NAG Library Routine Document
 G03CAF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G03CAF computes the maximum likelihood estimates of the parameters of a factor analysis model. Either the data matrix or a correlation/covariance matrix may be input. Factor loadings, communalities and residual correlations are returned.

2 Specification

```
SUBROUTINE GO3CAF (MATRIX, WEIGHT, N, M, X, LDX, NVAR, ISX, NFAC, WT, E, &
    STAT, COM, PSI, RES, FL, LDFL, IOP, IWK, WK, LWK, &
    IFAIL)
INTEGER N, M, LDX, NVAR, ISX(M), NFAC, LDFL, IOP(5), &
    IWK(4*NVAR+2), LWK, IFAIL
REAL (KIND=nag_wp) X(LDX,M), WT(*), E(NVAR), STAT(4), COM(NVAR), &
    PSI(NVAR), RES(NVAR* (NVAR-1)/2), FL(LDFL,NFAC), &
    WK(LWK)
CHARACTER(1) MATRIX, WEIGHT
```


3 Description

Let p variables, $x_{1}, x_{2}, \ldots, x_{p}$, with variance-covariance matrix Σ be observed. The aim of factor analysis is to account for the covariances in these p variables in terms of a smaller number, k, of hypothetical variables, or factors, $f_{1}, f_{2}, \ldots, f_{k}$. These are assumed to be independent and to have unit variance. The relationship between the observed variables and the factors is given by the model:

$$
x_{i}=\sum_{j=1}^{k} \lambda_{i j} f_{j}+e_{i}, \quad i=1,2, \ldots, p
$$

where $\lambda_{i j}$, for $i=1,2, \ldots, p$ and $j=1,2, \ldots, k$, are the factor loadings and e_{i}, for $i=1,2, \ldots, p$, are independent random variables with variances ψ_{i}, for $i=1,2, \ldots, p$. The ψ_{i} represent the unique component of the variation of each observed variable. The proportion of variation for each variable accounted for by the factors is known as the communality. For this routine it is assumed that both the k factors and the e_{i} 's follow independent Normal distributions.
The model for the variance-covariance matrix, Σ, can be written as:

$$
\begin{equation*}
\Sigma=\Lambda \Lambda^{\mathrm{T}}+\Psi \tag{1}
\end{equation*}
$$

where Λ is the matrix of the factor loadings, $\lambda_{i j}$, and Ψ is a diagonal matrix of unique variances, ψ_{i}, for $i=1,2, \ldots, p$.
The estimation of the parameters of the model, Λ and Ψ, by maximum likelihood is described by Lawley and Maxwell (1971). The log-likelihood is:

$$
-\frac{1}{2}(n-1) \log (|\Sigma|)-\frac{1}{2}(n-1) \operatorname{trace}\left(S, \Sigma^{-1}\right)+\text { constant }
$$

where n is the number of observations, S is the sample variance-covariance matrix or, if weights are used, S is the weighted sample variance-covariance matrix and n is the effective number of observations, that is, the sum of the weights. The constant is independent of the parameters of the model. A two stage maximization is employed. It makes use of the function $F(\Psi)$, which is, up to a constant, $-2 /(n-1)$ times the log-likelihood maximized over Λ. This is then minimized with respect to Ψ to give the estimates, $\hat{\Psi}$, of Ψ. The function $F(\Psi)$ can be written as:

$$
F(\Psi)=\sum_{j=k+1}^{p}\left(\theta_{j}-\log \theta_{j}\right)-(p-k)
$$

where values θ_{j}, for $j=1,2, \ldots, p$ are the eigenvalues of the matrix:

$$
S^{*}=\Psi^{-1 / 2} S \Psi^{-1 / 2}
$$

The estimates $\hat{\Lambda}$, of Λ, are then given by scaling the eigenvectors of S^{*}, which are denoted by V :

$$
\hat{\Lambda}=\Psi^{1 / 2} V(\Theta-I)^{1 / 2}
$$

where Θ is the diagonal matrix with elements θ_{i}, and I is the identity matrix.
The minimization of $F(\Psi)$ is performed using E04LBF which uses a modified Newton algorithm. The computation of the Hessian matrix is described by Clark (1970). However, instead of using the eigenvalue decomposition of the matrix S^{*} as described above, the singular value decomposition of the matrix $R \Psi^{-1 / 2}$ is used, where R is obtained either from the $Q R$ decomposition of the (scaled) mean centred data matrix or from the Cholesky decomposition of the correlation/covariance matrix. The routine E04LBF ensures that the values of ψ_{i} are greater than a given small positive quantity, δ, so that the communality is always less than one. This avoids the so called Heywood cases.

In addition to the values of Λ, Ψ and the communalities, G03CAF returns the residual correlations, i.e., the off-diagonal elements of $C-\left(\Lambda \Lambda^{\mathrm{T}}+\Psi\right)$ where C is the sample correlation matrix. G03CAF also returns the test statistic:

$$
\chi^{2}=[n-1-(2 p+5) / 6-2 k / 3] F(\hat{\Psi})
$$

which can be used to test the goodness-of-fit of the model (1), see Lawley and Maxwell (1971) and Morrison (1967).

4 References

Clark M R B (1970) A rapidly convergent method for maximum likelihood factor analysis British J. Math. Statist. Psych.
Hammarling S (1985) The singular value decomposition in multivariate statistics SIGNUM Newsl. 20(3) 2-25

Lawley D N and Maxwell A E (1971) Factor Analysis as a Statistical Method (2nd Edition) Butterworths Morrison D F (1967) Multivariate Statistical Methods McGraw-Hill

5 Parameters

1: MATRIX - CHARACTER(1)

Input
On entry: selects the type of matrix on which factor analysis is to be performed.
MATRIX = 'D'
The data matrix will be input in X and factor analysis will be computed for the correlation matrix.

MATRIX = 'S'

The data matrix will be input in X and factor analysis will be computed for the covariance matrix, i.e., the results are scaled as described in Section 9.
MATRIX = 'C'
The correlation/variance-covariance matrix will be input in X and factor analysis computed for this matrix.

See Section 9.
Constraint: MATRIX = 'D', 'S' or 'C'.

2: WEIGHT - CHARACTER(1)
Input
On entry: if MATRIX $=$ ' D ' or 'S', WEIGHT indicates if weights are to be used.
WEIGHT = 'U'
No weights are used.
WEIGHT $=$ ' W '
Weights are used and must be supplied in WT.
Note: if MATRIX $=$ ' C^{\prime}, WEIGHT is not referenced.
Constraint: if MATRIX = 'D' or 'S', WEIGHT = 'U' or 'W'.
3: $\quad \mathrm{N}$ - INTEGER
Input
On entry: if MATRIX = 'D' or 'S' the number of observations in the data array X .
If MATRIX $=$ ' C ' the (effective) number of observations used in computing the (possibly weighted) correlation/variance-covariance matrix input in X.

Constraint: N > NVAR.
4: M - INTEGER
Input
On entry: the number of variables in the data/correlation/variance-covariance matrix.
Constraint: $\mathrm{M} \geq$ NVAR.
5: $\quad \mathrm{X}(\mathrm{LDX}, \mathrm{M})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: the input matrix.
If MATRIX = 'D' or ' S ', X must contain the data matrix, i.e., $\mathrm{X}(i, j)$ must contain the i th observation for the j th variable, for $i=1,2, \ldots, n$ and $j=1,2, \ldots, \mathrm{M}$.
If MATRIX $=$ ' C^{\prime}, X must contain the correlation or variance-covariance matrix. Only the upper triangular part is required.

6: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G03CAF is called.

Constraints:
if MATRIX $=$ 'D' or 'S', LDX $\geq \mathrm{N}$;
if MATRIX $=$ ' C ', LDX $\geq \mathrm{M}$.
7: NVAR - INTEGER Input
On entry: p, the number of variables in the factor analysis.
Constraint: NVAR ≥ 2.

8: $\quad \operatorname{ISX}(\mathrm{M})$ - INTEGER array
Input
On entry: $\operatorname{ISX}(j)$ indicates whether or not the j th variable is included in the factor analysis. If $\operatorname{ISX}(j) \geq 1$, the variable represented by the j th column of X is included in the analysis; otherwise it is excluded, for $j=1,2, \ldots, \mathrm{M}$.

Constraint: $\operatorname{ISX}(j)>0$ for NVAR values of j.
9: NFAC - INTEGER
Input
On entry: k, the number of factors.
Constraint: $1 \leq$ NFAC \leq NVAR.

10: $\mathrm{WT}(*)$ - REAL (KIND=nag_wp) array
Input
Note: the dimension of the array WT must be at least N if $\mathrm{WEIGHT}=$ ' W ' and MATRIX $=$ ' D ' or ' S ', and at least 1 otherwise.
On entry: if WEIGHT = 'W' and MATRIX = 'D' or 'S', WT must contain the weights to be used in the factor analysis. The effective number of observations in the analysis will then be the sum of weights. If $\mathrm{WT}(i)=0.0$, the i th observation is not included in the analysis.

If WEIGHT $=$ ' U ' or MATRIX $=$ ' C ', WT is not referenced and the effective number of observations is n.

Constraint: if WEIGHT $=$ ' W^{\prime}, the sum of weights $>$ NVAR, WT $(i) \geq 0.0$, for $i=1,2, \ldots, n$.
11: $\mathrm{E}(\mathrm{NVAR})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Output
On exit: the eigenvalues θ_{i}, for $i=1,2, \ldots, p$.

12: STAT(4) - REAL (KIND=nag_wp) array
Output
On exit: the test statistics.
STAT(1)
Contains the value $F(\hat{\Psi})$.
STAT(2)
Contains the test statistic, χ^{2}.
STAT(3) Contains the degrees of freedom associated with the test statistic.
STAT(4)
Contains the significance level.
13: $\quad \operatorname{COM}($ NVAR $) ~-~ R E A L ~\left(K I N D=n a g _w p\right) ~ a r r a y ~$
Output
On exit: the communalities.

14: $\quad \operatorname{PSI}(N V A R) ~-~ R E A L ~\left(K I N D=n a g _w p\right) ~ a r r a y ~$
Output
On exit: the estimates of ψ_{i}, for $i=1,2, \ldots, p$.
$\operatorname{RES}($ NVAR $\times($ NVAR -1$) / 2)-$ REAL $\left(K I N D=n a g _w p\right)$ array
Output
On exit: the residual correlations. The residual correlation for the i th and j th variables is stored in $\operatorname{RES}((j-1)(j-2) / 2+i), i<j$.

16: $\operatorname{FL}($ LDFL, NFAC $)-\operatorname{REAL}\left(K I N D=n a g _w p\right)$ array
Output
On exit: the factor loadings. $\operatorname{FL}(i, j)$ contains $\lambda_{i j}$, for $i=1,2, \ldots, p$ and $j=1,2, \ldots, k$.
17: LDFL - INTEGER
Input
On entry: the first dimension of the array FL as declared in the (sub)program from which G03CAF is called.

Constraint: LDFL \geq NVAR.

18: IOP(5) - INTEGER array
Input
On entry: options for the optimization. There are four options to be set:
iprint controls iteration monitoring;
if iprint ≤ 0, then there is no printing of information else if iprint >0, then information is printed at every iprint iterations. The information printed consists of the value of $F(\Psi)$ at that iteration, the number of evaluations of $F(\Psi)$, the current estimates of the communalities and an indication of whether or not they are at the boundary.
maxfun the maximum number of function evaluations.
acc the required accuracy for the estimates of ψ_{i}.
eps a lower bound for the values of ψ, see Section 3 .
Let $\epsilon=$ machine precision then if $\operatorname{IOP}(1)=0$, then the following default values are used:

$$
\begin{aligned}
& \text { iprint }=-1 \\
& \text { maxfun }=100 p \\
& \text { acc }=10 \sqrt{\epsilon} \\
& \text { eps }=\epsilon
\end{aligned}
$$

If $\operatorname{IOP}(1) \neq 0$, then

$$
\text { iprint }=\mathrm{IOP}(2)
$$

maxfun $=\operatorname{IOP}(3)$
$a c c=10^{-l}$ where $l=\operatorname{IOP}(4)$
eps $=10^{-l}$ where $l=\operatorname{IOP}(5)$
Constraint: if $\operatorname{IOP}(1) \neq 0, \operatorname{IOP}(i)$ must be such that maxfun $\geq 1, \epsilon \leq a c c<1$ and $\epsilon \leq e p s<1$, for $i=3,4,5$.
$\begin{array}{lc}\text { IWK }(4 \times \text { NVAR }+2)-\text { INTEGER array } & \text { Workspace } \\ \text { WK(LWK) }- \text { REAL (KIND=}=\text { nag_wp }) \text { array } & \text { Workspace } \\ \text { LWK }- \text { INTEGER } & \text { Input }\end{array}$
On entry: the dimension of the array WK as declared in the (sub)program from which G03CAF is called. The length of the workspace.

Constraints:

$$
\begin{aligned}
& \text { if MATRIX }=\text { 'D' or 'S', LWK } \geq \max ((5 \times \operatorname{NVAR} \times \text { NVAR }+33 \times \text { NVAR }-4) / 2, \\
& \mathrm{N} \times \mathrm{NVAR}+7 \times \mathrm{NVAR}+\mathrm{NVAR} \times(\mathrm{NVAR}-1) / 2) ; \\
& \text { if MATRIX }=\text { 'C' }, \mathrm{LWK} \geq(5 \times \mathrm{NVAR} \times \mathrm{NVAR}+33 \times \operatorname{NVAR~}-4) / 2
\end{aligned}
$$

IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, because for this routine the values of the output parameters may be useful even if IFAIL $\neq 0$ on exit, the recommended value is -1 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Note: G03CAF may return useful information for one or more of the following detected errors or warnings.
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, LDFL $<$ NVAR,
or \quad NVAR <2,
or $\quad \mathrm{N} \leq \mathrm{NVAR}$,
or \quad NFAC <1,
or \quad NVAR $<$ NFAC,
or $\quad \mathrm{M}<\mathrm{NVAR}$,
or \quad MATRIX $=$ 'D' or 'S' and LDX $<\mathrm{N}$,
or \quad MATRIX $={ }^{\prime} \mathrm{C}^{\prime}$ and $\mathrm{LDX}<\mathrm{M}$,
or MATRIX \neq 'D', 'S' or 'C',
or \quad MATRIX $=$ 'D' or 'S' and WEIGHT \neq 'U' or ' W ',
or $\quad \operatorname{IOP}(1) \neq 0$ and $\operatorname{IOP}(3)$ is such that maxfun <1,
or $\quad \operatorname{IOP}(1) \neq 0$ and $\operatorname{IOP}(4)$ is such that $a c c \geq 1.0$,
or $\quad \operatorname{IOP}(1) \neq 0$ and $\operatorname{IOP}(4)$ is such that acc $<$ machine precision,
or $\quad \operatorname{IOP}(1) \neq 0$ and $\operatorname{IOP}(5)$ is such that $e p s \geq 1.0$,
or $\quad \operatorname{IOP}(1) \neq 0$ and $\operatorname{IOP}(5)$ is such that eps $<$ machine precision,
or \quad MATRIX $=' C^{\prime}$ and LWK $<(5 \times$ NVAR \times NVAR $+33 \times$ NVAR -4$) / 2$,
or \quad MATRIX $=$ 'D' or 'S' and
LWK $<\max ((5 \times$ NVAR \times NVAR $+33 \times$ NVAR -4$) / 2, \mathrm{~N} \times \mathrm{NVAR}+7 \times$ NVAR + NVAR $\times($ NVAR -1$) / 2)$.

IFAIL $=2$
On entry, WEIGHT $=$ ' W ' and a value of $\mathrm{WT}<0.0$.
IFAIL $=3$
On entry, there are not exactly NVAR elements of ISX >0, or the effective number of observations \leq NVAR.

IFAIL $=4$
On entry, MATRIX = 'D' or 'S' and the data matrix is not of full column rank, or MATRIX $={ }^{\prime} \mathrm{C}^{\prime}$ and the input correlation/variance-covariance matrix is not positive definite.

This exit may also be caused by two of the eigenvalues of S^{*} being equal; this is rare (see Lawley and Maxwell (1971)), and may be due to the data/correlation matrix being almost singular.

IFAIL $=5$
A singular value decomposition has failed to converge. This is a very unlikely error exit.
IFAIL $=6$
The estimation procedure has failed to converge in the given number of iterations. Change IOP to either increase number of iterations maxfun or increase the value of acc.

IFAIL $=7$
The convergence is not certain but a lower point could not be found. See E04LBF for further details. In this case all results are computed.

IFAIL $=-99$

An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy achieved is discussed in E04LBF with the value of the parameter XTOL given by acc as described in parameter IOP.

8 Parallelism and Performance

G03CAF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

G03CAF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

The factor loadings may be orthogonally rotated by using G03BAF and factor score coefficients can be computed using G03CCF. The maximum likelihood estimators are invariant to a change in scale. This means that the results obtained will be the same (up to a scaling factor) if either the correlation matrix or the variance-covariance matrix is used. As the correlation matrix ensures that all values of ψ_{i} are between 0 and 1 it will lead to a more efficient optimization. In the situation when the data matrix is input the results are always computed for the correlation matrix and then scaled if the results for the covariance matrix are required. When you input the covariance/correlation matrix the input matrix itself is used and you are advised to input the correlation matrix rather than the covariance matrix.

10 Example

This example is taken from Lawley and Maxwell (1971). The correlation matrix for nine variables is input and the parameters of a factor analysis model with three factors are estimated and printed.

10.1 Program Text

```
Program gO3cafe
    GO3CAF Example Program Text
    Mark 25 Release. NAG Copyright 2014.
    .. Use Statements ..
    Use nag_library, Only: g03caf, nag_wp
    .. Implicit None Statement ..
```

```
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
    .. Local Scalars ..
    Integer :: i, ifail, l, ldfl, ldx, liwk, lres, &
    Character (1)
    lwk, lwt, m, n, nfac, nvar
    :: matrix, weight
    Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: com(:), e(:), fl(:,:), psi(:),
    res(:), wk(:), wt(:), x(:,:)
    Real (Kind=nag_wp) :: stat(4)
    Integer :: iop(5)
    Integer, Allocatable :: isx(:), iwk(:)
    .. Intrinsic Procedures ..
    Intrinsic :: max
    .. Executable Statements ..
    Write (nout,*) 'G03CAF Example Program Results'
    Write (nout,*)
    Skip headings in data file
    Read (nin,*)
    Read in the problem size
    Read (nin,*) matrix, weight, n, m, nvar, nfac
    lwk = (5*nvar*nvar+33*nvar-4)/2
    If (matrix=='C' .Or. matrix=='c') Then
        lwt = 0
        ldx = m
    Else
    If (weight=='W' .Or. weight=='w') Then
        lwt = n
    Else
        lwt = 0
    End If
    ldx = n
    lwk = max(lwk,n*nvar+7*nvar+nvar*(nvar-1)/2)
End If
ldfl = nvar
lres = nvar*(nvar-1)/2
liwk = 4*nvar + 2
Allocate (x(ldx,m),isx(m),wt(lwt),e(nvar),com(nvar),psi(nvar),res(lres), &
    fl(ldfl,nfac),iwk(liwk),wk(lwk))
! Read in the data
    If (lwt>0) Then
    Read (nin,*)(x(i,1:m),wt(i),i=1,ldx)
    Else
        Read (nin,*)(x(i,1:m),i=1,ldx)
    End If
! Read in variable inclusion flags
    Read (nin,*) isx(1:m)
    Read in options
    Read (nin,*) iop(1:5)
! Fit factor analysis model
    ifail = -1
    Call g03caf(matrix,weight,n,m,x,ldx,nvar,isx,nfac,wt,e,stat,com,psi,res, &
    fl,ldfl,iop,iwk,wk,lwk,ifail)
If (ifail/=0) Then
    If (ifail<=4) Then
        Go To 100
    End If
End If
! Display results
    Write (nout,*) ' Eigenvalues'
Write (nout,*)
Write (nout,99998) e(1:nvar)
```

```
Write (nout,*)
Write (nout,99997) ' Test Statistic = ', stat(2)
Write (nout,99997) ' df = ', stat(3)
Write (nout,99997) ' Significance level = ', stat(4)
Write (nout,*)
Write (nout,*) ' Residuals'
Write (nout,*)
l = 1
Do i = 1, nvar - 1
    Write (nout,99999) res(1:(1+i-1))
    l = l + i
End Do
Write (nout,*)
Write (nout,*) ' Loadings, Communalities and PSI'
Write (nout,*)
Do i = 1, nvar
    Write (nout,99999) fl(i,1:nfac), com(i), psi(i)
End Do
1 0 0 ~ C o n t i n u e
99999 Format (2X,9F8.3)
99998 Format (2X,6E12.4)
99997 Format (A,F6.3)
End Program g03cafe
```


10.2 Program Data

```
GO3CAF Example Program Data
'C' 'U' 211 9 9 3
    1.000 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639
    0.523 1.000 0.479 0.506 0.418 0.462 0.547 0.283 0.645
    0.395 0.479 1.000 0.355 0.270 0.254 0.452 0.219 0.504
    0.471 0.506 0.355 1.000 0.691 0.791 0.443 0.285 0.505
    0.346 0.418 0.270 0.691 1.000 0.679 0.383 0.149 0.409
    0.426 0.462 0.254 0.791 0.679 1.000 0.372 0.314 0.472
    0.576 0.547 0.452 0.443 0.383 0.372 1.000 0.385 0.680
    0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.000 0.470
    0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1.000
    1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 -1 500 2 5
```


10.3 Program Results

GO3CAF Example Program Results
Eigenvalues

$0.1597 \mathrm{E}+02$	$0.4358 \mathrm{E}+01$	$0.1847 \mathrm{E}+01$	$0.1156 \mathrm{E}+01$	$0.1119 \mathrm{E}+01$	$0.1027 \mathrm{E}+01$
$0.9257 \mathrm{E}+00$	$0.8951 \mathrm{E}+00$	$0.8771 \mathrm{E}+00$			

 Test Statistic \(=7.149\)
 df \(=12.000\)
 Significance level = 0.848

Residuals

$$
\begin{array}{rrrrrrrr}
0.000 & & & & & & & \\
-0.013 & 0.022 & & & & & & \\
0.011 & -0.005 & 0.023 & & & & \\
-0.010 & -0.019 & -0.016 & 0.003 & & & \\
-0.005 & 0.011 & -0.012 & -0.001 & -0.001 & & & \\
0.015 & -0.022 & -0.011 & 0.002 & 0.029 & -0.012 & & \\
-0.001 & -0.011 & 0.013 & 0.005 & -0.006 & -0.001 & 0.003 & \\
-0.006 & 0.010 & -0.005 & -0.011 & 0.002 & 0.007 & 0.003 & -0.001
\end{array}
$$

Loadings, Communalities and PSI

0.664	-0.321	0.074	0.550	0.450
0.689	-0.247	-0.193	0.573	0.427

0.493	-0.302	-0.222	0.383	0.617
0.837	0.292	-0.035	0.788	0.212
0.705	0.315	-0.153	0.619	0.381
0.819	0.377	0.105	0.823	0.177
0.661	-0.396	-0.078	0.600	0.400
0.458	-0.296	0.491	0.538	0.462
0.766	-0.427	-0.012	0.769	0.231

