NAG Library Routine Document

F06PGF (DTBMV)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of *bold italicised* terms and other implementation-dependent details.

1 Purpose

F06PGF (DTBMV) computes the matrix-vector product for a real triangular band matrix or its transpose.

2 Specification

SUBROUTINE F06PGF (UPLO, TRANS, DIAG, N, K, A, LDA, X, INCX) INTEGER N, K, LDA, INCX REAL (KIND=nag_wp) A(LDA,*), X(*) CHARACTER(1) UPLO, TRANS, DIAG

The routine may be called by its BLAS name dtbmv.

3 Description

F06PGF (DTBMV) performs one of the matrix-vector operations

$$x \leftarrow Ax$$
 or $x \leftarrow A^{\mathrm{T}}x$,

where A is an n by n real triangular band matrix with k subdiagonals or superdiagonals, and x is an n-element real vector.

4 References

None.

5 Parameters

1: UPLO – CHARACTER(1)

On entry: specifies whether A is upper or lower triangular.

UPLO = 'U'

A is upper triangular.

```
UPLO = L'
```

A is lower triangular.

Constraint: UPLO = 'U' or 'L'.

2: TRANS – CHARACTER(1)

On entry: specifies the operation to be performed.

TRANS = 'N' $x \leftarrow Ax$. TRANS = 'T' or 'C' $x \leftarrow A^{T}x$. Constraint: TRANS = 'N', 'T' or 'C'. Input

Input

3:	DIAG – CHARACTER(1) Inp	put
	On entry: specifies whether A has nonunit or unit diagonal elements.	
	DIAG = 'N' The diagonal elements are stored explicitly.	
	DIAG = 'U'	
	The diagonal elements are assumed to be 1, and are not referenced.	
	Constraint: $DIAG = 'N'$ or 'U'.	
4:	N – INTEGER Int	put
	On entry: n, the order of the matrix A.	
	Constraint: $N \ge 0$.	
5:	K – INTEGER Inp	put
	On entry: k, the number of subdiagonals or superdiagonals of the matrix A.	
	Constraint: $K \ge 0$.	
6:	A(LDA,*) – REAL (KIND=nag_wp) array	put
0.	Note: the second dimension of the array A must be at least N.	
	On entry: the n by n triangular band matrix A	
	The matrix is stored in rows 1 to $k + 1$, more precisely,	
	if UPLO = 'U', the elements of the upper triangle of A within the band must be stored w element A_{ij} in A(k + 1 + i - j, j) for max $(1, j - k) \le i \le j$;	ith
	if UPLO = 'L', the elements of the lower triangle of A within the band must be stored w element A_{ij} in A $(1 + i - j, j)$ for $j \le i \le \min(n, j + k)$.	ith
	If $DIAG = U'$, the diagonal elements of A are assumed to be 1, and are not referenced.	
7:	LDA – INTEGER	put
	<i>On entry</i> : the first dimension of the array A as declared in the (sub)program from which F06P0 (DTBMV) is called.	GF
	Constraint: $LDA \ge K + 1$.	
8:	X(*) – REAL (KIND=nag_wp) array Input/Outp	nut
0.	Note: the dimension of the array X must be at least $max(1, 1 + (N - 1) \times INCX)$.	
	On entry: the <i>n</i> -element vector <i>x</i> .	
	If INCX > 0, x_i must be stored in X(1 + (<i>i</i> -1) × INCX), for $i = 1, 2,, N$.	
	If INCX < 0, x_i must be stored in X(1–(N– i) × INCX), for $i = 1, 2,, N$.	
	On exit: the updated vector x stored in the array elements used to supply the original vector	<i>x</i> .
9:	INCX – INTEGER	put
	On entry: the increment in the subscripts of X between successive elements of x .	
	Constraint: INCX $\neq 0$.	
(
6	Error Indicators and Warnings	

None.

7 Accuracy

Not applicable.

8 Parallelism and Performance

Not applicable.

9 Further Comments

None.

10 Example

None.