
NAG Library Routine Document

E05UCF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

E05UCF is designed to find the global minimum of an arbitrary smooth function subject to constraints
(which may include simple bounds on the variables, linear constraints and smooth nonlinear constraints)
by generating a number of different starting points and performing a local search from each using
sequential quadratic programming.

2 Specification

SUBROUTINE E05UCF (N, NCLIN, NCNLN, A, LDA, BL, BU, CONFUN, OBJFUN,
NPTS, X, LDX, START, REPEAT, NB, OBJF, OBJGRD,
LDOBJD, ITER, C, LDC, CJAC, LDCJAC, SDCJAC, R, LDR,
SDR, CLAMDA, LDCLDA, ISTATE, LISTAT, IOPTS, OPTS,
IUSER, RUSER, INFO, IFAIL)

&
&
&
&

INTEGER N, NCLIN, NCNLN, LDA, NPTS, LDX, NB, LDOBJD,
ITER(NB), LDC, LDCJAC, SDCJAC, LDR, SDR, LDCLDA,
ISTATE(LISTAT,NB), LISTAT, IOPTS(740), IUSER(*),
INFO(NB), IFAIL

&
&
&

REAL (KIND=nag_wp) A(LDA,*), BL(N+NCLIN+NCNLN), BU(N+NCLIN+NCNLN),
X(LDX,NB), OBJF(NB), OBJGRD(LDOBJD,NB), C(LDC,NB),
CJAC(LDCJAC,SDCJAC,NB), R(LDR,SDR,NB),
CLAMDA(LDCLDA,NB), OPTS(485), RUSER(*)

&
&
&

LOGICAL REPEAT
EXTERNAL CONFUN, OBJFUN, START

Before calling E05UCF, the optional parameter arrays IOPTS and OPTS must be initialized for use with
E05UCF by calling E05ZKF with OPTSTR set to ‘Initialize = e05ucf’. Optional parameters may
be specified by calling E05ZKF before the call to E05UCF.

3 Description

The problem is assumed to be stated in the following form:

minimize
x2Rn

F xð Þ subject to l �
x
ALx
c xð Þ

0
@

1
A � u; ð1Þ

where F xð Þ (the objective function) is a nonlinear function, AL is an nL by n linear constraint matrix,
and c xð Þ is an nN element vector of nonlinear constraint functions. (The matrix AL and the vector c xð Þ
may be empty.) The objective function and the constraint functions are assumed to be smooth, i.e., at
least twice-continuously differentiable. (This routine will usually solve (1) if there are only isolated
discontinuities away from the solution.)

E05UCF solves a user-specified number of local optimization problems with different starting points.
You may specify the starting points via the subroutine START. If a random number generator is used to
generate the starting points then the parameter REPEAT allows you to specify whether a repeatable set of
points are generated or whether different starting points are generated on different calls. The resulting
local minima are ordered and the best NB results returned in order of ascending values of the resulting
objective function values at the minima. Thus the value returned in position 1 will be the best result
obtained. If a sufficient number of different points are chosen then this is likely to be be the global
minimum. Please note that the default version of START uses a random number generator to generate the
starting points.

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.1

4 References

Dennis J E Jr and Moré J J (1977) Quasi-Newton methods, motivation and theory SIAM Rev. 19 46–89

Dennis J E Jr and Schnabel R B (1981) A new derivation of symmetric positive-definite secant updates
nonlinear programming (eds O L Mangasarian, R R Meyer and S M Robinson) 4 167–199 Academic
Press

Dennis J E Jr and Schnabel R B (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations Prentice–Hall

Fletcher R (1987) Practical Methods of Optimization (2nd Edition) Wiley

Gill P E, Hammarling S, Murray W, Saunders M A and Wright M H (1986) Users’ guide for LSSOL
(Version 1.0) Report SOL 86-1 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1984) Users’ guide for SOL/QPSOL version 3.2
Report SOL 84–5 Department of Operations Research, Stanford University

Gill P E, Murray W, Saunders M A and Wright M H (1986a) Some theoretical properties of an
augmented Lagrangian merit function Report SOL 86–6R Department of Operations Research, Stanford
University

Gill P E, Murray W, Saunders M A and Wright M H (1986b) Users’ guide for NPSOL (Version 4.0): a
Fortran package for nonlinear programming Report SOL 86-2 Department of Operations Research,
Stanford University

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Powell M J D (1974) Introduction to constrained optimization Numerical Methods for Constrained
Optimization (eds P E Gill and W Murray) 1–28 Academic Press

Powell M J D (1983) Variable metric methods in constrained optimization Mathematical Programming:
the State of the Art (eds A Bachem, M Grötschel and B Korte) 288–311 Springer–Verlag

5 Parameters

1: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

2: NCLIN – INTEGER Input

On entry: nL, the number of general linear constraints.

Constraint: NCLIN � 0.

3: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

Constraint: NCNLN � 0.

4: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if NCLIN > 0, and at least 1
otherwise.

On entry: the matrix AL of general linear constraints in (1). That is, the ith row contains the
coefficients of the ith general linear constraint, for i ¼ 1; 2; . . . ;NCLIN.

If NCLIN ¼ 0, the array A is not referenced.

E05UCF NAG Library Manual

E05UCF.2 Mark 25

5: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which E05UCF
is called.

Constraint: LDA � NCLIN.

6: BLðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input
7: BUðNþ NCLINþ NCNLNÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,
the next nL elements the bounds for the general linear constraints (if any) and the next nN
elements the bounds for the general nonlinear constraints (if any). To specify a nonexistent lower
bound (i.e., lj ¼ �1), set BLðjÞ � �bigbnd, and to specify a nonexistent upper bound (i.e.,

uj ¼ þ1), set BUðjÞ � bigbnd; the default value of bigbnd is 1020, but this may be changed by
the optional parameter Infinite Bound Size. To specify the jth constraint as an equality, set
BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < bigbnd.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;Nþ NCLINþ NCNLN;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < bigbnd.

8: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate the vector c xð Þ of nonlinear constraint functions and (optionally) its

Jacobian (¼ @c

@x
) for a specified n-element vector x. If there are no nonlinear constraints (i.e.,

NCNLN ¼ 0), CONFUN will never be called by E05UCF and CONFUN may be the dummy
routine E04UDM. (E04UDM is included in the NAG Library.) If there are nonlinear constraints,
the first call to CONFUN will occur before the first call to OBJFUN.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCNLN, N, LDCJSL, NEEDC, X, C, CJSL,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCNLN, N, LDCJSL, NEEDC(NCNLN), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(N), C(NCNLN), CJSL(LDCJSL,N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of i such that NEEDCðiÞ > 0:

MODE ¼ 0
CðiÞ.

MODE ¼ 1
All available elements in the ith row of CJSL.

MODE ¼ 2
CðiÞ and all available elements in the ith row of CJSL.

On exit: may be set to a negative value if you wish to abandon the solution to the current
local minimization problem. In this case E05UCF will move to the next local
minimization problem.

2: NCNLN – INTEGER Input

On entry: nN , the number of nonlinear constraints.

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.3

3: N – INTEGER Input

On entry: n, the number of variables.

4: LDCJSL – INTEGER Input

On entry: LDCJSL is the same value as LDCJAC in the call to E05UCF.

5: NEEDCðNCNLNÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJSL that must be evaluated by
CONFUN. If NEEDCðiÞ > 0, CðiÞ and/or the available elements of the ith row of CJSL
(see parameter MODE) must be evaluated at x.

6: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the available
elements of the constraint Jacobian are to be evaluated.

7: CðNCNLNÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðkÞ > 0 and MODE ¼ 0 or 2, CðkÞ must contain the value of ck xð Þ.
The remaining elements of C, corresponding to the non-positive elements of NEEDC,
need not be set.

8: CJSLðLDCJSL;NÞ – REAL (KIND=nag_wp) array Input/Output

CJSL may be regarded as a two-dimensional ‘slice’ of the three-dimensional array CJAC
of E05UCF.

On entry: unless Derivative Level ¼ 2 or 3 (the default setting is Derivative Level ¼ 3,
the elements of CJSL are set to special values which enable E05UCF to detect whether
they are changed by CONFUN.

On exit: if NEEDCðkÞ > 0 and MODE ¼ 1 or 2, the kth row of CJSL must contain the
available elements of the vector rck given by

rck ¼
@ck
@x1

;
@ck
@x2

; . . . ;
@ck
@xn

� �T

;

where
@ck
@xj

is the partial derivative of the kth constraint with respect to the jth variable,

evaluated at the point x. See also the parameter NSTATE. The remaining rows of CJSL,
corresponding to non-positive elements of NEEDC, need not be set.

If all elements of the constraint Jacobian are known (i.e., Derivative Level ¼ 2 or 3),
any constant elements may be assigned to CJSL one time only at the start of each local
optimization. An element of CJSL that is not subsequently assigned in CONFUN will
retain its initial value throughout the local optimization. Constant elements may be
loaded into CJSL during the first call to CONFUN for the local optimization (signalled
by the value NSTATE ¼ 1). The ability to preload constants is useful when many
Jacobian elements are identically zero, in which case CJSL may be initialized to zero
and nonzero elements may be reset by CONFUN.

Note that constant nonzero elements do affect the values of the constraints. Thus, if
CJSLðk; jÞ is set to a constant value, it need not be reset in subsequent calls to
CONFUN, but the value CJSLðk; jÞ � XðjÞ must nonetheless be added to CðkÞ. For
example, if CJSLð1; 1Þ ¼ 2 and CJSLð1; 2Þ ¼ �5 then the term 2� Xð1Þ � 5� Xð2Þ
must be included in the definition of Cð1Þ.
It must be emphasized that, if Derivative Level ¼ 0 or 1, unassigned elements of CJSL
are not treated as constant; they are estimated by finite differences, at nontrivial expense.
If you do not supply a value for the optional parameter Difference Interval, an interval
for each element of x is computed automatically at the start of each local optimization.

E05UCF NAG Library Manual

E05UCF.4 Mark 25

The automatic procedure can usually identify constant elements of CJSL, which are then
computed once only by finite differences.

9: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05UCF is calling CONFUN for the first time on the
current local optimization problem. This parameter setting allows you to save
computation time if certain data must be calculated only once.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the parameters IUSER and RUSER as supplied to E05UCF.
You are free to use the arrays IUSER and RUSER to supply information to CONFUN as
an alternative to using COMMON global variables.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05UCF is called. Parameters denoted as Input must not be changed by
this procedure.

CONFUN should be tested separately before being used in conjunction with E05UCF. See also
the description of the optional parameter Verify.

9: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F xð Þ and (optionally) its gradient g xð Þ ¼ @F
@x

for a

specified n-vector x.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, N, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of OBJFUN. Only
the following values need be assigned:

MODE ¼ 0
OBJF.

MODE ¼ 1
All available elements of OBJGRD.

MODE ¼ 2
OBJF and all available elements of OBJGRD.

On exit: may be set to a negative value if you wish to abandon the solution to the current
local minimization problem. In this case E05UCF will move to the next local
minimization problem.

2: N – INTEGER Input

On entry: n, the number of variables.

3: XðNÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the objective function and/or all available
elements of its gradient are to be evaluated.

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.5

4: OBJF – REAL (KIND=nag_wp) Output

On exit: if MODE ¼ 0 or 2, OBJF must be set to the value of the objective function at x.

5: OBJGRDðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the elements of OBJGRD are set to special values which enable E05UCF to
detect whether they are changed by OBJFUN.

On exit: if MODE ¼ 1 or 2, OBJGRD must return the available elements of the gradient
evaluated at x.

6: NSTATE – INTEGER Input

On entry: if NSTATE ¼ 1 then E05UCF is calling OBJFUN for the first time on the
current local optimization problem. This parameter setting allows you to save
computation time if certain data must be calculated only once.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the parameters IUSER and RUSER as supplied to E05UCF. You
are free to use the arrays IUSER and RUSER to supply information to OBJFUN as an
alternative to using COMMON global variables.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05UCF is called. Parameters denoted as Input must not be changed by
this procedure.

OBJFUN should be tested separately before being used in conjunction with E05UCF. See also the
description of the optional parameter Verify.

10: NPTS – INTEGER Input

On entry: the number of different starting points to be generated and used. The more points used,
the more likely that the best returned solution will be a global minimum.

Constraint: 1 � NB � NPTS.

11: XðLDX;NBÞ – REAL (KIND=nag_wp) array Output

On exit: Xðj; iÞ contains the final estimate of the ith solution, for j ¼ 1; 2; . . . ;N.

12: LDX – INTEGER Input

On entry: the first dimension of the array X as declared in the (sub)program from which E05UCF
is called.

Constraint: LDX � N.

13: START – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

START must calculate the NPTS starting points to be used by the local optimizer. If you do not
wish to write a routine specific to your problem then E05UCZ may be used as the actual
argument. E05UCZ is supplied in the NAG Library and uses the NAG quasi-random number
generators to distribute starting points uniformly across the domain. It is affected by the value of
REPEAT.

The specification of START is:

SUBROUTINE START (NPTS, QUAS, N, REPEAT, BL, BU, IUSER, RUSER,
MODE)

&

E05UCF NAG Library Manual

E05UCF.6 Mark 25

INTEGER NPTS, N, IUSER(*), MODE
REAL (KIND=nag_wp) QUAS(N,NPTS), BL(N), BU(N), RUSER(*)
LOGICAL REPEAT

1: NPTS – INTEGER Input

On entry: indicates the number of starting points.

2: QUASðN;NPTSÞ – REAL (KIND=nag_wp) array Input/Output

On entry: all elements of QUAS will have been set to zero, so only nonzero values need
be set subsequently.

On exit: must contain the starting points for the NPTS local minimizations, i.e.,
QUASðj; iÞ must contain the jth component of the ith starting point.

3: N – INTEGER Input

On entry: the number of variables.

4: REPEAT – LOGICAL Input

On entry: specifies whether a repeatable or non-repeatable sequence of points are to be
generated.

5: BLðNÞ – REAL (KIND=nag_wp) array Input

On entry: the lower bounds on the variables. These may be used to ensure that the
starting points generated in some sense ‘cover’ the region, but there is no requirement
that a starting point be feasible.

6: BUðNÞ – REAL (KIND=nag_wp) array Input

On entry: the upper bounds on the variables. (See BL.)

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

START is called with the parameters IUSER and RUSER as supplied to E05UCF. You
are free to use the arrays IUSER and RUSER to supply information to START as an
alternative to using COMMON global variables.

9: MODE – INTEGER Input/Output

On entry: MODE will contain 0.

On exit: if you set MODE to a negative value then E05UCF will terminate immediately
with IFAIL ¼ 9.

START must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05UCF is called. Parameters denoted as Input must not be changed by
this procedure.

14: REPEAT – LOGICAL Input

On entry: is passed as an argument to START and may be used to initialize a random number
generator to a repeatable, or non-repeatable, sequence.

15: NB – INTEGER Input

On entry: the number of solutions to be returned. The routine saves up to NB local minima
ordered by increasing value of the final objective function. If the defining criterion for ‘best
solution’ is only that the value of the objective function is as small as possible then NB should be
set to 1. However, if you want to look at other solutions that may have desirable properties then

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.7

setting NB > 1 will produce NB local minima, ordered by increasing value of their objective
functions at the minima.

Constraint: 1 � NB � NPTS.

16: OBJFðNBÞ – REAL (KIND=nag_wp) array Output

On exit: OBJFðiÞ contains the value of the objective function at the final iterate for the ith
solution.

17: OBJGRDðLDOBJD;NBÞ – REAL (KIND=nag_wp) array Output

On exit: OBJGRDðj; iÞ contains the gradient of the objective function for the ith solution at the
final iterate (or its finite difference approximation), for j ¼ 1; 2; . . . ;N.

18: LDOBJD – INTEGER Input

On entry: the first dimension of the array OBJGRD as declared in the (sub)program from which
E05UCF is called.

Constraint: LDOBJD � N.

19: ITERðNBÞ – INTEGER array Output

On exit: ITERðiÞ contains the number of major iterations performed to obtain the ith solution. If
less than NB solutions are returned then ITERðNBÞ contains the number of starting points that
have resulted in a converged solution. If this is close to NPTS then this might be indicative that
fewer than NB local minima exist.

20: CðLDC;NBÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, Cðj; iÞ contains the value of the jth nonlinear constraint function cj at the
final iterate, for the ith solution, for j ¼ 1; 2; . . . ;NCNLN.

If NCNLN ¼ 0, the array C is not referenced.

21: LDC – INTEGER Input

On entry: the first dimension of the array C as declared in the (sub)program from which E05UCF
is called.

Constraint: LDC � NCNLN.

22: CJACðLDCJAC; SDCJAC;NBÞ – REAL (KIND=nag_wp) array Output

On exit: if NCNLN > 0, CJAC contains the Jacobian matrices of the nonlinear constraint
functions at the final iterate for each of the returned solutions, i.e., CJACðk; j; iÞ contains the
partial derivative of the kth constraint function with respect to the jth variable, for
k ¼ 1; 2; . . . ;NCNLN and j ¼ 1; 2; . . . ;N, for the ith solution. (See the discussion of parameter
CJSL under CONFUN.)

If NCNLN ¼ 0, the array CJAC is not referenced.

23: LDCJAC – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E05UCF is called.

Constraint: LDCJAC � NCNLN.

24: SDCJAC – INTEGER Input

On entry: the second dimension of the array CJAC as declared in the (sub)program from which
E05UCF is called.

Constraint: if NCNLN > 0, SDCJAC � N.

E05UCF NAG Library Manual

E05UCF.8 Mark 25

25: RðLDR; SDR;NBÞ – REAL (KIND=nag_wp) array Output

On exit: for each of the NB solutions R will contain a form of the Hessian; for the ith returned
solution RðLDR; SDR; iÞ contains the Hessian that would be returned from the local minimizer. If
Hessian ¼ NO, the default, each RðLDR; SDR; iÞ contains the upper triangular Cholesky factor R
of QTHQ, an estimate of the transformed and reordered Hessian of the Lagrangian at x. If
Hessian ¼ YES, RðLDR;SDR; iÞ contains the upper triangular Cholesky factor R of H, the
approximate (untransformed) Hessian of the Lagrangian, with the variables in the natural order.

26: LDR – INTEGER Input

On entry: the first dimension of the array R as declared in the (sub)program from which E05UCF
is called.

Constraint: LDR � N.

27: SDR – INTEGER Input

On entry: the second dimension of the array R as declared in the (sub)program from which
E05UCF is called.

Constraint: SDR � N.

28: CLAMDAðLDCLDA;NBÞ – REAL (KIND=nag_wp) array Output

On exit: the values of the QP multipliers from the last QP subproblem solved for the ith solution.
CLAMDAðj; iÞ should be non-negative if ISTATEðj; iÞ ¼ 1 and non-positive if ISTATEðj; iÞ ¼ 2.

29: LDCLDA – INTEGER Input

On entry: the first dimension of the array CLAMDA as declared in the (sub)program from which
E05UCF is called.

Constraint: LDCLDA � Nþ NCLINþ NCNLN.

30: ISTATEðLISTAT;NBÞ – INTEGER array Output

On exit: ISTATEðj; iÞ contains the status of the constraints in the QP working set for the ith
solution. The significance of each possible value of ISTATEðj; iÞ is as follows:

ISTATEðj; iÞ Meaning

0 The constraint is satisfied to within the feasibility tolerance, but is not in the QP
working set.

1 This inequality constraint is included in the QP working set at its lower bound.

2 This inequality constraint is included in the QP working set at its upper bound.

3 This constraint is included in the QP working set as an equality. This value of
ISTATE can occur only when BLðjÞ ¼ BUðjÞ.

31: LISTAT – INTEGER Input

On entry: the first dimension of the array ISTATE as declared in the (sub)program from which
E05UCF is called.

Constraint: LISTAT � Nþ NCLINþ NCNLN.

32: IOPTSð740Þ – INTEGER array Communication Array
33: OPTSð485Þ – REAL (KIND=nag_wp) array Communication Array

The arrays IOPTS and OPTS must not be altered between calls to any of the routines E05UCF
and E05ZKF.

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.9

34: IUSERð�Þ – INTEGER array User Workspace
35: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

IUSER and RUSER are not used by E05UCF, but are passed directly to CONFUN, OBJFUN and
START and may be used to pass information to these routines as an alternative to using
COMMON global variables.

With care, you may also write information back into IUSER and RUSER. This might be useful,
for example, should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05UCF the arrays IUSER and RUSER provided are classified as
OpenMP shared memory. Use of IUSER and RUSER has to take account of this in order to
preserve thread safety whenever information is written back to either of these arrays.

36: INFOðNBÞ – INTEGER array Output

On exit: INFOðiÞ contains one of 0, 1 or 6. Please see the description of each corresponding value
of IFAIL on exit from E04UCF/E04UCA for detailed explanations of these exit values. As usual 0
denotes success.

If IFAIL ¼ 8 on exit, then not all NB solutions have been found, and INFOðNBÞ contains the
number of solutions actually found.

37: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: E05UCF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

An input value is incorrect. One or more of the following constraints are violated.

On entry, BLðiÞ > BUðiÞ: i ¼ valueh i.
Constraint: BLðiÞ � BUðiÞ, for all i.

On entry, LDA ¼ valueh i and NCLIN ¼ valueh i.
Constraint: LDA � NCLIN.

On entry, LDC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDC � NCNLN.

On entry, LDCJAC ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCJAC � NCNLN.

On entry, LDCLDA ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LDCLDA � Nþ NCLINþ NCNLN.

E05UCF NAG Library Manual

E05UCF.10 Mark 25

On entry, LDOBJD ¼ valueh i and N ¼ valueh i.
Constraint: LDOBJD � N.

On entry, LDR ¼ valueh i and N ¼ valueh i.
Constraint: LDR � N.

On entry, LDX ¼ valueh i and N ¼ valueh i.
Constraint: LDX � N.

On entry, LISTAT ¼ valueh i, N ¼ valueh i, NCLIN ¼ valueh i and NCNLN ¼ valueh i.
Constraint: LISTAT � Nþ NCLINþ NCNLN.

On entry, N ¼ valueh i.
Constraint: N > 0.

On entry, NB ¼ valueh i and NPTS ¼ valueh i.
Constraint: 1 � NB � NPTS.

On entry, NCLIN ¼ valueh i.
Constraint: NCLIN � 0.

On entry, NCNLN ¼ valueh i.
Constraint: NCNLN � 0.

On entry, NCNLN > 0, SDCJAC ¼ valueh i and N ¼ valueh i.
Constraint: if NCNLN > 0, SDCJAC � N.

On entry, SDR ¼ valueh i and N ¼ valueh i.
Constraint: SDR � N.

IFAIL ¼ 2

No solution obtained. Linear constraints may be infeasible.

E05UCF has terminated without finding any solutions. The majority of calls to the local optimizer
have failed to find a feasible point for the linear constraints and bounds, which means that either no
feasible point exists for the given value of the optional parameter Linear Feasibility Tolerance
(default value

ffiffi
�
p

, where � is the machine precision), or no feasible point could be found in the
number of iterations specified by the optional parameter Minor Iteration Limit. You should check
that there are no constraint redundancies. If the data for the constraints are accurate only to an
absolute precision �, you should ensure that the value of the optional parameter Linear Feasibility
Tolerance is greater than �. For example, if all elements of AL are of order unity and are accurate
to only three decimal places, Linear Feasibility Tolerance should be at least 10�3.

IFAIL ¼ 3

E05UCF has failed to find any solutions. The majority of local optimizations could not find a
feasible point for the nonlinear constraints. The problem may have no feasible solution. This
behaviour will occur if there is no feasible point for the nonlinear constraints. (However, there is no
general test that can determine whether a feasible point exists for a set of nonlinear constraints.)

No solution obtained. Nonlinear constraints may be infeasible.

IFAIL ¼ 4

No solution obtained. Many potential solutions reach iteration limit.

The Iteration Limit may be changed using E05ZKF.

IFAIL ¼ 7

User-supplied derivatives probably wrong.

The user-supplied derivatives of the objective function and/or nonlinear constraints appear to be
incorrect.

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.11

Large errors were found in the derivatives of the objective function and/or nonlinear constraints.
This value of IFAIL will occur if the verification process indicated that at least one gradient or
Jacobian element had no correct figures. You should refer to or enable the printed output to
determine which elements are suspected to be in error.

As a first-step, you should check that the code for the objective and constraint values is correct –
for example, by computing the function at a point where the correct value is known. However,
care should be taken that the chosen point fully tests the evaluation of the function. It is
remarkable how often the values x ¼ 0 or x ¼ 1 are used to test function evaluation procedures,
and how often the special properties of these numbers make the test meaningless.

Gradient checking will be ineffective if the objective function uses information computed by the
constraints, since they are not necessarily computed before each function evaluation.

Errors in programming the function may be quite subtle in that the function value is ‘almost’
correct. For example, the function may not be accurate to full precision because of the inaccurate
calculation of a subsidiary quantity, or the limited accuracy of data upon which the function
depends. A common error on machines where numerical calculations are usually performed in
double precision is to include even one single precision constant in the calculation of the function;
since some compilers do not convert such constants to double precision, half the correct figures
may be lost by such a seemingly trivial error.

IFAIL ¼ 8

Only valueh i solutions obtained.

Not all NB solutions have been found. INFOðNBÞ contains the number actually found.

IFAIL ¼ 9

User terminated computation from START procedure: MODE ¼ valueh i.
If E05UCZ has been used as an actual argument for START then the message displayed, when
IFAIL ¼ 0 or �1 on entry to E05UCF, will have the following meaning:

998 failure to allocate space, a smaller value of NPTS should be tried.

997 an internal error has occurred. Please contact NAG for assistance.

IFAIL ¼ 10

Failed to initialize optional parameter arrays.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

If IFAIL ¼ 0 on exit and the value of INFOðiÞ ¼ 0, then the vector returned in the array X for solution i
is an estimate of the solution to an accuracy of approximately Optimality Tolerance.

E05UCF NAG Library Manual

E05UCF.12 Mark 25

8 Parallelism and Performance

E05UCF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library. In these implementations, this routine may make calls to the user-supplied functions from within
an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used if you
are compiling the user-supplied function and linking the executable in accordance with the instructions
in the Users’ Note for your implementation. The user workspace arrays IUSER and RUSER are
classified as OpenMP shared memory and use of IUSER and RUSER has to take account of this in order
to preserve thread safety whenever information is written back to either of these arrays. If at all possible,
it is recommended that these arrays are only used to supply read-only data to the user functions when a
multithreaded implementation is being used.

E05UCF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

You should be wary of requesting much intermediate output from the local optimizer, since large
volumes may be produced if NPTS is large.

The auxiliary routine E05UCZ makes use of the NAG quasi-random Sobol generator (G05YLF and
G05YMF). If E05UCZ is used as an argument for START (see the description of START) and
REPEAT ¼ :FALSE: then a randomly chosen value for ISKIP is used, otherwise ISKIP is set to 100. If
REPEAT is set to .FALSE. and the program is executed several times, each time producing the same best
answer, then there is increased probability that this answer is a global minimum. However, if it is
important that identical results be obtained on successive runs, then REPEAT should be set to .TRUE..

9.1 Description of the Printed Output

See Section 9.1 in E04UCF/E04UCA.

10 Example

This example finds the global minimum of the two-dimensional Schwefel function:

minimize
x2R2

f ¼
X2

j¼1

xjsin
ffiffiffiffiffiffiffiffi
xj
�� ��q� �

subject to the constraints:

�10000 < 3:0x1 � 2:0x2 < 10:0;
�1:0 < x2

1 � x2
2 þ 3:0x1x2 < 500000:0;

�0:9 < cos x1=200ð Þ2 þ x2=100ð Þ
� �

< 0:9;

�500 � x1 � 500;
�500 � x2 � 500:

10.1 Program Text

! E05UCF Example Program Text
! Mark 25 Release. NAG Copyright 2014.

Module e05ucfe_mod

! E05UCF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.13

Use nag_library, Only: nag_wp
! .. Implicit None Statement ..

Implicit None
! .. Accessibility Statements ..

Private
Public :: mystart, schwefel_confun, &

schwefel_obj
Contains

Subroutine schwefel_obj(mode,n,x,objf,objgrd,nstate,iuser,ruser)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Out) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objgrd(n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, sin, sqrt, sum

! .. Executable Statements ..
If (nstate==1) Then

! This is the first call.
! Take any special action here if desired.

Continue
End If
If (mode==0 .Or. mode==2) Then

! Evaluate the objective function.
objf = sum(x(1:n)*sin(sqrt(abs(x(1:n)))))

End If

If (mode==1 .Or. mode==2) Then
! Calculate the gradient of the objective function.

objgrd(1:n) = sin(sqrt(abs(x(1:n)))) + 0.5_nag_wp*sqrt(abs(x(1:n)))* &
cos(sqrt(abs(x(1:n))))

End If

Return
End Subroutine schwefel_obj
Subroutine schwefel_confun(mode,ncnln,n,ldcjsl,needc,x,c,cjsl,nstate, &

iuser,ruser)

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcjsl, n, ncnln, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncnln)
Real (Kind=nag_wp), Intent (Inout) :: cjsl(ldcjsl,n), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(n)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncnln)

! .. Local Scalars ..
Real (Kind=nag_wp) :: t1, t2
Integer :: k
Logical :: evalc, evalcjsl

! .. Intrinsic Procedures ..
Intrinsic :: cos, sin

! .. Executable Statements ..
If (nstate==1) Then

! This is the first call.
! Take any special action here if desired.

Continue
End If

! mode: what is required - constraints, derivatives, or both?
evalc = (mode==0 .Or. mode==2)
evalcjsl = (mode==1 .Or. mode==2)

loop_constraints: Do k = 1, ncnln

If (needc(k)<=0) Then

E05UCF NAG Library Manual

E05UCF.14 Mark 25

Cycle loop_constraints
End If

If (evalc) Then
! Constraint values are required.

Select Case (k)
Case (1)

c(k) = x(1)**2 - x(2)**2 + 3.0_nag_wp*x(1)*x(2)
Case (2)

c(k) = cos((x(1)/200.0_nag_wp)**2+(x(2)/100.0_nag_wp))
Case Default

! This constraint is not coded (there are only two).
! Terminate.

mode = -1
Exit loop_constraints

End Select
End If

If (evalcjsl) Then
! Constraint derivatives are required.

Select Case (k)
Case (1)

cjsl(k,1) = 2.0_nag_wp*x(1) + 3.0_nag_wp*x(2)
cjsl(k,2) = -2.0_nag_wp*x(2) + 3.0_nag_wp*x(1)

Case (2)
t1 = x(1)/200.0_nag_wp
t2 = x(2)/100.0_nag_wp
cjsl(k,1) = -sin(t1**2+t2)*2.0_nag_wp*t1/200.0_nag_wp
cjsl(k,2) = -sin(t1**2+t2)/100.0_nag_wp

End Select
End If

End Do loop_constraints

Return
End Subroutine schwefel_confun
Subroutine mystart(npts,quas,n,repeat,bl,bu,iuser,ruser,mode)

! Sets the initial points.
! A typical user-defined start procedure.
! Only nonzero elements of quas need to be specified here.

! .. Use Statements ..
Use nag_library, Only: g05kgf, g05saf

! .. Scalar Arguments ..
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: n, npts
Logical, Intent (In) :: repeat

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: bl(n), bu(n)
Real (Kind=nag_wp), Intent (Inout) :: quas(n,npts), ruser(*)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: genid, i, ifail, lstate, subid

! .. Local Arrays ..
Integer, Allocatable :: state(:)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
If (repeat) Then

! Generate a uniform spread of points between bl and bu.
Do i = 1, npts

quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*real(i-1,kind=nag_wp)/ &
real(npts-1,kind=nag_wp)

End Do
Else

! Generate a non-repeatable spread of points between bl and bu.
genid = 2
subid = 53
lstate = -1
Allocate (state(lstate))

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.15

ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Deallocate (state)
Allocate (state(lstate))
ifail = 0
Call g05kgf(genid,subid,state,lstate,ifail)
Do i = 1, npts

ifail = 0
Call g05saf(n,state,quas(1,i),ifail)
quas(1:n,i) = bl(1:n) + (bu(1:n)-bl(1:n))*quas(1:n,i)

End Do
Deallocate (state)

End If
! Set mode negative to terminate execution for any reason.

mode = 0
Return

End Subroutine mystart
End Module e05ucfe_mod
Program e05ucfe

! E05UCF Example Main Program

! .. Use Statements ..
Use nag_library, Only: dgemv, e05ucf, e05zkf, nag_wp
Use e05ucfe_mod, Only: mystart, schwefel_confun, schwefel_obj

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: n = 2, nclin = 1, ncnln = 2, &

nin = 5, nout = 6
! .. Local Scalars ..

Integer :: i, ifail, j, k, l, lda, ldc, &
ldcjac, ldclda, ldobjd, ldr, &
ldx, liopts, listat, lopts, nb, &
npts, sda, sdcjac, sdr

Logical :: repeat
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), c(:,:), &
cjac(:,:,:), clamda(:,:), &
objf(:), objgrd(:,:), opts(:), &
r(:,:,:), work(:), x(:,:)

Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: info(:), iopts(:), istate(:,:), &

iter(:)
Integer :: iuser(1)

! .. Executable Statements ..
Write (nout,*) ’E05UCF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) nb, npts
Read (nin,*) repeat

lda = nclin

If (nclin>0) Then
sda = n

Else
sda = 1

End If

ldx = n
ldobjd = n
ldc = ncnln
ldcjac = ncnln

If (ncnln>0) Then
sdcjac = n

Else

E05UCF NAG Library Manual

E05UCF.16 Mark 25

sdcjac = 0
End If

ldr = n
sdr = n
ldclda = n + nclin + ncnln
listat = n + nclin + ncnln
liopts = 740
lopts = 485
Allocate (a(lda,sda),bl(n+nclin+ncnln),bu(n+nclin+ncnln),x(ldx,nb), &

objf(nb),objgrd(ldobjd,nb),iter(nb),c(ldc,nb),cjac(ldcjac,sdcjac,nb), &
r(ldr,sdr,nb),clamda(ldclda,nb),istate(listat,nb),iopts(liopts), &
opts(lopts),info(nb),work(nclin))

bl(1:n+nclin+ncnln) = (/-500.0_nag_wp,-500.0_nag_wp,-10000.0_nag_wp, &
-1.0_nag_wp,-0.9_nag_wp/)

bu(1:n+nclin+ncnln) = (/500.0_nag_wp,500.0_nag_wp,10.0_nag_wp, &
500000.0_nag_wp,0.9_nag_wp/)

a(1,1) = 3.0_nag_wp
a(1,2) = -2.0_nag_wp

! Initialize the solver.

ifail = 0
Call e05zkf(’Initialize = E05UCF’,iopts,liopts,opts,lopts,ifail)

! Solve the problem.

ifail = -1
Call e05ucf(n,nclin,ncnln,a,lda,bl,bu,schwefel_confun,schwefel_obj,npts, &

x,ldx,mystart,repeat,nb,objf,objgrd,ldobjd,iter,c,ldc,cjac,ldcjac, &
sdcjac,r,ldr,sdr,clamda,ldclda,istate,listat,iopts,opts,iuser,ruser, &
info,ifail)

Select Case (ifail)
Case (0)

l = nb
Case (8)

l = info(nb)
Write (nout,99992) iter(nb)

Case Default
Go To 100

End Select

loop: Do i = 1, l
Write (nout,99999) i
Write (nout,99998) info(i)
Write (nout,99997) ’Varbl’
Do j = 1, n

Write (nout,99996) ’V’, j, istate(j,i), x(j,i), clamda(j,i)
End Do
If (nclin>0) Then

Write (nout,99997) ’L Con’

! Below is a call to the level 2 BLAS routine DGEMV.
! This performs the matrix vector multiplication A*X
! (linear constraint values) and puts the result in
! the first NCLIN locations of WORK.

Call dgemv(’N’,nclin,n,1.0_nag_wp,a,lda,x(1,i),1,0.0_nag_wp,work,1)

Do k = n + 1, n + nclin
j = k - n
Write (nout,99996) ’L’, j, istate(k,i), work(j), clamda(k,i)

End Do
End If
If (ncnln>0) Then

Write (nout,99997) ’N Con’
Do k = n + nclin + 1, n + nclin + ncnln

j = k - n - nclin

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.17

Write (nout,99996) ’N’, j, istate(k,i), c(j,i), clamda(k,i)
End Do

End If
Write (nout,99995) objf(i)
Write (nout,99994)
Write (nout,99993)(clamda(k,i),k=1,n+nclin+ncnln)

If (l==1) Then
Exit loop

End If

Write (nout,*)

Write (nout,*) &
’ -- ’

End Do loop

100 Continue

99999 Format (/1X,’Solution number’,I16)
99998 Format (/1X,’Local minimization exited with code’,I5)
99997 Format (/1X,A,2X,’Istate’,3X,’Value’,9X,’Lagr Mult’/)
99996 Format (1X,A,2(1X,I3),4X,F12.4,2X,F12.4)
99995 Format (/1X,’Final objective value = ’,1X,F12.4)
99994 Format (/1X,’QP multipliers’)
99993 Format (1X,F12.4)
99992 Format (1X,I16,’ starting points converged’)

End Program e05ucfe

10.2 Program Data

E05UCF Example Program Data
2 1000 : NB, NPTS
T : REPEAT

10.3 Program Results

E05UCF Example Program Results

Solution number 1

Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 -394.1514 0.0000
V 2 0 -433.4910 0.0000

L Con Istate Value Lagr Mult

L 1 0 -315.4722 0.0000

N Con Istate Value Lagr Mult

N 1 0 480024.1075 0.0000
N 2 2 0.9000 -718.9448

Final objective value = -731.7064

QP multipliers
0.0000
0.0000
0.0000
0.0000

-718.9448

--

Solution number 2

E05UCF NAG Library Manual

E05UCF.18 Mark 25

Local minimization exited with code 0

Varbl Istate Value Lagr Mult

V 1 0 -394.1504 0.0000
V 2 0 -433.4891 0.0000

L Con Istate Value Lagr Mult

L 1 0 -315.4731 0.0000

N Con Istate Value Lagr Mult

N 1 0 480021.5064 0.0000
N 2 2 0.9000 -718.9558

Final objective value = -731.7064

QP multipliers
0.0000
0.0000
0.0000
0.0000

-718.9558

--

11 Algorithmic Details

See Section 11 in E04UCF/E04UCA.

12 Optional Parameters

Several optional parameters in E05UCF define choices in the problem specification or the algorithm
logic. In order to reduce the number of formal parameters of E05UCF these optional parameters have
associated default values that are appropriate for most problems. Therefore you need only specify those
optional parameters whose values are to be different from their default values.

Optional parameters may be specified by calling E05ZKF before a call to E05UCF. Before calling
E05UCF, the optional parameter arrays IOPTS and OPTS must be initialized for use with E05UCF by
calling E05ZKF with OPTSTR set to ‘Initialize = e05ucf’.

All optional parameters not specified are set to their default values. Optional parameters specified are
unaltered by E05UCF (unless they define invalid values) and so remain in effect for subsequent calls to
E05UCF.

12.1 Description of the Optional Parameters

E05UCF supports two options that are distinct from those of E04UCF/E04UCA:

Punch Unit i Default ¼ 6

This option allows you to send information arising from an appropriate setting of Out_Level to be sent
to the Fortran unit number defined by Punch Unit. If you wish this file to be different to the standard
output unit (6) where other output is displayed then this file should be attached by calling X04ACF prior
to calling E05UCF.

Out Level i Default ¼ 0

This option defines the amount of extra information to be sent to the Fortran unit number defined by
Punch Unit. The possible choices for i are the following:

E05 – Global Optimization of a Function E05UCF

Mark 25 E05UCF.19

i Meaning

0 No extra output.

1 Updated solutions only. This is useful during long runs to observe progress.

2 Successful start points only. This is useful to save the starting points that gave rise to the final
solution.

3 Both updated solutions and successful start points.

See Section 12 in E04UCF/E04UCA for details of the other options.

The Warm Start option of E04UCF/E04UCA is not a valid option for use with E05UCF.

13 Description of Monitoring Information

See Section 13 in E04UCF/E04UCA.

E05UCF NAG Library Manual

E05UCF.20 (last) Mark 25

	E05UCF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dennis and More (1977)
	Dennis and Schnabel (1981)
	Dennis and Schnabel (1983)
	Fletcher (1987)
	Gill et al. (1986)
	Gill et al. (1984)
	Gill et al. (1986a)
	Gill et al. (1986b)
	Gill et al. (1981)
	Powell (1974)
	Powell (1983)

	5 Parameters
	N
	NCLIN
	NCNLN
	A
	LDA
	BL
	BU
	CONFUN
	MODE
	NCNLN
	N
	LDCJSL
	NEEDC
	X
	C
	CJSL
	NSTATE
	IUSER
	RUSER

	OBJFUN
	MODE
	N
	X
	OBJF
	OBJGRD
	NSTATE
	IUSER
	RUSER

	NPTS
	X
	LDX
	START
	NPTS
	QUAS
	N
	REPEAT
	BL
	BU
	IUSER
	RUSER
	MODE

	REPEAT
	NB
	OBJF
	OBJGRD
	LDOBJD
	ITER
	C
	LDC
	CJAC
	LDCJAC
	SDCJAC
	R
	LDR
	SDR
	CLAMDA
	LDCLDA
	ISTATE
	LISTAT
	IOPTS
	OPTS
	IUSER
	RUSER
	INFO
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	9.1 Description of the Printed Output

	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	12 Optional Parameters
	12.1 Description of the Optional Parameters
	Punch Unit
	Out_Level

	13 Description of Monitoring Information

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

