

2: NCALL – INTEGER Input

On entry: the cumulative number of calls to OBJFUN.

3: XBESTðNÞ – REAL (KIND=nag_wp) array Input

On entry: the current best point.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.5

4: ICOUNTð6Þ – INTEGER array Input

On entry: an array of counters.

ICOUNTð1Þ
nboxes, the current number of sub-boxes.

ICOUNTð2Þ
ncloc, the cumulative number of calls to OBJFUN made in local searches.

ICOUNTð3Þ
nloc, the cumulative number of points used as start points for local searches.

ICOUNTð4Þ
nsweep, the cumulative number of sweeps through levels.

ICOUNTð5Þ
m, the cumulative number of splits by initialization list.

ICOUNTð6Þ
s, the current lowest level containing non-split boxes.

5: NINIT – INTEGER Input

On entry: the maximum over i of the number of points in coordinate i at which to split
according to the initialization list LIST. See also the description of the parameter
NUMPTS.

6: LISTðN;NINITÞ – REAL (KIND=nag_wp) array Input

On entry: the initialization list.

7: NUMPTSðNÞ – INTEGER array Input

On entry: the number of points in each coordinate at which to split according to the
initialization list LIST.

8: INITPTðNÞ – INTEGER array Input

On entry: a pointer to the ‘initial point’ in LIST. Element INITPTðiÞ is the column index
in LIST of the ith coordinate of the initial point.

9: NBASKT – INTEGER Input

On entry: the number of points in the ‘shopping basket’ XBASKT.

10: XBASKTðN;NBASKTÞ – REAL (KIND=nag_wp) array Input

Note: The jth candidate minimum has its ith coordinate stored in XBASKTðj; iÞ, for
i ¼ 1; 2; . . . ;N and j ¼ 1; 2; . . . ;NBASKT.

On entry: the ‘shopping basket’ of candidate minima.

11: BOXLðNÞ – REAL (KIND=nag_wp) array Input

On entry: the array of lower bounds of the current search box.

12: BOXUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the array of upper bounds of the current search box.

E05JBF NAG Library Manual

E05JBF.6 Mark 25

13: NSTATE – INTEGER Input

On entry: is set by E05JBF to indicate at what stage of the minimization MONIT was
called.

NSTATE ¼ 1
This is the first time that MONIT has been called.

NSTATE ¼ �1
This is the last time MONIT will be called.

NSTATE ¼ 0
This is the first and last time MONIT will be called.

14: IUSERð�Þ – INTEGER array User Workspace
15: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the parameters IUSER and RUSER as supplied to E05JBF. You
are free to use the arrays IUSER and RUSER to supply information to MONIT as an
alternative to using COMMON global variables.

16: INFORM – INTEGER Output

On exit: must be set to a value describing the action to be taken by the solver on return
from MONIT. Specifically, if the value is negative the solution of the current problem
will terminate immediately; otherwise, computations will continue.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05JBF is called. Parameters denoted as Input must not be changed by
this procedure.

12: XðNÞ – REAL (KIND=nag_wp) array Output

On exit: if IFAIL ¼ 0, contains an estimate of the global optimum (see also Section 7).

13: OBJ – REAL (KIND=nag_wp) Output

On exit: if IFAIL ¼ 0, contains the function value at X.

If you request early termination of E05JBF using INFORM in OBJFUN or the analogous
INFORM in MONIT, there is no guarantee that the function value at X equals OBJ.

14: COMMðLCOMMÞ – REAL (KIND=nag_wp) array Communication Array

On exit: COMM must not be altered between calls to any of the routines E05JBF, E05JCF,
E05JDF, E05JEF, E05JFF, E05JGF, E05JHF, E05JJF, E05JKF and E05JLF.

15: LCOMM – INTEGER Input

On entry: the dimension of the array COMM as declared in the (sub)program from which E05JBF
is called.

Constraint: LCOMM � 100.

16: IUSERð�Þ – INTEGER array User Workspace
17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E05JBF, but are passed directly to OBJFUN and MONIT and
may be used to pass information to these routines as an alternative to using COMMON global
variables.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.7

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

E05JBF returns with IFAIL ¼ 0 if your termination criterion has been met: either a target value
has been found to the required relative error (as determined by the values of the optional
parameters Target Objective Value, Target Objective Error and Target Objective Safeguard), or
the best function value was static for the number of sweeps through levels given by the optional
parameter Static Limit. The latter criterion is the default.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

Initialization routine E05JAF has not been called.

On entry, LCOMM ¼ valueh i.
Constraint: LCOMM � 100.

IFAIL ¼ 2

A value of Splits Limit (smax) smaller than nr þ 3 was set: smax ¼ valueh i, nr ¼ valueh i.
On entry, IBOUND ¼ valueh i.
Constraint: IBOUND ¼ 0, 1, 2 or 3.

On entry, IBOUND ¼ 0 or 3 and BLðiÞ ¼ valueh i, BUðiÞ ¼ valueh i and i ¼ valueh i.
Constraint: if IBOUND ¼ 0 then BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N; if IBOUND ¼ 3 then
BLð1Þ < BUð1Þ.
On entry, IBOUND ¼ 3 and BLð1Þ ¼ BUð1Þ ¼ valueh i.
Constraint: if IBOUND ¼ 3 then BLð1Þ < BUð1Þ.
On entry, IINIT ¼ valueh i.
Constraint: IINIT ¼ 0, 1, 2, 3 or 4.

On entry, IINIT ¼ 2 and SDLIST ¼ valueh i.
Constraint: if IINIT ¼ 2 then SDLIST � 192.

On entry, IINIT ¼ valueh i and SDLIST ¼ valueh i.
Constraint: if IINIT 6¼ 2 then SDLIST � 3.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, user-supplied INITPTðiÞ ¼ valueh i, i ¼ valueh i.
Constraint: if XðiÞ is not fixed then INITPTðiÞ � 1, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied INITPTðiÞ ¼ valueh i, i ¼ valueh i and SDLIST ¼ valueh i.
Constraint: if XðiÞ is not fixed then INITPTðiÞ � SDLIST, for i ¼ 1; 2; . . . ;N.

E05JBF NAG Library Manual

E05JBF.8 Mark 25

On entry, user-supplied LISTði; jÞ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, and BLðiÞ ¼ valueh i.
Const ra in t : i f XðiÞ i s not fixed then LISTði; jÞ � BLðiÞ, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;NUMPTSðiÞ.
On entry, user-supplied LISTði; jÞ ¼ valueh i, i ¼ valueh i, j ¼ valueh i, and BUðiÞ ¼ valueh i.
Const ra int : i f XðiÞ i s not fixed then LISTði; jÞ � BUðiÞ, for i ¼ 1; 2; . . . ;N and
j ¼ 1; 2; . . . ;NUMPTSðiÞ.
On entry, user-supplied NUMPTSðiÞ ¼ valueh i, i ¼ valueh i.
Constraint: if XðiÞ is not fixed then NUMPTSðiÞ � 3, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied NUMPTSðiÞ ¼ valueh i, i ¼ valueh i and SDLIST ¼ valueh i.
Constraint: if XðiÞ is not fixed then NUMPTSðiÞ � SDLIST, for i ¼ 1; 2; . . . ;N.

On entry, user-supplied section LISTði; 1 : NUMPTSðiÞÞ contained ndist distinct elements, and
ndist < NUMPTSðiÞ: ndist ¼ valueh i, NUMPTSðiÞ ¼ valueh i, i ¼ valueh i.
On entry, user-supplied section LISTði; 1 : NUMPTSðiÞÞ was not in ascending order:
NUMPTSðiÞ ¼ valueh i, i ¼ valueh i.
The number of non-fixed variables nr ¼ 0.
Constraint: nr > 0.

IFAIL ¼ 3

A finite initialization list could not be computed internally. Consider reformulating the bounds on
the problem, try providing your own initialization list, use the randomization option (IINIT ¼ 4)
or vary the value of Infinite Bound Size.

The user-supplied initialization list contained infinite values, as determined by the optional
parameter Infinite Bound Size.

IFAIL ¼ 4

The division procedure completed but your target value could not be reached.
Despite every sub-box being processed Splits Limit times, the target value you provided in Target
Objective Value could not be found to the tolerances given in Target Objective Error and Target
Objective Safeguard. You could try reducing Splits Limit or the objective tolerances.

IFAIL ¼ 5

The function evaluations limit was exceeded.
Approximately Function Evaluations Limit function calls have been made without your chosen
termination criterion being satisfied.

IFAIL ¼ 6

User-supplied monitoring routine requested termination.

User-supplied objective function requested termination.

IFAIL ¼ 7

An error occurred during initialization. It is likely that points from the initialization list are very
close together. Try relaxing the bounds on the variables or use a different initialization method.

An error occurred during linesearching. It is likely that your objective function is badly scaled: try
rescaling it. Also, try relaxing the bounds or use a different initialization method. If the problem
persists, please contact NAG quoting error code valueh i.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.9

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

If IFAIL ¼ 0 on exit, then the vector returned in the array X is an estimate of the solution x whose
function value satisfies your termination criterion: the function value was static for Static Limit sweeps
through levels, or

F xð Þ � objval � max objerr � objvalj j; objsfgð Þ;

where objval is the value of the optional parameter Target Objective Value, objerr is the value of the
optional parameter Target Objective Error, and objsfg is the value of the optional parameter Target
Objective Safeguard.

8 Parallelism and Performance

E05JBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E05JBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

For each invocation of E05JBF, local workspace arrays of fixed length are allocated internally. The total
size of these arrays amounts to 13nr þ smax � 1 integer elements, where smax is the value of the
optional parameter Splits Limit and nr is the number of non-fixed variables, and
2þ nrð ÞSDLISTþ 2Nþ 22nr þ 3n2

r þ 1 real elements. In addition, if you are using randomized
initialization lists (see the description of the parameter IINIT), a further 21 integer elements are allocated
internally.

In order to keep track of the regions of the search space that have been visited while looking for a global
optimum, E05JBF internally allocates arrays of increasing sizes depending on the difficulty of the
problem. Two of the main factors that govern the amount allocated are the number of sub-boxes (call
this quantity nboxes) and the number of points in the ‘shopping basket’ (the parameter NBASKT on
entry to MONIT). Safe, pessimistic upper bounds on these two quantities are so large as to be
impractical. In fact, the worst-case number of sub-boxes for even the most simple initialization list (when
NINIT ¼ 3 on entry to MONIT) grows like nrnr . Thus E05JBF does not attempt to estimate in advance
the final values of nboxes or NBASKT for a given problem. There are a total of 5 integer arrays and
4þ nr þ NINIT real arrays whose lengths depend on nboxes, and there are a total of 2 integer arrays and
3þ Nþ nr real arrays whose lengths depend on NBASKT. E05JBF makes a fixed initial guess that the
maximum number of sub-boxes required will be 10000 and that the maximum number of points in the
‘shopping basket’ will be 1000. If ever a greater amount of sub-boxes or more room in the ‘shopping
basket’ is required, E05JBF performs reallocation, usually doubling the size of the inadequately-sized
arrays. Clearly this process requires periods where the original array and its extension exist in memory
simultaneously, so that the data within can be copied, which compounds the complexity of E05JBF’s

E05JBF NAG Library Manual

E05JBF.10 Mark 25

memory usage. It is possible (although not likely) that if your problem is particularly difficult to solve,
or of a large size (hundreds of variables), you may run out of memory.

One array that could be dynamically resized by E05JBF is the ‘shopping basket’ (XBASKT on entry to
MONIT). If the initial attempt to allocate 1000nr reals for this array fails, MONIT will not be called on
exit from E05JBF.

E05JBF performs better if your problem is well-scaled. It is worth trying (by guesswork perhaps) to
rescale the problem if necessary, as sensible scaling will reduce the difficulty of the optimization
problem, so that E05JBF will take less computer time.

10 Example

This example finds the global minimum of the ‘peaks’ function in two dimensions

F x; yð Þ ¼ 3 1� xð Þ2 exp �x2 � yþ 1ð Þ2
� �

� 10
x

5
� x3 � y5

� �
exp �x2 � y2
� �

� 1

3
exp � xþ 1ð Þ2 � y2
� �

on the box �3; 3½ � � �3; 3½ �.
The function F has several local minima and one global minimum in the given box. The global
minimum is approximately located at 0:23;�1:63ð Þ, where the function value is approximately �6:55.

We use default values for all the optional parameters, and we instruct E05JBF to use the simple
initialization list corresponding to IINIT ¼ 0. In particular, this will set for us the initial point 0; 0ð Þ (see
Section 10.3).

10.1 Program Text

! E05JBF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module e05jbfe_mod

! E05JBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: monit, objfun

! .. Parameters ..
Integer, Parameter, Public :: lcomm = 100, nin = 5, nout = 6

! .. Local Scalars ..
Logical, Public, Save :: plot

Contains
Subroutine outbox(boxl,boxu)

! Displays edges of box with bounds BOXL and BOXU in format suitable
! for plotting.

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: boxl(2), boxu(2)

! .. Executable Statements ..
Write (nout,99999) boxl(1), boxl(2)
Write (nout,99999) boxl(1), boxu(2)
Write (nout,99998)
Write (nout,99999) boxl(1), boxl(2)
Write (nout,99999) boxu(1), boxl(2)
Write (nout,99998)
Write (nout,99999) boxl(1), boxu(2)
Write (nout,99999) boxu(1), boxu(2)
Write (nout,99998)
Write (nout,99999) boxu(1), boxl(2)
Write (nout,99999) boxu(1), boxu(2)

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.11

Write (nout,99998)

Return

99999 Format (F20.15,1X,F20.15)
99998 Format (A)

End Subroutine outbox
Subroutine objfun(n,x,f,nstate,iuser,ruser,inform)

! Routine to evaluate E05JBF objective function.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: f
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Real (Kind=nag_wp) :: x1, x2

! .. Intrinsic Procedures ..
Intrinsic :: exp

! .. Executable Statements ..

! This is a two-dimensional objective function.
! As an example of using the inform mechanism,
! terminate if any other problem size is supplied.

If (n/=2) Then
inform = -1

Else
inform = 0

If (inform>=0) Then

! If INFORM>=0 then we’re prepared to evaluate OBJFUN
! at the current X

If (nstate==1) Then

! This is the first call to OBJFUN

Write (nout,*)
Write (nout,99999)

End If

x1 = x(1)
x2 = x(2)

f = 3.0E0_nag_wp*(1.0E0_nag_wp-x1)**2*exp(-(x1**2)-(x2+ &
1.0E0_nag_wp)**2) - 1.0E1_nag_wp*(x1/5.0E0_nag_wp-x1**3-x2**5)* &
exp(-x1**2-x2**2) - 1.0E0_nag_wp/3.0E0_nag_wp*exp(-(x1+ &
1.0E0_nag_wp)**2-x2**2)

End If

End If

Return

99999 Format (1X,’(OBJFUN was just called for the first time)’)
End Subroutine objfun
Subroutine monit(n,ncall,xbest,icount,ninit,list,numpts,initpt,nbaskt, &

xbaskt,boxl,boxu,nstate,iuser,ruser,inform)

! Monitoring routine for E05JBF.

! .. Scalar Arguments ..
Integer, Intent (Out) :: inform
Integer, Intent (In) :: n, nbaskt, ncall, ninit, nstate

! .. Array Arguments ..

E05JBF NAG Library Manual

E05JBF.12 Mark 25

Real (Kind=nag_wp), Intent (In) :: boxl(n), boxu(n), &
list(n,ninit), &
xbaskt(n,nbaskt), xbest(n)

Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Integer, Intent (In) :: icount(6), initpt(n), numpts(n)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
inform = 0

If (inform>=0) Then

! We are going to allow the iterations to continue.

If (nstate==0 .Or. nstate==1) Then

! When NSTATE==1, MONIT is called for the first time. When
! NSTATE==0, MONIT is called for the first AND last time.
! Display a welcome message

Write (nout,*)
Write (nout,99999)
Write (nout,*)

Write (nout,99998)

Do i = 1, n
Write (nout,99997)
Write (nout,99996) i
Write (nout,99995) numpts(i)
Write (nout,99994)
Write (nout,99993) list(i,1:numpts(i))
Write (nout,99992) initpt(i)

End Do

If (plot .And. (n==2)) Then
Write (nout,99991)
Write (nout,*)

End If

End If

If (plot .And. (n==2)) Then

! Display the coordinates of the edges of the current search
! box

Call outbox(boxl,boxu)

End If

If (nstate<=0) Then

! MONIT is called for the last time

If (plot .And. (n==2)) Then
Write (nout,99990)
Write (nout,*)

End If

Write (nout,99989) icount(1)
Write (nout,99988) ncall
Write (nout,99987) icount(2)
Write (nout,99986) icount(3)
Write (nout,99985) icount(4)
Write (nout,99984) icount(5)
Write (nout,99983) icount(6)
Write (nout,99982) nbaskt
Write (nout,99981)

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.13

Do i = 1, n
Write (nout,99980) i, xbaskt(i,1:nbaskt)

End Do

Write (nout,99979)
Write (nout,99978) xbest(1:n)

Write (nout,*)
Write (nout,99977)
Write (nout,*)

End If

End If

Return

99999 Format (1X,’*** Begin monitoring information ***’)
99998 Format (1X,’Values controlling initial splitting of a box:’)
99997 Format (1X,’**’)
99996 Format (1X,’In dimension ’,I5)
99995 Format (1X,’Extent of initialization list in this dimension =’,I5)
99994 Format (1X,’Initialization points in this dimension:’)
99993 Format (1X,’LIST(I,1:NUMPTS(I)) =’,(6F9.5))
99992 Format (1X,’Initial point in this dimension: LIST(I,’,I5,’)’)
99991 Format (1X,’<Begin displaying search boxes>’)
99990 Format (1X,’<End displaying search boxes>’)
99989 Format (1X,’Total sub-boxes =’,I5)
99988 Format (1X,’Total function evaluations =’,I5)
99987 Format (1X,’Total function evaluations used in local search =’,I5)
99986 Format (1X,’Total points used in local search =’,I5)
99985 Format (1X,’Total sweeps through levels =’,I5)
99984 Format (1X,’Total splits by init. list =’,I5)
99983 Format (1X,’Lowest level with nonsplit boxes =’,I5)
99982 Format (1X,’Number of candidate minima in the "shopping basket’,’" =’, &

I5)
99981 Format (1X,’Shopping basket:’)
99980 Format (1X,’XBASKT(’,I3,’,:) =’,(6F9.5))
99979 Format (1X,’Best point:’)
99978 Format (1X,’XBEST =’,(6F9.5))
99977 Format (1X,’*** End monitoring information ***’)

End Subroutine monit
End Module e05jbfe_mod
Program e05jbfe

! E05JBF Example Main Program

! .. Use Statements ..
Use nag_library, Only: e05jaf, e05jbf, nag_wp
Use e05jbfe_mod, Only: lcomm, monit, nin, nout, objfun, plot

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2

! .. Local Scalars ..
Real (Kind=nag_wp) :: obj
Integer :: i, ibound, ifail, iinit, sdlist

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(n), bu(n), comm(lcomm), &

ruser(1), x(n)
Real (Kind=nag_wp), Allocatable :: list(:,:)
Integer :: initpt(n), iuser(1), numpts(n)

! .. Executable Statements ..
Write (nout,*) ’E05JBF Example Program Results’

! Skip heading in data file
Read (nin,*)

Read (nin,*) sdlist
Allocate (list(n,sdlist))

Read (nin,*) ibound

E05JBF NAG Library Manual

E05JBF.14 Mark 25

If (ibound==0) Then

! Read in the whole of each bound

Read (nin,*)(bl(i),i=1,n)
Read (nin,*)(bu(i),i=1,n)

Else If (ibound==3) Then

! Bounds are uniform: read in only the first entry of each

Read (nin,*) bl(1)
Read (nin,*) bu(1)

End If

Read (nin,*) iinit

! PLOT determines whether MONIT displays information on the
! current search box:

Read (nin,*) plot

! The first argument to E05JAF is a legacy argument and has no
! significance.

ifail = 0
Call e05jaf(0,comm,lcomm,ifail)

! Solve the problem.

ifail = 0
Call e05jbf(n,objfun,ibound,iinit,bl,bu,sdlist,list,numpts,initpt,monit, &

x,obj,comm,lcomm,iuser,ruser,ifail)

Write (nout,*)
Write (nout,99999) obj
Write (nout,99998)(x(i),i=1,n)

99999 Format (1X,’Final objective value =’,F11.5)
99998 Format (1X,’Global optimum X =’,2F9.5)

End Program e05jbfe

10.2 Program Data

E05JBF Example Program Data
3 : SDLIST
0 : IBOUND
-3.0 -3.0 : Lower bounds BL
3.0 3.0 : Upper bounds BU
0 : IINIT
.FALSE. : PLOT

10.3 Program Results

E05JBF Example Program Results

(OBJFUN was just called for the first time)

*** Begin monitoring information ***

Values controlling initial splitting of a box:
**
In dimension 1
Extent of initialization list in this dimension = 3
Initialization points in this dimension:
LIST(I,1:NUMPTS(I)) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(I, 2)
**
In dimension 2
Extent of initialization list in this dimension = 3

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.15

Initialization points in this dimension:
LIST(I,1:NUMPTS(I)) = -3.00000 0.00000 3.00000
Initial point in this dimension: LIST(I, 2)
Total sub-boxes = 228
Total function evaluations = 196
Total function evaluations used in local search = 87
Total points used in local search = 13
Total sweeps through levels = 12
Total splits by init. list = 5
Lowest level with nonsplit boxes = 7
Number of candidate minima in the "shopping basket" = 2
Shopping basket:
XBASKT(1,:) = -1.34740 0.22828
XBASKT(2,:) = 0.20452 -1.62553
Best point:
XBEST = 0.22828 -1.62553

*** End monitoring information ***

Final objective value = -6.55113
Global optimum X = 0.22828 -1.62553

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

Example Program
The Peaks Function F and Search Boxes

The global minimum is denoted by GM, while our start point is labelled with X

GM

X

Note: the remainder of this document is intended for more advanced users. Section 11 contains a detailed
description of the algorithm. This information may be needed in order to understand Section 12, which

E05JBF NAG Library Manual

E05JBF.16 Mark 25

describes the optional parameters that can be set by calls to E05JCF, E05JDF, E05JEF, E05JFF and/or
E05JGF.

11 Algorithmic Details

Here we summarise the main features of the MCS algorithm used in E05JBF, and we introduce some
terminology used in the description of the subroutine and its arguments. We assume throughout that we
will only do any work in coordinates i in which xi is free to vary. The MCS algorithm is fully described
in Huyer and Neumaier (1999).

11.1 Initialization and Sweeps

Each sub-box is determined by a basepoint x and an opposite point y. We denote such a sub-box by
B x; y½ �. The basepoint is allowed to belong to more than one sub-box, is usually a boundary point, and is
often a vertex.

An initialization procedure produces an initial set of sub-boxes. Whenever a sub-box is split along a
coordinate i for the first time (in the initialization procedure or later), the splitting is done at three or

more user-defined values xji

n o
j

at which the objective function is sampled, and at some adaptively

chosen intermediate points. At least four children are generated. More precisely, we assume that we are
given

‘i � x1
i < x2

i < � � � < xLii � ui; Li � 3; for i ¼ 1; 2; . . . ; n

and a vector p that, for each i, locates within xji

n o
j

the ith coordinate of an initial point x0; that is, if

x0
i ¼ x

j
i for some j ¼ 1; 2; . . . ; Li, then pi ¼ j. A good guess for the global optimum can be used as x0.

The initialization points and the vectors l and p are collectively called the initialization list (and
sometimes we will refer to just the initialization points as ‘the initialization list’, whenever this causes no
confusion). The initialization data may be input by you, or they can be set to sensible default values by

E05JBF: if you provide them yourself, LISTði; jÞ should contain xji , NUMPTSðiÞ should contain Li, and
INITPTðiÞ should contain pi, for i ¼ 1; 2; . . . ; n and j ¼ 1; 2; . . . ; Li; if you wish E05JBF to use one of
its preset initialization methods, you could choose one of two simple, three-point methods (see Figure 1).
If the list generated by one of these methods contains infinite values, attempts are made to generate a
safeguarded list using the function subint x; yð Þ (which is also used during the splitting procedure, and is
described in Section 11.2). If infinite values persist, E05JBF exits with IFAIL ¼ 3. There is also the
option to generate an initialization list with the aid of linesearches (by setting IINIT ¼ 2). Starting with
the absolutely smallest point in the root box, linesearches are made along each coordinate. For each
coordinate, the local minimizers found by the linesearches are put into the initialization list. If there were
fewer than three minimizers, they are augmented by close-by values. The final preset initialization option
(IINIT ¼ 4) generates a randomized list, so that independent multiple runs may be made if you suspect a
global optimum has not been found. Each call to the initialization routine E05JAF resets the initial-state
vector for the Wichmann–Hill base-generator that is used. Depending on whether you set the optional
parameter Repeatability to ON or OFF, the random state is initialized to give a repeatable or non-
repeatable sequence. Then, a random integer between 3 and SDLIST is selected, which is then used to
determine the number of points to be generated in each coordinate; that is, NUMPTS becomes a constant
vector, set to this value. The components of LIST are then generated, from a uniform distribution on the
root box if the box is finite, or else in a safeguarded fashion if any bound is infinite. The array INITPT is
set to point to the best point in LIST.

Given an initialization list (preset or otherwise), E05JBF evaluates F at x0, and sets the initial estimate
of the global minimum, x�, to x0. Then, for i ¼ 1; 2; . . . ; n, the objective function F is evaluated at

Li � 1 points that agree with x� in all but the ith coordinate. We obtain pairs x̂j ; f j
i

� �
, for

j ¼ 1; 2; . . . ; Li, with: x� ¼ x̂j1 , say; with, for j 6¼ j1,

x̂jk ¼
x�k if k 6¼ i;
xjk otherwise;

�

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.17

and with

fji ¼ F x̂j
� �

:

The point having the smallest function value is renamed x� and the procedure is repeated with the next
coordinate.

Once E05JBF has a full set of initialization points and function values, it can generate an initial set of
sub-boxes. Recall that the root box is B x; y½ � ¼ l; u½ �, having basepoint x ¼ x0. The opposite point y is a
corner of l; u½ � farthest away from x, in some sense. The point x need not be a vertex of l; u½ �, and y is
entitled to have infinite coordinates. We loop over each coordinate i, splitting the current box along

coordinate i into 2Li � 2, 2Li � 1 or 2Li sub-intervals with exactly one of the x̂ji as endpoints,

depending on whether two, one or none of the x̂ji are on the boundary. Thus, as well as splitting at x̂j
i,

for j ¼ 1; 2; . . . ; Li, we split at additional points zj
i, for j ¼ 2; 3; . . . ; Li. These additional zji are such that

zji ¼ x̂
j�1
i þ qm x̂ji � x̂

j�1
i

� �
; j ¼ 2; . . . ; Li;

where q is the golden-section ratio
ffiffiffi
5
p
� 1

� �
=2, and the exponent m takes the value 1 or 2, chosen so

that the sub-box with the smaller function value gets the larger fraction of the interval. Each child sub-

box gets as basepoint the point obtained from x� by changing x�i to the xji that is a boundary point of the

corresponding ith coordinate interval; this new basepoint therefore has function value fji . The opposite
point is derived from y by changing yi to the other end of that interval.

E05JBF can now rank the coordinates based on an estimated variability of F . For each i we compute the

union of the ranges of the quadratic interpolant through any three consecutive x̂ji , taking the difference
between the upper and lower bounds obtained as a measure of the variability of F in coordinate i. A
vector � is populated in such a way that coordinate i has the �ith highest estimated variability. For
tiebreaks, when the x� obtained after splitting coordinate i belongs to two sub-boxes, the one that
contains the minimizer of the quadratic models is designated the current sub-box for coordinate iþ 1.

Boxes are assigned levels in the following manner. The root box is given level 1. When a sub-box of
level s is split, the child with the smaller fraction of the golden-section split receives level sþ 2; all
other children receive level sþ 1. The box with the better function value is given the larger fraction of
the splitting interval and the smaller level because then it is more likely to be split again more quickly.
We see that after the initialization procedure the first level is empty and the non-split boxes have levels
2; . . . ; nr þ 2, so it is meaningful to choose smax much larger than nr. Note that the internal structure of
E05JBF demands that smax be at least nr þ 3.

Examples of initializations in two dimensions are given in Figure 1. In both cases the initial point is
x0 ¼ l þ uð Þ=2; on the left the initialization points are

x1 ¼ l; x2 ¼ l þ uð Þ=2; x3 ¼ u;

while on the right the points are

x1 ¼ 5l þ uð Þ=6; x2 ¼ l þ uð Þ=2; x3 ¼ l þ 5uð Þ=6:

In Figure 1, basepoints and levels after initialization are displayed. Note that these initialization lists
correspond to IINIT ¼ 0 and IINIT ¼ 1, respectively.

32

3

3

4

3 2 3 2 2

3

4

3

3

4

2

3

4

Figure 2
Examples of the initialization procedure

E05JBF NAG Library Manual

E05JBF.18 Mark 25

After initialization, a series of sweeps through levels is begun. A sweep is defined by three steps:

(i) scan the list of non-split sub-boxes. Fill a record list b according to bs ¼ 0 if there is no box at level
s, and with bs pointing to a sub-box with the lowest function value among all sub-boxes with level s
otherwise, for 0 < s < smax ;

(ii) the sub-box with label bs is a candidate for splitting. If the sub-box is not to be split, according to
the rules described in Section 11.2, increase its level by 1 and update bsþ1 if necessary. If the sub-
box is split, mark it so, insert its children into the list of sub-boxes, and update b if any child with
level s0 yields a strict improvement of F over those sub-boxes at level s0;

(iii) increment s by 1. If s ¼ smax then displaying monitoring information and start a new sweep; else if
bs ¼ 0 then repeat this step; else display monitoring information and go to the previous step.

Clearly, each sweep ends after at most smax � 1 visits of the third step.

11.2 Splitting

Each sub-box is stored by E05JBF as a set of information about the history of the sub-box: the label of
its parent, a label identifying which child of the parent it is, etc. Whenever a sub-box B x; y½ � of level
s < smax is a candidate for splitting, as described in Section 11.1, we recover x, y, and the number, nj,
of times coordinate j has been split in the history of B. Sub-box B could be split in one of two ways.

(i) Splitting by rank

If s > 2nr minnj þ 1
� �

, the box is always split. The splitting index is set to a coordinate i such that
ni ¼ minnj.

(ii) Splitting by expected gain

If s � 2nr minnj þ 1
� �

, the sub-box could be split along a coordinate where a maximal gain in
function value is expected. This gain is estimated according to a local separable quadratic model
obtained by fitting to 2nr þ 1 function values. If the expected gain is too small the sub-box is not
split at all, and its level is increased by 1.

Eventually, a sub-box that is not eligible for splitting by expected gain will reach level
2nr minnj þ 1
� �

þ 1 and then be split by rank, as long as smax is large enough. As smax !1, the
rule for splitting by rank ensures that each coordinate is split arbitrarily often.

Before describing the details of each splitting method, we introduce the procedure for correctly handling
splitting at adaptive points and for dealing with unbounded intervals. Suppose we want to split the ith
coordinate interval tu xi; yif g, where we define tu xi; yif g ¼ min xi; yið Þ;max xi; yið Þ½ �, for xi 2 R and
yi 2 �R, and where x is the basepoint of the sub-box being considered. The descendants of the sub-box
should shrink sufficiently fast, so we should not split too close to xi. Moreover, if yi is large we want the
new splitting value to not be too large, so we force it to belong to some smaller interval tu �0; �00f g,
determined by

�00 ¼ subint xi; yið Þ; �0 ¼ xi þ �00 � xið Þ=10;

where the function subint is defined by

subint x; yð Þ ¼
sign yð Þ if 1000 xj j < 1 and yj j > 1000;
10sign yð Þ xj j if 1000 xj j � 1 and yj j > 1000 xj j;
y otherwise:

8<
:

11.2.1 Splitting by rank

Consider a sub-box B with level s > 2nr minnj þ 1
� �

. Although the sub-box has reached a high level,
there is at least one coordinate along which it has not been split very often. Among the i such that
ni ¼ minnj for B, select the splitting index to be the coordinate with the lowest �i (and hence highest
variability rank). ‘Splitting by rank’ refers to the ranking of the coordinates by ni and �i.

If ni ¼ 0, so that B has never been split along coordinate i, the splitting is done according to the
initialization list and the adaptively chosen golden-section split points, as described in Section 11.1. Also
as covered there, new basepoints and opposite points are generated. The children having the smaller

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.19

fraction of the golden-section split (that is, those with larger function values) are given level
min sþ 2; smaxf g. All other children are given level sþ 1.

Otherwise, B ranges between xi and yi in the ith coordinate direction. The splitting value is selected to
be zi ¼ xi þ 2 subint xi; yið Þ � xið Þ=3; we are not attempting to split based on a large reduction in
function value, merely in order to reduce the size of a large interval, so zi may not be optimal. Sub-box
B is split at zi and the golden-section split point, producing three parts and requiring only one additional
function evaluation, at the point x0 obtained from x by changing the ith coordinate to zi. The child with
the smaller fraction of the golden-section split is given level min sþ 2; smaxf g, while the other two parts
are given level sþ 1. Basepoints are assigned as follows: the basepoint of the first child is taken to be x,
and the basepoint of the second and third children is the point x0. Opposite points are obtained by
changing yi to the other end of the ith coordinate-interval of the corresponding child.

11.2.2 Splitting by expected gain

When a sub-box B has level s � 2nr minnj þ 1
� �

, we compute the optimal splitting index and splitting
value from a local separable quadratic used as a simple local approximation of the objective function. To
fit this curve, for each coordinate we need two additional points and their function values. Such data may
be recoverable from the history of B: whenever the ith coordinate was split in the history of B, we
obtained values that can be used for the current quadratic interpolation in coordinate i.

We loop over i; for each coordinate we pursue the history of B back to the root box, and we take the
first two points and function values we find, since these are expected to be closest to the current
basepoint x. If the current coordinate has not yet been split we use the initialization list. Then we
generate a local separable model e �ð Þ for F �ð Þ by interpolation at x and the 2nr additional points just
collected:

e �ð Þ ¼ F xð Þ þ
Xn
i¼1

ei �ið Þ:

We define the expected gain êi in function value when we evaluate at a new point obtained by changing
coordinate i in the basepoint, for each i, based on two cases:

(i) ni ¼ 0. We compute the expected gain as

êi ¼ min
1�j�Li

fji

n o
� fpii :

Again, we split according to the initialization list, with the new basepoints and opposite points being
as before.

(ii) ni > 0. Now, the ith component of our sub-box ranges from xi to yi. Using the quadratic partial
correction function

ei �ið Þ ¼ �i �i � xið Þ þ �i �i � xið Þ2

we can approximate the maximal gain expected when changing xi only. We will choose the splitting
value from tu �0; �00f g. We compute

êi ¼ min
�i2tu �0;�00f g

ei �ið Þ

and call zi the minimizer in tu �0; �00f g.
If the expected best function value fexp satisfies

fexp ¼ F xð Þ þ min
1�i�n

êi < fbest; ð1Þ

where fbest is the current best function value (including those function values obtained by local
optimization), we expect the sub-box to contain a better point and so we split it, using as splitting
index the component with minimal êi. Equation (1) prevents wasting function calls by avoiding
splitting sub-boxes whose basepoints have bad function values. These sub-boxes will eventually be
split by rank anyway.

E05JBF NAG Library Manual

E05JBF.20 Mark 25

We now have a splitting index and a splitting value zi. The sub-box is split at zi as long as zi 6¼ yi,
and at the golden-section split point; two or three children are produced. The larger fraction of the
golden-section split receives level sþ 1, while the smaller fraction receives level min sþ 2; smaxf g.
If it is the case that zi 6¼ yi and the third child is larger than the smaller of the two children from the
golden-section split, the third child receives level sþ 1. Otherwise it is given the level
min sþ 2; smaxf g. The basepoint of the first child is set to x, and the basepoint of the second
(and third if it exists) is obtained by changing the ith coordinate of x to zi. The opposite points are
again derived by changing yi to the other end of the ith coordinate interval of B.

If equation (1) does not hold, we expect no improvement. We do not split, and we increase the level
of B by 1.

11.3 Local Search

The local optimization algorithm used by E05JBF uses linesearches along directions that are determined
by minimizing quadratic models, all subject to bound constraints. Triples of vectors are computed using
coordinate searches based on linesearches. These triples are used in triple search procedures to build
local quadratic models for F. A trust-region-type approach to minimize these models is then carried out,
and more information about the coordinate search and the triple search can be found in Huyer and
Neumaier (1999).

The local search starts by looking for better points without being too local, by making a triple search
using points found by a coordinate search. This yields a new point and function value, an approximation
of the gradient of the objective, and an approximation of the Hessian of the objective. Then the quadratic
model for F is minimized over a small box, with the solution to that minimization problem then being
used as a linesearch direction to minimize the objective. A measure r is computed to quantify the
predictive quality of the quadratic model.

The third stage is the checking of termination criteria. The local search will stop if more than loclim
visits to this part of the local search have occurred, where loclim is the value of the optional parameter
Local Searches Limit. If that is not the case, it will stop if the limit on function calls has been exceeded
(see the description of the optional parameter Function Evaluations Limit). The final criterion checks if
no improvement can be made to the function value, or whether the approximated gradient g is small, in
the sense that

gj jT max xj j; xoldj jð Þ < loctol f0 � fð Þ:
The vector xold is the best point at the start of the current loop in this iterative local-search procedure, the
constant loctol is the value of the optional parameter Local Searches Tolerance, f is the objective value
at x, and f0 is the smallest function value found by the initialization procedure.

Next, E05JBF attempts to move away from the boundary, if any components of the current point lie
there, using linesearches along the offending coordinates. Local searches are terminated if no
improvement could be made.

The fifth stage carries out another triple search, but this time it does not use points from a coordinate
search, rather points lying within the trust-region box are taken.

The final stage modifies the trust-region box to be bigger or smaller, depending on the quality of the
quadratic model, minimizes the new quadratic model on that box, and does a linesearch in the direction
of the minimizer. The value of r is updated using the new data, and then we go back to the third stage
(checking of termination criteria).

The Hessians of the quadratic models generated by the local search may not be positive definite, so
E05JBF uses the general nonlinear optimizer E04VHF to minimize the models.

12 Optional Parameters

Several optional parameters in E05JBF define choices in the problem specification or the algorithm logic.
In order to reduce the number of formal parameters of E05JBF these optional parameters have associated
default values that are appropriate for most problems. Therefore, you need only specify those optional
parameters whose values are to be different from their default values.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.21

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional parameter
is provided in Section 12.1.

Defaults

Function Evaluations Limit

Infinite Bound Size

List

Local Searches

Local Searches Limit

Local Searches Tolerance

Maximize

Minimize

Nolist

Repeatability

Splits Limit

Static Limit

Target Objective Error

Target Objective Safeguard

Target Objective Value

Optional parameters may be specified by calling one, or more, of the routines E05JCF, E05JDF, E05JEF,
E05JFF and E05JGF before a call to E05JBF.

E05JCF reads options from an external options file, with Begin and End as the first and last lines
respectively, and with each intermediate line defining a single optional parameter. For example,

Begin
Static Limit = 50

End

The call

CALL E05JCF (IOPTS, COMM, LCOMM, IFAIL)

can then be used to read the file on unit IOPTS. IFAIL will be zero on successful exit. E05JCF should be
consulted for a full description of this method of supplying optional parameters.

E05JDF, E05JEF, E05JFF or E05JGF can be called to supply options directly, one call being necessary
for each optional parameter. E05JDF, E05JEF, E05JFF or E05JGF should be consulted for a full
description of this method of supplying optional parameters.

All optional parameters not specified by you are set to their default values. Valid values of optional
parameters specified by you are unaltered by E05JBF and so remain in effect for subsequent calls to
E05JBF, unless you explicitly change them.

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively, and where the letter a denotes an option that takes an ON or OFF value;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
the symbol rmax stands for the largest positive model number (see X02ALF), nr represents the
number of non-fixed variables, and the symbol d stands for the maximum number of decimal
digits that can be represented (see X02BEF).

E05JBF NAG Library Manual

E05JBF.22 Mark 25

Option names are case-insensitive and must be provided in full; abbreviations are not recognized.

Defaults

This special keyword is used to reset all optional parameters to their default values, and any random
state stored in the array COMM will be destroyed.

Any option value given with this keyword will be ignored. This optional parameter cannot be queried or
got.

Function Evaluations Limit i Default ¼ 100n2
r

This puts an approximate limit on the number of function calls allowed. The total number of calls made
is checked at the top of an internal iteration loop, so it is possible that a few calls more than nf may be
made.

Constraint: nf > 0.

Infinite Bound Size r Default ¼ r
1
4
max

This defines the ‘infinite’ bound infbnd in the definition of the problem constraints. Any upper bound
greater than or equal to infbnd will be regarded as 1 (and similarly any lower bound less than or equal
to �infbnd will be regarded as �1).

Constraint: r
1
4
max � infbnd � r

1
2
max .

Local Searches a Default ¼ ON

If you want to try to accelerate convergence of E05JBF by starting local searches from candidate
minima, you will require lcsrch to be ON.

Constraint: lcsrch ¼ ON or OFF.

Local Searches Limit i Default ¼ 50

This defines the maximal number of iterations to be used in the trust-region loop of the local-search
procedure.

Constraint: loclim > 0.

Local Searches Tolerance r Default ¼ 2�

The value of loctol is the multiplier used during local searches as a stopping criterion for when the
approximated gradient is small, in the sense described in Section 11.3.

Constraint: loctol � 2�.

Minimize Default
Maximize

These keywords specify the required direction of optimization. Any option value given with these
keywords will be ignored.

Nolist Default
List

These options control the echoing of each optional parameter specification as it is supplied. List turns
printing on, Nolist turns printing off. The output is sent to the current advisory message unit (as defined
by X04ABF).

Any option value given with these keywords will be ignored. This optional parameter cannot be queried
or got.

E05 – Global Optimization of a Function E05JBF

Mark 25 E05JBF.23

Repeatability a Default ¼ OFF

For use with random initialization lists (IINIT ¼ 4). When set to ON, an internally-initialized random
state is stored in the array COMM for use in subsequent calls to E05JBF.

Constraint: repeat ¼ ON or OFF.

Splits Limit i Default ¼ d nr þ 2ð Þ=3b c
Along with the initialization list LIST, this defines a limit on the number of times the root box will be
split along any single coordinate direction. If Local Searches is OFF you may find the default value to
be too small.

Constraint: smax > nr þ 2.

Static Limit i Default ¼ 3nr

As the default termination criterion, computation stops when the best function value is static for stclim
sweeps through levels. This parameter is ignored if you have specified a target value to reach in Target
Objective Value.

Constraint: stclim > 0.

Target Objective Error r Default ¼ �1
4

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objerr sets your desired relative error (from above if Minimize is set, from below if
Maximize is set) between OBJ and objval, as described in Section 7. See also the description of the
optional parameter Target Objective Safeguard.

Constraint: objerr � 2�.

Target Objective Safeguard r Default ¼ �1
2

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is close to
zero.

Constraint: objsfg � 2�.

Target Objective Value r

This parameter may be set if you wish E05JBF to use a specific value as the target function value to
reach during the optimization. Setting objval overrides the default termination criterion determined by
the optional parameter Static Limit.

E05JBF NAG Library Manual

E05JBF.24 (last) Mark 25

	E05JBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Huyer and Neumaier (1999)

	5 Parameters
	N
	OBJFUN
	N
	X
	F
	NSTATE
	IUSER
	RUSER
	INFORM

	IBOUND
	IINIT
	BL
	BU
	SDLIST
	LIST
	NUMPTS
	INITPT
	MONIT
	N
	NCALL
	XBEST
	ICOUNT
	NINIT
	LIST
	NUMPTS
	INITPT
	NBASKT
	XBASKT
	BOXL
	BOXU
	NSTATE
	IUSER
	RUSER
	INFORM

	X
	OBJ
	COMM
	LCOMM
	IUSER
	RUSER
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	11.1 Initialization and Sweeps
	11.2 Splitting
	11.2.1 Splitting by rank
	11.2.2 Splitting by expected gain

	11.3 Local Search

	12 Optional Parameters
	12.1 Description of the Optional Parameters
	Defaults
	Function Evaluations Limit
	Infinite Bound Size
	Local Searches
	Local Searches Limit
	Local Searches Tolerance
	Minimize
	Maximize
	Nolist
	List
	Repeatability
	Splits Limit
	Static Limit
	Target Objective Error
	Target Objective Safeguard
	Target Objective Value

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

