NAG Library Routine Document
 F01CKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F01CKF returns with the result of the multiplication of two matrices B and C in the matrix A, with the option to overwrite B or C.

2 Specification

```
SUBROUTINE FOICKF (A, B, C, N, P, M, Z, IZ, OPT, IFAIL)
INTEGER N, P, M, IZ, OPT, IFAIL
REAL (KIND=nag_wp) A (N,P), B(N,M), C(M,P), Z(IZ)
```


3 Description

The n by m matrix B is post-multiplied by the m by p matrix C. If OPT $=1$ the result is formed in the n by p matrix A. If $\mathrm{OPT}=2, m$ must equal p, and the result is written back to B. If $\mathrm{OPT}=3, n$ must equal m, and the result is written back to C.

4 References

None.

5 Parameters

1: $\quad \mathrm{A}(\mathrm{N}, \mathrm{P})$ - REAL (KIND=nag_wp) array
Output
On exit: if $\mathrm{OPT}=1$, A contains the result of the matrix multiplication.
2: $\mathrm{B}(\mathrm{N}, \mathrm{M})-$ REAL (KIND=nag_wp) array Input/Output
On entry: the n by m matrix B.
On exit: if $\mathrm{OPT}=2, \mathrm{~B}$ contains the result of the multiplication.
3: $\mathrm{C}(\mathrm{M}, \mathrm{P})$ - REAL (KIND=nag_wp) array Input/Output
On entry: the m by p matrix C.
On exit: if $\mathrm{OPT}=3, \mathrm{C}$ contains the result of the multiplication.
4: N - INTEGER Input
On entry: n, the number of rows of the array A and of the array B.
Constraints:
if $\mathrm{OPT}=3, \mathrm{~N}=\mathrm{M}$;
otherwise $\mathrm{N} \geq 1$.
5: $\quad \mathrm{P}$ - INTEGER
Input
On entry: p, the number of columns of the array A and of the array C.

Constraints:

if $\mathrm{OPT}=2, \mathrm{P}=\mathrm{M}$;
otherwise $\mathrm{P} \geq 1$.
6: M - INTEGER Input
On entry: m, the number of columns of the array B and rows of the array C.
Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{OPT}=2, \mathrm{M}=\mathrm{P} \\
& \text { if } \mathrm{OPT}=3, \mathrm{M}=\mathrm{N} \\
& \text { if } \mathrm{OPT} \neq 1, \mathrm{M} \leq \mathrm{IZ} \\
& \text { otherwise } \mathrm{M} \geq 1
\end{aligned}
$$

7: $\mathrm{Z}(\mathrm{IZ})$ - REAL (KIND=nag_wp) array Workspace
8: IZ - INTEGER Input
On entry: the dimension of the array Z as declared in the (sub)program from which F01CKF is called.

Constraints:
if $\mathrm{OPT}=1, \mathrm{IZ} \geq 1$;
if $\mathrm{OPT} \neq 1, \mathrm{IZ} \geq \mathrm{M}$.
9: OPT - INTEGER Input
On entry: the value of OPT determines which array is to contain the final result.
$\mathrm{OPT}=1$
A must be distinct from B and C and, on exit, contains the result. B and C need not be distinct in this case.
$\mathrm{OPT}=2$
B must be distinct from C and on exit, contains the result. A is not used in this case and need not be distinct from B or C .
$\mathrm{OPT}=3$
C must be distinct from B and on exit, contains the result. A is not used in this case and need not be distinct from B or C.

Constraint: $1 \leq \mathrm{OPT} \leq 3$.

10: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, M or P or $\mathrm{N} \leq 0$.
IFAIL $=2$
$\mathrm{OPT}=2$ and $\mathrm{M} \neq \mathrm{P}$.
IFAIL $=3$
$\mathrm{OPT}=3$ and $\mathrm{N} \neq \mathrm{M}$.
IFAIL $=4$
$\mathrm{OPT} \neq 1$ and $\mathrm{IZ}<\mathrm{M}$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

Each element of the result is effectively computed as an inner product using basic precision.

8 Parallelism and Performance

F01CKF is not threaded by NAG in any implementation.
F01CKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The time taken by F01CKF is approximately proportional to mnp.

10 Example

This example multiplies the 2 by 3 matrix B and the 3 by 2 matrix C together and places the result in the 2 by 2 matrix A.

10.1 Program Text

```
Program f01ckfe
    FO1CKF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: f01ckf, nag_wp, x04cbf
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter : indent \(=0, i z=1, \operatorname{ncols}=80, \quad \&\)
    nin \(=5\), nout \(=6\), opt \(=1\)
    Character (1), Parameter : diag \(={ }^{\prime} N^{\prime}, ~ m a t r i x=' G ', ~ n o l a b e l=\&\)
    Character (4), Parameter : form = 'F7.1'
! .. Local Scalars ..
    Integer : : i, ifail, j, m, n, p
    Character (8) : title
    .. Local Arrays .
    Real (Kind=nag_wp), Allocatable : : a(:,:), b(:,:), c(:,:)
    Real (Kind=nag_wp) : : z(iz)
    Character (1) : : dummy (1)
    .. Intrinsic Procedures ..
    Intrinsic : : real
    .. Executable Statements ..
    Write (nout,*) 'FO1CKF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) \(n, ~ p, m\)
    Allocate \((a(n, p), b(n, m), c(m, p))\)
! Set up example \(B\) and \(C\) matrices
    Do \(i=1, m\)
        Do \(j=1, n\)
            b(j,i) = real(i+j-2,kind=nag_wp)
        End Do
        Do \(j=1, p\)
            \(c(i, j)=r e a l\left(i+j-2, k i n d=n a g \_w p\right)\)
        End Do
    End Do
    ifail: behaviour on error exit
                \(=0\) for hard exit, \(=1\) for quiet-soft, \(=-1\) for noisy-soft
    ifail = 0
    Call folckf(a,b,c,n,p,m,z,iz,opt,ifail)
    Print the result matrix A
    title \(=\) 'Matrix A'
    Write (nout,*)
    Flush (nout)
    ifail \(=0\)
    Call x04cbf(matrix, diag,n,p,a,n,form,title, nolabel,dummy,nolabel,dummy, \&
    ncols,indent,ifail)
End Program folckfe
```


10.2 Program Data

```
FO1CKF Example Program Data
    2 3 : n, p, m
```


10.3 Program Results

```
FO1CKF Example Program Results
Matrix A
    5.0 8.0
    8.0 14.0
```

