
NAG Library Routine Document

F08KJF (DGESVJ)

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

F08KJF (DGESVJ) computes the one-sided Jacobi singular value decomposition (SVD) of a real m by n
matrix A, m � n, with fast scaled rotations and de Rijk’s pivoting, optionally computing the left and/or
right singular vectors. For m < n, the routines F08KBF (DGESVD) or F08KDF (DGESDD) may be
used.

2 Specification

SUBROUTINE F08KJF (JOBA, JOBU, JOBV, M, N, A, LDA, SVA, MV, V, LDV,
WORK, LWORK, INFO)

&

INTEGER M, N, LDA, MV, LDV, LWORK, INFO
REAL (KIND=nag_wp) A(LDA,*), SVA(N), V(LDV,*), WORK(LWORK)
CHARACTER(1) JOBA, JOBU, JOBV

The routine may be called by its LAPACK name dgesvj.

3 Description

The SVD is written as

A ¼ U�V T;

where � is an n by n diagonal matrix, U is an m by n orthonormal matrix, and V is an n by n
orthogonal matrix. The diagonal elements of � are the singular values of A in descending order of
magnitude. The columns of U and V are the left and the right singular vectors of A.

4 References

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A,
Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users’ Guide (3rd Edition) SIAM,
Philadelphia http://www.netlib.org/lapack/lug

Drmac Z and Veselic K (2008a) New fast and accurate Jacobi SVD algorithm I SIAM J. Matrix Anal.
Appl. 29 4

Drmac Z and Veselic K (2008b) New fast and accurate Jacobi SVD algorithm II SIAM J. Matrix Anal.
Appl. 29 4

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

5 Parameters

1: JOBA – CHARACTER(1) Input

On entry: specifies the structure of matrix A.

JOBA ¼ L
The input matrix A is lower triangular.

JOBA ¼ U
The input matrix A is upper triangular.
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JOBA ¼ G
The input matrix A is a general m by n matrix, M � N.

Constraint: JOBA ¼ L , U or G .

2: JOBU – CHARACTER(1) Input

On entry: specifies whether to compute the left singular vectors and if so whether you want to
control their numerical orthogonality threshold.

JOBU ¼ U
The left singular vectors corresponding to the nonzero singular values are computed and
returned in the leading columns of A. See more details in the description of A. The
numerical orthogonality threshold is set to approximately tol ¼ ctol � �, where � is the
machine precision and ctol ¼ ffiffiffiffiffi

m
p

.

JOBU ¼ C
Analogous to JOBU ¼ U , except that you can control the level of numerical orthogonality
of the computed left singular vectors. The orthogonality threshold is set to tol ¼ ctol � �,
where ctol is given on input in WORKð1Þ. The option JOBU ¼ C can be used if m� � is
a satisfactory orthogonality of the computed left singular vectors, so ctol ¼ M could save a
few sweeps of Jacobi rotations. See the descriptions of A and WORKð1Þ.

JOBU ¼ N
The matrix U is not computed. However, see the description of A.

Constraint: JOBU ¼ U , C or N .

3: JOBV – CHARACTER(1) Input

On entry: specifies whether and how to compute the right singular vectors.

JOBV ¼ V
The matrix V is computed and returned in the array V.

JOBV ¼ A
The Jacobi rotations are applied to the leading mv by n part of the array V. In other words,
the right singular vector matrix V is not computed explicitly, instead it is applied to an mv

by n matrix initially stored in the first MV rows of V.

JOBV ¼ N
The matrix V is not computed and the array V is not referenced.

Constraint: JOBV ¼ V , A or N .

4: M – INTEGER Input

On entry: m, the number of rows of the matrix A.

Constraint: M � 0.

5: N – INTEGER Input

On entry: n, the number of columns of the matrix A.

Constraint: M � N � 0.

6: AðLDA; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array A must be at least max 1;Nð Þ.
On entry: the m by n matrix A.
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On exit: the matrix U containing the left singular vectors of A.

If JOBU ¼ U or C

if INFO ¼ 0
rank Að Þ orthonormal columns of U are returned in the leading rank Að Þ columns of
the array A. Here rank Að Þ � N is the number of computed singular values of A that
are above the safe range parameter, as returned by X02AMF. The singular vectors
corresponding to underflowed or zero singular values are not computed. The value of
rank Að Þ is returned by rounding WORKð2Þ to the nearest whole number. Also see
the descriptions of SVA and WORK. The computed columns of U are mutually
numerically orthogonal up to approximately tol ¼ ffiffiffiffiffi

m
p � �; or tol ¼ ctol � �

(JOBU ¼ C ), where � is the machine precision and ctol is supplied on entry in
WORKð1Þ, see the description of JOBU.

If INFO > 0
F08KJF (DGESVJ) did not converge in 30 iterations (sweeps). In this case, the
computed columns of U may not be orthogonal up to tol. The output U (stored in
A), � (given by the computed singular values in SVA) and V is still a decomposition
of the input matrix A in the sense that the residual A� �� U �� � V Tk k2= Ak k2 is
small, where � is the value returned in WORKð1Þ.

If JOBU ¼ N

if INFO ¼ 0
Note that the left singular vectors are ‘for free’ in the one-sided Jacobi SVD
algorithm. However, if only the singular values are needed, the level of numerical
orthogonality of U is not an issue and iterations are stopped when the columns of the
iterated matrix are numerically orthogonal up to approximately m� �. Thus, on exit,
A contains the columns of U scaled with the corresponding singular values.

If INFO > 0
F08KJF (DGESVJ) did not converge in 30 iterations (sweeps).

7: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which F08KJF
(DGESVJ) is called.

Constraint: LDA � max 1;Mð Þ.

8: SVAðNÞ – REAL (KIND=nag_wp) array Output

On exit: the, possibly scaled, singular values of A.

If INFO ¼ 0
The singular values of A are �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n, where � is the scale factor
stored in WORKð1Þ. Normally � ¼ 1, however, if some of the singular values of A might
underflow or overflow, then � 6¼ 1 and the scale factor needs to be applied to obtain the
singular values.

If INFO > 0
F08KJF (DGESVJ) did not converge in 30 iterations and �� SVA may not be accurate.

9: MV – INTEGER Input

On entry: if JOBV ¼ A , the product of Jacobi rotations is applied to the first mv rows of V.

If JOBV 6¼ A , MV is ignored. See the description of JOBV.
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10: VðLDV; �Þ – REAL (KIND=nag_wp) array Input/Output

Note: the second dimension of the array V must be at least max 1;Nð Þ if JOBV ¼ V or A , and at
least 1 otherwise.

On entry: if JOBV ¼ A , V must contain an mv by n matrix to be premultiplied by the matrix V
of right singular vectors.

On exit: the right singular vectors of A.

If JOBV ¼ V , V contains the n by n matrix of the right singular vectors.

If JOBV ¼ A , V contains the product of the computed right singular vector matrix and the initial
matrix in the array V.

If JOBV ¼ N , V is not referenced.

11: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F08KJF
(DGESVJ) is called.

Constraints:

if JOBV ¼ V , LDV � max 1;Nð Þ;
if JOBV ¼ A , LDV � max 1;MVð Þ;
otherwise LDV � 1.

12: WORKðLWORKÞ – REAL (KIND=nag_wp) array Communication Array

On entry: if JOBU ¼ C , WORKð1Þ ¼ ctol, where ctol defines the threshold for convergence. The
process stops if all columns of A are mutually orthogonal up to ctol � �. It is required that
ctol � 1, i.e., it is not possible to force the routine to obtain orthogonality below �. ctol greater
than 1=� is meaningless, where � is the machine precision.

On exit: contains information about the completed job.

WORKð1Þ
the scaling factor, �, such that �i ¼ �SVAðiÞ, for i ¼ 1; 2; . . . ; n are the computed singular
values of A. (See description of SVA.)

WORKð2Þ
nint WORKð2Þð Þgives the number of the computed nonzero singular values.

WORKð3Þ
nint WORKð3Þð Þ gives the number of the computed singular values that are larger than the
underflow threshold.

WORKð4Þ
nint WORKð4Þð Þ gives the number of iterations (sweeps of Jacobi rotations) needed for
numerical convergence.

WORKð5Þ
max i 6¼j cos A :; ið Þ; A :; jð Þð Þj j in the last iteration (sweep). This is useful information in cases
when F08KJF (DGESVJ) did not converge, as it can be used to estimate whether the output
is still useful and for subsequent analysis.

WORKð6Þ
The largest absolute value over all sines of the Jacobi rotation angles in the last sweep. It
can be useful for subsequent analysis.

Constraint: if JOBU ¼ C , WORKð1Þ � 1:0.
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13: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which F08KJF
(DGESVJ) is called.

Constraint: LWORK � max 6;Mþ Nð Þ.

14: INFO – INTEGER Output

On exit: INFO ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO < 0

If INFO ¼ �i, argument i had an illegal value. An explanatory message is output, and execution
of the program is terminated.

INFO > 0

F08KJF (DGESVJ) did not converge in the allowed number of iterations (30), but its output might
still be useful.

7 Accuracy

The computed singular value decomposition is nearly the exact singular value decomposition for a
nearby matrix Aþ Eð Þ, where

Ek k2 ¼ O �ð Þ Ak k2;

and � is the machine precision. In addition, the computed singular vectors are nearly orthogonal to
working precision. See Section 4.9 of Anderson et al. (1999) for further details.

See Section 6 of Drmac and Veselic (2008a) for a detailed discussion of the accuracy of the computed
SVD.

8 Parallelism and Performance

F08KJF (DGESVJ) is not threaded by NAG in any implementation.

F08KJF (DGESVJ) makes calls to BLAS and/or LAPACK routines, which may be threaded within the
vendor library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

This SVD algorithm is numerically superior to the bidiagonalization based QR algorithm implemented
by F08KBF (DGESVD) and the divide and conquer algorithm implemented by F08KDF (DGESDD)
algorithms and is considerably faster than previous implementations of the (equally accurate) Jacobi
SVD method. Moreover, this algorithm can compute the SVD faster than F08KBF (DGESVD) and not
much slower than F08KDF (DGESDD). See Section 3.3 of Drmac and Veselic (2008b) for the details.
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10 Example

This example finds the singular values and left and right singular vectors of the 6 by 4 matrix

A ¼

2:27 �1:54 1:15 �1:94
0:28 �1:67 0:94 �0:78
�0:48 �3:09 0:99 �0:21

1:07 1:22 0:79 0:63
�2:35 2:93 �1:45 2:30

0:62 �7:39 1:03 �2:57

0
BBBBB@

1
CCCCCA
;

together with approximate error bounds for the computed singular values and vectors.

10.1 Program Text

Program f08kjfe

! F08KJF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: ddisna, dgesvj, nag_wp, x02ajf, x04caf

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: eps, serrbd
Integer :: i, ifail, info, j, lda, ldv, lwork, &

m, n
! .. Local Arrays ..

Real (Kind=nag_wp), Allocatable :: a(:,:), rcondu(:), rcondv(:), s(:), &
v(:,:), work(:)

! .. Intrinsic Procedures ..
Intrinsic :: abs

! .. Executable Statements ..
Write (nout,*) ’F08KJF Example Program Results’
Write (nout,*)
Flush (nout)

! Skip heading in data file
Read (nin,*)
Read (nin,*) m, n
lda = m
ldv = n
lwork = n + m
Allocate (a(lda,n),rcondu(m),rcondv(m),s(n),v(ldv,n),work(lwork))

! Read the m by n matrix A from data file

Read (nin,*)((a(i,j),j=1,n),i=1,m)

! Compute the singular values and left and right singular vectors
! of A (A = U*S*V, m.ge.n)

! The NAG name equivalent of dgesvj is f08kjf
Call dgesvj(’G’,’U’,’V’,m,n,a,lda,s,0,v,ldv,work,lwork,info)

If (info==0) Then

! Compute the approximate error bound for the computed singular values
! using the 2-norm, s(1) = norm(A), and machine precision, eps.

eps = x02ajf()
serrbd = eps*s(1)

! Print solution
Write (nout,*) ’Singular values’
Write (nout,99999)(s(j),j=1,n)
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If (abs(work(1)-1.0_nag_wp)>eps) Then
Write (nout,99996) ’Values need scaling by factor = ’, work(1)

End If
Flush (nout)

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call x04caf(’General’,’ ’,m,n,a,lda,’Left singular vectors’,ifail)

Write (nout,*)
Flush (nout)

ifail = 0
Call x04caf(’General’,’ ’,n,n,v,ldv,’Right singular vectors’,ifail)

! Call DDISNA (F08FLF) to estimate reciprocal condition
! numbers for the singular vectors

Call ddisna(’Left’,m,n,s,rcondu,info)
Call ddisna(’Right’,m,n,s,rcondv,info)

! Print the approximate error bounds for the singular values
! and vectors

Write (nout,’(/1X,A)’) ’Error estimate for the singular values’
Write (nout,99998) serrbd
Write (nout,’(/1X,A)’) ’Error estimates for left singular vectors’
Write (nout,99998)(serrbd/rcondu(i),i=1,n)
Write (nout,’(/1X,A)’) ’Error estimates for right singular vectors’
Write (nout,99998)(serrbd/rcondv(i),i=1,n)

Else
Write (nout,99997) ’Failure in DGESVJ. INFO =’, info

End If

99999 Format (3X,(8F8.4))
99998 Format (4X,1P,6E11.1)
99997 Format (1X,A,I4)
99996 Format (/1X,A,1P,E13.5)

End Program f08kjfe

10.2 Program Data

F08KJF Example Program Data

6 4 :Values of M and N

2.27 -1.54 1.15 -1.94
0.28 -1.67 0.94 -0.78

-0.48 -3.09 0.99 -0.21
1.07 1.22 0.79 0.63

-2.35 2.93 -1.45 2.30
0.62 -7.39 1.03 -2.57 :End of matrix A

10.3 Program Results

F08KJF Example Program Results

Singular values
9.9966 3.6831 1.3569 0.5000

Left singular vectors
1 2 3 4

1 -0.2774 0.6003 -0.1277 0.1323
2 -0.2020 0.0301 0.2805 0.7034
3 -0.2918 -0.3348 0.6453 0.1906
4 0.0938 0.3699 0.6781 -0.5399
5 0.4213 -0.5266 0.0413 -0.0575
6 -0.7816 -0.3353 -0.1645 -0.3957

Right singular vectors
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1 2 3 4
1 -0.1921 0.8030 0.0041 -0.5642
2 0.8794 0.3926 -0.0752 0.2587
3 -0.2140 0.2980 0.7827 0.5027
4 0.3795 -0.3351 0.6178 -0.6017

Error estimate for the singular values
1.1E-15

Error estimates for left singular vectors
1.8E-16 4.8E-16 1.3E-15 2.2E-15

Error estimates for right singular vectors
1.8E-16 4.8E-16 1.3E-15 1.3E-15
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