NAG Library Routine Document F08GEF (DSPTRD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08GEF (DSPTRD) reduces a real symmetric matrix to tridiagonal form, using packed storage.

2 Specification

```
SUBROUTINE FO8GEF (UPLO, N, AP, D, E, TAU, INFO)
INTEGER N, INFO
REAL (KIND=nag_wp) AP (*), D(N), E(N-1), TAU(N-1)
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dsptrd.

3 Description

F08GEF (DSPTRD) reduces a real symmetric matrix A, held in packed storage, to symmetric tridiagonal form T by an orthogonal similarity transformation: $A=Q T Q^{\mathrm{T}}$.

The matrix Q is not formed explicitly but is represented as a product of $n-1$ elementary reflectors (see the F08 Chapter Introduction for details). Routines are provided to work with Q in this representation (see Section 9).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: UPLO - CHARACTER(1) Input
On entry: indicates whether the upper or lower triangular part of A is stored.
$\mathrm{UPLO}=$ ' U '
The upper triangular part of A is stored.
$\mathrm{UPLO}=$ 'L'
The lower triangular part of A is stored.
Constraint: UPLO = 'U' or 'L'.
2: N - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: $\mathrm{AP}(*)$ - REAL (KIND=nag_wp) array Input/Output
Note: the dimension of the array AP must be at least $\max (1, \mathrm{~N} \times(\mathrm{N}+1) / 2)$.
On entry: the upper or lower triangle of the n by n symmetric matrix A, packed by columns.
More precisely,
if $\mathrm{UPLO}=$ ' U ', the upper triangle of A must be stored with element $A_{i j}$ in $\mathrm{AP}(i+j(j-1) / 2)$ for $i \leq j$;
if UPLO $=$ 'L', the lower triangle of A must be stored with element $A_{i j}$ in $\mathrm{AP}(i+(2 n-j)(j-1) / 2)$ for $i \geq j$.
On exit: AP is overwritten by the tridiagonal matrix T and details of the orthogonal matrix Q.
4: $\quad \mathrm{D}(\mathrm{N})$ - REAL (KIND=nag_wp) array
Output
On exit: the diagonal elements of the tridiagonal matrix T.
5: $\mathrm{E}(\mathrm{N}-1)$ - REAL (KIND=nag_wp) array
Output
On exit: the off-diagonal elements of the tridiagonal matrix T.
6: \quad TAU $(\mathrm{N}-1)-$ REAL (KIND=nag_wp) array
Output
On exit: further details of the orthogonal matrix Q.

7: INFO - INTEGER
Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

$7 \quad$ Accuracy

The computed tridiagonal matrix T is exactly similar to a nearby matrix $(A+E)$, where

$$
\|E\|_{2} \leq c(n) \epsilon\|A\|_{2}
$$

$c(n)$ is a modestly increasing function of n, and ϵ is the machine precision.
The elements of T themselves may be sensitive to small perturbations in A or to rounding errors in the computation, but this does not affect the stability of the eigenvalues and eigenvectors.

8 Parallelism and Performance

F08GEF (DSPTRD) is not threaded by NAG in any implementation.
F08GEF (DSPTRD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The total number of floating-point operations is approximately $\frac{4}{3} n^{3}$.
To form the orthogonal matrix Q F08GEF (DSPTRD) may be followed by a call to F08GFF (DOPGTR):

```
CALL DOPGTR(UPLO,N,AP,TAU,Q,LDQ,WORK,INFO)
```

To apply Q to an n by p real matrix C F08GEF (DSPTRD) may be followed by a call to F08GGF (DOPMTR). For example,

```
CALL DOPMTR('Left',UPLO,'No Transpose',N,P,AP,TAU,C,LDC,WORK, &
    INFO)
```

forms the matrix product $Q C$.
The complex analogue of this routine is F08GSF (ZHPTRD).

10 Example

This example reduces the matrix A to tridiagonal form, where

$$
A=\left(\begin{array}{rrrr}
2.07 & 3.87 & 4.20 & -1.15 \\
3.87 & -0.21 & 1.87 & 0.63 \\
4.20 & 1.87 & 1.15 & 2.06 \\
-1.15 & 0.63 & 2.06 & -1.81
\end{array}\right)
$$

using packed storage.

10.1 Program Text

```
    Program f08gefe
    FO8GEF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: dsptrd, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Integer :: i, info, j, n
    Character (1) :: uplo
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: ap(:), d(:), e(:), tau(:)
    .. Intrinsic Procedures ..
    Intrinsic :: abs
    .. Executable Statements ..
    Write (nout,*) 'FO8GEF Example Program Results'
! Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    Allocate (ap(n* (n+1)/2),d(n),e(n-1),tau(n-1))
    Read A from data file and copy A into AW
    Read (nin,*) uplo
    If (uplo=='U') Then
        Read (nin,*)((ap(i+j*(j-1)/2),j=i,n),i=1,n)
    Else If (uplo=='L') Then
        Read (nin,*)((ap(i+(2*n-j)*(j-1)/2),j=1,i),i=1,n)
    End If
    Reduce A to tridiagonal form
    The NAG name equivalent of dsptrd is fO8gef
    Call dsptrd(uplo,n,ap,d,e,tau,info)
    If (info==0) Then
    Print the diagonal and off-diagonal of tridiagonal T.
    The absolute value of E is printed since this can vary by a change of
    sign (correspondng to multiplying through a column of Q by -1).
    Write (nout,*)
    Write (nout,*) &
            'Diagonal and off-diagonal elements of tridiagonal form'
    Write (nout,*)
```

```
    Write (nout,99999) 'i', 'D', 'E'
    Do i = 1, n - 1
        Write (nout,99998) i, d(i), abs(e(i))
    End Do
    Write (nout,99998) n, d(n)
    Else
    Write (nout,99997) info
    End If
99999 Format (5X,A,9X,A,12X,A)
99998 Format (1X,I5,2(1X,F12.5))
99997 Format (1X,'** DSPTRD/F08GEF retuned with INFO = ',I10)
    End Program f08gefe
```


10.2 Program Data

10.3 Program Results

F08GEF Example Program Results
Diagonal and off-diagonal elements of tridiagonal form

i	D	E
1	2.07000	5.82575
2	1.47409	2.62405
3	-0.64916	0.91627
4	-1.69493	

