NAG Library Routine Document
 G02DGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G02DGF calculates the estimates of the parameters of a general linear regression model for a new dependent variable after a call to G02DAF.

2 Specification

```
SUBROUTINE GO2DGF (WEIGHT, N, WT, RSS, IP, IRANK, COV, Q, LDQ, SVD, P, &
    Y, B, SE, RES, WK, IFAIL)
INTEGER N, IP, IRANK, LDQ, IFAIL
REAL (KIND=nag_wp) WT(*), RSS, COV(IP*(IP+1)/2), Q(LDQ,IP+1), P(*), &
LOGICAL SVD
CHARACTER(1) WEIGHT
```


3 Description

G02DGF uses the results given by G02DAF to fit the same set of independent variables to a new dependent variable.

G02DAF computes a $Q R$ decomposition of the matrix of p independent variables and also, if the model is not of full rank, a singular value decomposition (SVD). These results can be used to compute estimates of the parameters for a general linear model with a new dependent variable. The $Q R$ decomposition leads to the formation of an upper triangular p by p matrix R and an n by n orthogonal matrix Q. In addition the vector $c=Q^{\mathrm{T}} y$ (or $Q^{\mathrm{T}} W^{1 / 2} y$) is computed. For a new dependent variable, $y_{\text {new }}$, G02DGF computes a new value of $c=Q^{\mathrm{T}} y_{\text {new }}$ or $Q^{\mathrm{T}} W^{1 / 2} y_{\text {new }}$.

If R is of full rank, then the least squares parameter estimates, $\hat{\beta}$, are the solution to

$$
R \hat{\beta}=c_{1}
$$

where c_{1} is the first p elements of c.
If R is not of full rank, then G02DAF will have computed an SVD of R,

$$
R=Q_{*}\left(\begin{array}{cc}
D & 0 \\
0 & 0
\end{array}\right) P^{\mathrm{T}}
$$

where D is a k by k diagonal matrix with nonzero diagonal elements, k being the rank of R, and Q_{*} and P are p by p orthogonal matrices. This gives the solution

$$
\hat{\beta}=P_{1} D^{-1} Q_{*_{1}}^{\mathrm{T}} c_{1},
$$

P_{1} being the first k columns of P, i.e., $P=\left(P_{1} P_{0}\right)$, and $Q_{*_{1}}$ being the first k columns of Q_{*}. Details of the SVD are made available by G02DAF in the form of the matrix P^{*} :

$$
P^{*}=\binom{D^{-1} P_{1}^{\mathrm{T}}}{P_{0}^{\mathrm{T}}}
$$

The matrix Q_{*} is made available through the workspace of G02DAF.
In addition to parameter estimates, the new residuals are computed and the variance-covariance matrix of the parameter estimates are found by scaling the variance-covariance matrix for the original regression.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3) 2-25

Searle S R (1971) Linear Models Wiley

5 Parameters

1: WEIGHT - CHARACTER(1)
Input
On entry: indicates if weights are to be used.
WEIGHT = 'U'
Least squares estimation is used.
WEIGHT $=$ ' W '
Weighted least squares is used and weights must be supplied in array WT.
Constraint: WEIGHT $=$ ' U ' or ' W '.

2: N - INTEGER
Input
On entry: n, the number of observations.
Constraint: $\mathrm{N} \geq$ IP.
3: $\quad \mathrm{WT}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array WT must be at least N if $\mathrm{WEIGHT}=$ ' W ', and at least 1 otherwise.

On entry: if WEIGHT $=$ ' $\mathrm{W}^{\prime}>$, WT must contain the weights to be used in the weighted regression.

If $\mathrm{WT}(i)=0.0$, the i th observation is not included in the model, in which case the effective number of observations is the number of observations with nonzero weights.
If WEIGHT $=$ ' U ', WT is not referenced and the effective number of observations is n.
Constraint: if WEIGHT $=$ ' W ', $\mathrm{WT}(i) \geq 0.0$, for $i=1,2, \ldots, n$.
4: \quad RSS - REAL (KIND=nag_wp)
Input/Output
On entry: the residual sum of squares for the original dependent variable.
On exit: the residual sum of squares for the new dependent variable.
Constraint: RSS >0.0.
5: IP - INTEGER
Input
On entry: p, the number of independent variables (including the mean if fitted).
Constraint: $1 \leq \mathrm{IP} \leq \mathrm{N}$.
6: IRANK - INTEGER
Input
On entry: the rank of the independent variables, as given by G02DAF.
Constraint: IRANK >0, and if SVD $=$. FALSE., then IRANK $=I P$, else $\operatorname{IRANK} \leq \operatorname{IP}$.
7: $\quad \operatorname{COV}(\mathrm{IP} \times(\mathrm{IP}+1) / 2)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input/Output
On entry: the covariance matrix of the parameter estimates as given by G02DAF.

On exit: the upper triangular part of the variance-covariance matrix of the IP parameter estimates given in B . They are stored packed by column, i.e., the covariance between the parameter estimate given in $\mathrm{B}(i)$ and the parameter estimate given in $\mathrm{B}(j), j \geq i$, is stored in $\operatorname{COV}((j \times(j-1) / 2+i))$.

8: $\quad \mathrm{Q}(\mathrm{LDQ}, \mathrm{IP}+1)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input/Output
On entry: the results of the $Q R$ decomposition as returned by G02DAF.
On exit: the first column of Q contains the new values of c, the remainder of Q will be unchanged.
9: LDQ - INTEGER
Input
On entry: the first dimension of the array Q as declared in the (sub)program from which G02DGF is called.

Constraint: $\mathrm{LDQ} \geq \mathrm{N}$.

10: SVD - LOGICAL
Input
On entry: indicates if a singular value decomposition was used by G02DAF.
SVD $=$. TRUE .
A singular value decomposition was used by G02DAF.
$\mathrm{SVD}=. \mathrm{FALSE}$.
A singular value decomposition was not used by G02DAF.
11: $\mathrm{P}(*)-$ REAL (KIND=$=$ nag_wp) array
Input
Note: the dimension of the array P must be at least IP if SVD $=$.FALSE., and at least $\mathrm{IP} \times \mathrm{IP}+2 \times \mathrm{IP}$ otherwise.

On entry: details of the $Q R$ decomposition and SVD, if used, as returned in array P by G02DAF.
If SVD $=$. FALSE., only the first IP elements of P are used; these contain the zeta values for the $Q R$ decomposition (see F08AEF (DGEQRF) for details).

If $\mathrm{SVD}=$. TRUE., the first IP elements of P contain the zeta values for the $Q R$ decomposition (see F08AEF (DGEQRF) for details) and the next IP \times IP + IP elements of P contain details of the singular value decomposition.

12: $\quad \mathrm{Y}(\mathrm{N})-\mathrm{REAL}(\mathrm{KIND}=$ nag wp$)$ array
Input
On entry: the new dependent variable, $y_{\text {new }}$.
13: $\quad \mathrm{B}(\mathrm{IP})$ - REAL (KIND=nag_wp) array
Output
On exit: the least squares estimates of the parameters of the regression model, $\hat{\beta}$.

14: $\quad \mathrm{SE}(\mathrm{IP})$ - REAL (KIND=nag_wp) array
Output
On exit: the standard error of the estimates of the parameters.
15: $\quad \operatorname{RES}(\mathrm{N})-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: the residuals for the new regression model.
16: $\quad \mathrm{WK}(5 \times(\mathrm{IP}-1)+\mathrm{IP} \times \mathrm{IP})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: if SVD = .TRUE., WK must be unaltered from the previous call to G02DAF or G02DGF.

If $\mathrm{SVD}=$. FALSE., WK is used as workspace.

17: IFAIL - INTEGER
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, IP <1,
or $\quad \mathrm{N}<\mathrm{IP}$,
or \quad IRANK ≤ 0,
or \quad SVD $=$. FALSE. and IRANK $\neq \mathrm{IP}$,
or \quad SVD $=$. TRUE. and IRANK $>$ IP,
or $\quad \mathrm{LDQ}<\mathrm{N}$,
or \quad RSS ≤ 0.0,
or \quad WEIGHT \neq ' U ' or ' W '.
IFAIL $=2$
On entry, WEIGHT $=$ ' W ' and a value of $\mathrm{WT}<0.0$.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The same accuracy as G02DAF is obtained.

8 Parallelism and Performance

G02DGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

G02DGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The values of the leverages, h_{i}, are unaltered by a change in the dependent variable so a call to G02FAF can be made using the value of H from G02DAF.

10 Example

A dataset consisting of 12 observations with four independent variables and two dependent variables are read in. A model with all four independent variables is fitted to the first dependent variable by G02DAF and the results printed. The model is then fitted to the second dependent variable by G02DGF and those results printed.

10.1 Program Text

Program g02dgfe

```
    GO2DGF Example Program Text
```

 Mark 25 Release. NAG Copyright 2014.
 .. Use Statements ..
 Use nag_library, Only: g02daf, g02dgf, nag_wp
 .. Implicit None Statement ..
 Implicit None
 .. Parameters ..
 Integer, Parameter : \(:\) nin \(=5\), nout \(=6\)
 .. Local Scalars ..
Real (Kind=nag_wp) :: rss, tol
Integer :: i, idf, ifail, ip, irank, ldq, ldx, \&
lwk, lwt, m, n
Logical
Character (1) :: mean, weight
! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: b(:), cov(:), h(:), oy(:), p(:), \&
$\mathrm{q}(:,:), \mathrm{res}(:), \mathrm{se}(:), \mathrm{wk}(:), \mathrm{wt}(:), \mathrm{\&}$
$\mathrm{x}(:,:), \mathrm{y}(:)$
Integer, Allocatable :: isx(:)
! .. Intrinsic Procedures ..
Intrinsic :: count
! .. Executable Statements ..
Write (nout,*) 'GO2DGF Example Program Results'
Write (nout,*)
Skip heading in data file
Read (nin,*)
Read (nin,*) n, m, weight, mean
If (weight=='W' .Or. weight=='w') Then
lwt $=n$
Else
lwt $=0$
End If
$1 d x=n$
Allocate (x(ldx,m),isx(m),oy(n),y(n),wt(lwt))
! Read in data
If (lwt>0) Then
Read (nin,*)(x(i,1:m),oy(i),wt(i),i=1,n)

```
    Else
    Read (nin,*)(x(i,1:m),oy(i),i=1,n)
    End If
! Read in variable inclusion flags
    Read (nin,*) isx(1:m)
    Calculate IP
    ip = count(isx(1:m)>0)
    If (mean=='M' .Or. mean=='m') Then
        ip = ip + 1
    End If
    lwk = 5*(ip-1) + ip*ip
    ldq = n
    Allocate (b(ip),se(ip),cov(ip*(ip+1)/2),res(n),h(n),q(ldq,ip+1),p(2*ip+ &
        ip*ip),wk(lwk))
! Use suggested value for tolerance
    tol = 0.000001E0_nag_wp
! Fit general linear regression model to first dependent variable
    ifail = 0
    Call gO2daf(mean,weight,n,x,ldx,m,isx,ip,oy,wt,rss,idf,b,se,cov,res,h,q, &
    ldq,svd,irank,p,tol,wk,ifail)
! Display results for model fit to original dependent variable
    Write (nout,*) 'Results for original y-variable using GO2DAF'
    Write (nout,*)
    If (svd) Then
        Write (nout,*) 'Model not of full rank'
        Write (nout,*)
    End If
    Write (nout,99999) 'Residual sum of squares = ', rss
    Write (nout,99998) 'Degrees of freedom = ', idf
    Write (nout,*)
    Write (nout,*) 'Variable Parameter estimate Standard error'
    Write (nout,*)
    Write (nout,99997)(i,b(i),se(i),i=1,ip)
    Write (nout,*)
    Read in the new dependent variable
    Read (nin,*) y(1:n)
    Fit same model to different dependent variable
    ifail = 0
    Call gO2dgf(weight,n,wt,rss,ip,irank,cov,q,ldq,svd,p,y,b,se,res,wk, &
        ifail)
! Display results for model fit to new dependent variable
    Write (nout,*) 'Results for second y-variable using GO2DGF'
    Write (nout,*)
    Write (nout,99999) 'Residual sum of squares = ', rss
    Write (nout,99998) 'Degrees of freedom = ', idf
    Write (nout,*)
    Write (nout,*) 'Variable Parameter estimate ', 'Standard error'
    Write (nout,*)
    Write (nout,99997)(i,b(i),se(i),i=1,ip)
99999 Format (1X,A,E12.4)
99998 Format (1X,A,I4)
99997 Format (1X,I6,2E20.4)
    End Program g02dgfe
```


10.2 Program Data

```
GO2DGF Example Program Data
    12 4 'U' 'M' :: N, M, MEAN, WEIGHT
1.0 0.0 0.0 0.0 33.63
0.0 0.0 0.0 1.0 39.62
0.0 1.0 0.0 0.0 38.18
0.0 0.0 1.0 0.0 41.46
0.0 0.0 0.0 1.0 38.02
0.0 1.0 0.0 0.0 35.83
0.0 0.0 0.0 1.0 35.99
1.0 0.0 0.0 0.0 36.58
0.0 0.0 1.0 0.0 42.92
1.0 0.0 0.0 0.0 37.80
0.0 0.0 1.0 0.0 40.43
0.0 1.0 0.0 0.0 37.89 :: End of X, OY (original dependent variable)
    1 1 1 1 :: ISX
63.0 69.0 68.0 71.0 68.0 65.0
65.0 66.0 72.0 67.0 70.0 67.0 :: Y (new dependent variable)
```


10.3 Program Results

