NAG Library Routine Document
 F11MHF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F11MHF returns error bounds for the solution of a real sparse system of linear equations with multiple right-hand sides, $A X=B$ or $A^{\mathrm{T}} X=B$. It improves the solution by iterative refinement in standard precision, in order to reduce the backward error as much as possible.

2 Specification

```
SUBROUTINE FIIMHF (TRANS, N, ICOLZP, IROWIX, A, IPRM, IL, LVAL, IU,
    UVAL, NRHS, B, LDB, X, LDX, FERR, BERR, IFAIL)
INTEGER N, ICOLZP(*), IROWIX(*), IPRM(7*N), IL(*), IU(*),
    NRHS, LDB, LDX, IFAIL
REAL (KIND=nag_wp) A(*), LVAL(*), UVAL(*), B (LDB,*), X(LDX,*),
    FERR(NRHS), BERR(NRHS)
CHARACTER(1) TRANS
```


3 Description

F11MHF returns the backward errors and estimated bounds on the forward errors for the solution of a real system of linear equations with multiple right-hand sides $A X=B$ or $A^{\mathrm{T}} X=B$. The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of F11MHF in terms of a single right-hand side b and solution x.
Given a computed solution x, the routine computes the component-wise backward error β. This is the size of the smallest relative perturbation in each element of A and b such that if x is the exact solution of a perturbed system:

$$
\begin{gathered}
\quad(A+\delta A) x=b+\delta b \\
\text { then } \quad\left|\delta a_{i j}\right| \leq \beta\left|a_{i j}\right| \quad \text { and } \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| .
\end{gathered}
$$

Then the routine estimates a bound for the component-wise forward error in the computed solution, defined by:

$$
\max _{i}\left|x_{i}-\hat{x}_{i}\right| / \max _{i}\left|x_{i}\right|
$$

where \hat{x} is the true solution.
The routine uses the $L U$ factorization $P_{r} A P_{c}=L U$ computed by F11MEF and the solution computed by F11MFF.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Parameters

1: TRANS - CHARACTER(1)
 Input

On entry: specifies whether $A X=B$ or $A^{\mathrm{T}} X=B$ is solved.
TRANS $=$ ' N '
$A X=B$ is solved.

TRANS $=$ ' ${ }^{\prime}$
$A^{\mathrm{T}} X=B$ is solved.
Constraint: TRANS $=$ ' N ' or ' T '.
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.

3: $\operatorname{ICOLZP}(*)$ - INTEGER array
Note: the dimension of the array ICOLZP must be at least $\mathrm{N}+1$.
On entry: $\operatorname{ICOLZP}(i)$ contains the index in A of the start of a new column. See Section 2.1.3 in the F11 Chapter Introduction.

4: $\operatorname{IROWIX}(*)$ - INTEGER array
Input
Note: the dimension of the array IROWIX must be at least $\operatorname{ICOLZP}(N+1)-1$, the number of nonzeros of the sparse matrix A.

On entry: the row index array of sparse matrix A.
5: $\mathrm{A}(*)-$ REAL (KIND $=$ nag_wp) array
Input
Note: the dimension of the array A must be at least $\operatorname{ICOLZP}(\mathrm{N}+1)-1$, the number of nonzeros of the sparse matrix A.
On entry: the array of nonzero values in the sparse matrix A.
6: $\quad \operatorname{IPRM}(7 \times \mathrm{N})-$ INTEGER array
Input
On entry: the column permutation which defines P_{c}, the row permutation which defines P_{r}, plus associated data structures as computed by F11MEF.

7: $\operatorname{IL}(*)$ - INTEGER array Input
Note: the dimension of the array IL must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records the sparsity pattern of matrix L as computed by F11MEF.
8: $\quad \operatorname{LVAL}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array LVAL must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records the nonzero values of matrix L and some nonzero values of matrix U as computed by F11MEF.

9: $\quad \mathrm{IU}(*)-$ INTEGER array
Input
Note: the dimension of the array IU must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records the sparsity pattern of matrix U as computed by F11MEF.
10: $\operatorname{UVAL}(*)-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
Note: the dimension of the array UVAL must be at least as large as the dimension of the array of the same name in F11MEF.

On entry: records some nonzero values of matrix U as computed by F11MEF.

11: NRHS - INTEGER
Input
On entry: nrhs, the number of right-hand sides in B.
Constraint: NRHS ≥ 0.
12 :
$\mathrm{B}(\mathrm{LDB}, *)$ - REAL (KIND=$=$ nag_wp $^{\prime}$ array Input
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the n by $n r h s$ right-hand side matrix B.
13: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F11MHF is called.

Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
14: $\mathrm{X}(\mathrm{LDX}, *)$ - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array X must be at least $\max (1$, NRHS $)$.
On entry: the n by $n r h s$ solution matrix X, as returned by F11MFF.
On exit: the n by nrhs improved solution matrix X.
15: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which F11MHF is called.

Constraint: $\mathrm{LDX} \geq \max (1, \mathrm{~N})$.
16: FERR(NRHS) - REAL (KIND=nag_wp) array
Output
On exit: $\operatorname{FERR}(j)$ contains an estimated error bound for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots$, nrhs.

17: \quad BERR(NRHS) - REAL (KIND $=$ nag_wp) array
Output
On exit: $\operatorname{BERR}(j)$ contains the component-wise backward error bound β for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots$, nrhs.

18: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, TRANS $\neq \mathrm{N}^{\prime} \mathrm{N}$ ' or ' T ',
or $\quad \mathrm{N}<0$,
or \quad NRHS <0,
or $\quad \operatorname{LDB}<\max (1, N)$,
or $\quad \operatorname{LDX}<\max (1, \mathrm{~N})$.
IFAIL $=2$
Ill-defined row permutation in array IPRM. Internal checks have revealed that the IPRM array is corrupted.

IFAIL $=3$
Ill-defined column permutations in array IPRM. Internal checks have revealed that the IPRM array is corrupted.

IFAIL $=301$
Unable to allocate required internal workspace.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

$7 \quad$ Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F11MHF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F11MHF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

At most five steps of iterative refinement are performed, but usually only one or two steps are required.
Estimating the forward error involves solving a number of systems of linear equations of the form $A x=b$ or $A^{\mathrm{T}} x=b$;

10 Example

This example solves the system of equations $A X=B$ using iterative refinement and to compute the forward and backward error bounds, where

$$
A=\left(\begin{array}{rrrrr}
2.00 & 1.00 & 0 & 0 & 0 \\
0 & 0 & 1.00 & -1.00 & 0 \\
4.00 & 0 & 1.00 & 0 & 1.00 \\
0 & 0 & 0 & 1.00 & 2.00 \\
0 & -2.00 & 0 & 0 & 3.00
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
1.56 & 3.12 \\
-0.25 & -0.50 \\
3.60 & 7.20 \\
1.33 & 2.66 \\
0.52 & 1.04
\end{array}\right)
$$

Here A is nonsymmetric and must first be factorized by F11MEF.

10.1 Program Text

Program fllmhfe F11MHF Example Program Text Mark 25 Release. NAG Copyright 2014. .. Use Statements .. Use nag_library, Only: fllmdf, fllmef, fllmff, fllmhf, nag_wp, x04caf, \& x04cbf
.. Implicit None Statement ..
Implicit None
.. Parameters ..
Real (Kind=nag_wp), Parameter : : one = 1.EO_nag_wp
Integer, Parameter : : nin $=5$, nout $=6$
.. Local Scalars ..
Real (Kind=nag_wp) : : flop, thresh
Integer : : i, ifail, j, ldb, ldx, n, nnz, nnzl, \& nnzu, nrhs, nzlmx, nzlumx, nzumx
Character (1) :: spec, trans
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : a(:), b(:,:), berr(:), ferr(:), \& lval(:), uval(:), x(:,:)
Integer, Allocatable : icolzp(:), il(:), iprm(:),

```
    Character (1) :: clabs(1), rlabs(1)
```

! .. Executable Statements .. Write (nout,*) 'F11MHF Example Program Results' Flush (nout)
! Skip heading in data file Read (nin,*)
! Read order of matrix and number of right hand sides Read (nin,*) n, nrhs

$$
l \mathrm{db}=\mathrm{n}
$$

$$
l d x=n
$$

Allocate (b(ldb, nrhs), berr(nrhs),ferr(nrhs),x(ldx,nrhs),icolzp(n+1), \&
iprm(7*n))
Read the matrix A
Read (nin,*) icolzp(1:n+1)
$n n z=\operatorname{icolzp}(n+1)-1$
Allocate (a(nnz), lval(8*nnz), uval(8*nnz),il(7*n+8*nnz+4),irowix(nnz), \&

```
    iu(2*n+8*nnz+1))
Do i = 1, nnz
    Read (nin,*) a(i), irowix(i)
End Do
Read the right hand sides
Do j = 1, nrhs
    Read (nin,*) x(1:n,j)
    b(1:n,j) = x(1:n,j)
End Do
Calculate COLAMD permutation
spec = 'M'
ifail: behaviour on error exit
    =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = O
Call fllmdf(spec,n,icolzp,irowix,iprm,ifail)
! Factorise
thresh = one
ifail = 0
nzlmx = 8*nnz
nzlumx = 8*nnz
nzumx = 8*nnz
Call fllmef(n,irowix,a,iprm,thresh,nzlmx,nzlumx,nzumx,il,lval,iu,uval, &
    nnzl,nnzu,flop,ifail)
Compute solution in array X
trans = 'N'
ifail = 0
Call fllmff(trans,n,iprm,il,lval,iu,uval,nrhs,x,ldx,ifail)
Improve solution, and compute backward errors and estimated
bounds on the forward errors
Call fllmhf(trans,n,icolzp,irowix,a,iprm,il,lval,iu,uval,nrhs,b,ldb,x, &
    ldx,ferr,berr,ifail)
Print solution
Write (nout,*)
Flush (nout)
Call x04caf('G',' ',n,nrhs,x,ldx,'Solutions',ifail)
Call x04cbf('G','X',nrhs,1,ferr,nrhs,'1PE8.1','Estimated Forward Error', &
    'N',rlabs,'N',clabs,80,0,ifail)
Call x04cbf('G','X',nrhs,1,berr,nrhs,'1PE8.1','Backward Error','N', &
    rlabs,'N',clabs,80,0,ifail)
End Program fl1mhfe
```


10.2 Program Data

```
F11MHF Example Program Data
    5 N N, NRHS
1
3
5
7
9 I2 ICOLZP(I) I=1,..,N+1
2. 1
```

```
4. }
1. 1
-2. 5
1. }
1. }
-1. 2
1. 4
1. }
2. 4
3. 5 A(I), IROWIX(I) I=1,NNZ
1.56 -. 25 3.6 1.33 . 52
3.12 -.50 7.2 2.66 1.04 X(I,J) J=1,NRHS I=1,N
```


10.3 Program Results

F11MHF Example Program Results

Solutions		
	1	2
1	0.7000	1.4000
2	0.1600	0.3200
3	0.5200	1.0400
4	0.7700	1.5400
5	0.2800	0.5600
Estimated Forward Error		
5.OE-15		
$5.0 \mathrm{E}-15$		
Backward Error		
$3.6 \mathrm{E}-17$		
$3.6 \mathrm{E}-17$		

