NAG Library Routine Document
 G05PJF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

G05PJF generates a realization of a multivariate time series from a vector autoregressive moving average (VARMA) model. The realization may be continued or a new realization generated at subsequent calls to G05PJF.

2 Specification

```
SUBROUTINE GO5PJF (MODE, N, K, XMEAN, IP, PHI, IQ, THETA, VAR, LDVAR, R, &
    LR, STATE, X, LDX, IFAIL)
INTEGER MODE, N, K, IP, IQ, LDVAR, LR, STATE (*), LDX, IFAIL
REAL (KIND=nag_wp) XMEAN(K), PHI (K*K*IP), THETA(K*K*IQ), VAR(LDVAR,K),
    R(LR), X(LDX,N)
```


3 Description

Let the vector $X_{t}=\left(x_{1 t}, x_{2 t}, \ldots, x_{k t}\right)^{\mathrm{T}}$, denote a k-dimensional time series which is assumed to follow a vector autoregressive moving average (VARMA) model of the form:

$$
\begin{gather*}
X_{t}-\mu=\phi_{1}\left(X_{t-1}-\mu\right)+\phi_{2}\left(X_{t-2}-\mu\right)+\cdots+\phi_{p}\left(X_{t-p}-\mu\right)+ \tag{1}\\
\epsilon_{t}-\theta_{1} \epsilon_{t-1}-\theta_{2} \epsilon_{t-2}-\cdots-\theta_{q} \epsilon_{t-q}
\end{gather*}
$$

where $\epsilon_{t}=\left(\epsilon_{1 t}, \epsilon_{2 t}, \ldots, \epsilon_{k t}\right)^{\mathrm{T}}$, is a vector of k residual series assumed to be Normally distributed with zero mean and covariance matrix Σ. The components of ϵ_{t} are assumed to be uncorrelated at nonsimultaneous lags. The ϕ_{i} 's and θ_{j} 's are k by k matrices of parameters. $\left\{\phi_{i}\right\}$, for $i=1,2, \ldots, p$, are called the autoregressive (AR) parameter matrices, and $\left\{\theta_{j}\right\}$, for $j=1,2, \ldots, q$, the moving average (MA) parameter matrices. The parameters in the model are thus the $p k$ by $k \phi$-matrices, the $q k$ by k θ-matrices, the mean vector μ and the residual error covariance matrix Σ. Let

$$
A(\phi)=\left[\begin{array}{ccccccc}
\phi_{1} & I & 0 & . & . & . & 0 \\
\phi_{2} & 0 & I & 0 & . & . & 0 \\
. & & & . & & & \\
. & & & & . & & \\
. & & & & & . & \\
\phi_{p-1} & 0 & . & . & . & 0 & I \\
\phi_{p} & 0 & . & . & . & 0 & 0
\end{array}\right]_{p k \times p k} \quad \text { and } \quad B(\theta)=\left[\begin{array}{ccccccc}
\theta_{1} & I & 0 & . & . & . & 0 \\
\theta_{2} & 0 & I & 0 & . & . & 0 \\
. & & & . & & & \\
. & & & & . & & \\
. & & & & & . & \\
\theta_{q-1} & 0 & . & . & . & 0 & I \\
\theta_{q} & 0 & . & . & . & 0 & 0
\end{array}\right]_{q k \times q k}
$$

where I denotes the k by k identity matrix
The model (1) must be both stationary and invertible. The model is said to be stationary if the eigenvalues of $A(\phi)$ lie inside the unit circle and invertible if the eigenvalues of $B(\theta)$ lie inside the unit circle.

For $k \geq 6$ the VARMA model (1) is recast into state space form and a realization of the state vector at time zero computed. For all other cases the routine computes a realization of the pre-observed vectors $X_{0}, X_{-1}, \ldots, X_{1-p}, \epsilon_{0}, \epsilon_{-1}, \ldots, \epsilon_{1-q}$, from (1), see Shea (1988). This realization is then used to generate a sequence of successive time series observations. Note that special action is taken for pure MA models, that is for $p=0$.

At your request a new realization of the time series may be generated more efficiently using the information in a reference vector created during a previous call to G05PJF. See the description of the parameter MODE in Section 5 for details.

The routine returns a realization of $X_{1}, X_{2}, \ldots, X_{n}$. On a successful exit, the recent history is updated and saved in the array R so that G05PJF may be called again to generate a realization of X_{n+1}, X_{n+2}, \ldots, etc. See the description of the parameter MODE in Section 5 for details.
Further computational details are given in Shea (1988). Note, however, that G05PJF uses a spectral decomposition rather than a Cholesky factorization to generate the multivariate Normals. Although this method involves more multiplications than the Cholesky factorization method and is thus slightly slower it is more stable when faced with ill-conditioned covariance matrices. A method of assigning the AR and MA coefficient matrices so that the stationarity and invertibility conditions are satisfied is described in Barone (1987).
One of the initialization routines G05KFF (for a repeatable sequence if computed sequentially) or G05KGF (for a non-repeatable sequence) must be called prior to the first call to G05PJF.

4 References

Barone P (1987) A method for generating independent realisations of a multivariate normal stationary and invertible ARMA (p, q) process J. Time Ser. Anal. 8 125-130
Shea B L (1988) A note on the generation of independent realisations of a vector autoregressive moving average process J. Time Ser. Anal. 9 403-410

5 Parameters

1: MODE - INTEGER
Input
On entry: a code for selecting the operation to be performed by the routine.
MODE $=0$
Set up reference vector and compute a realization of the recent history.
MODE $=1$
Generate terms in the time series using reference vector set up in a prior call to G05PJF.
MODE $=2$
Combine the operations of $\mathrm{MODE}=0$ and 1.
$\operatorname{MODE}=3$
A new realization of the recent history is computed using information stored in the reference vector, and the following sequence of time series values are generated.
If MODE $=1$ or 3 , then you must ensure that the reference vector R and the values of K, IP, IQ, XMEAN, PHI, THETA, VAR and LDVAR have not been changed between calls to G05PJF.

Constraint: $\mathrm{MODE}=0,1,2$ or 3 .
2: $\quad \mathrm{N}$ - INTEGER
Input
On entry: n, the number of observations to be generated.
Constraint: $\mathrm{N} \geq 0$.
3: K - INTEGER
Input
On entry: k, the dimension of the multivariate time series.
Constraint: $\mathrm{K} \geq 1$.
4: $\operatorname{XMEAN}(\mathrm{K})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: μ, the vector of means of the multivariate time series.

5: IP - INTEGER
Input
On entry: p, the number of autoregressive parameter matrices.
Constraint: IP ≥ 0.
6: $\quad \operatorname{PHI}(\mathrm{K} \times \mathrm{K} \times \mathrm{IP})-$ REAL (KIND=nag_wp) array
Input
On entry: must contain the elements of the $\mathrm{IP} \times \mathrm{K} \times \mathrm{K}$ autoregressive parameter matrices of the model, $\phi_{1}, \phi_{2}, \ldots, \phi_{p}$. If PHI is considered as a three-dimensional array, dimensioned as $\operatorname{PHI}(\mathrm{K}, \mathrm{K}, \mathrm{IP})$, then the (i, j) th element of ϕ_{l} would be stored in $\operatorname{PHI}(i, j, l)$; that is, $\operatorname{PHI}((l-1) \times k \times k+(j-1) \times k+i)$ must be set equal to the (i, j) th element of ϕ_{l}, for $l=1,2, \ldots, p, i=1,2, \ldots, k$ and $j=1,2, \ldots, k$.
Constraint: the elements of PHI must satisfy the stationarity condition.
7: IQ - INTEGER
Input
On entry: q, the number of moving average parameter matrices.
Constraint: $\mathrm{IQ} \geq 0$.
8: \quad THETA $(\mathrm{K} \times \mathrm{K} \times \mathrm{IQ})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array
Input
On entry: must contain the elements of the IQ $\times \mathrm{K} \times \mathrm{K}$ moving average parameter matrices of the model, $\theta_{1}, \theta_{2}, \ldots, \theta_{q}$. If THETA is considered as a three-dimensional array, dimensioned as THETA(K,K,IQ), then the (i, j) th element of θ_{l} would be stored in THETA (i, j, l); that is, $\operatorname{THETA}((l-1) \times k \times k+(j-1) \times k+i)$ must be set equal to the (i, j) th element of θ_{l}, for $l=1,2, \ldots, q, i=1,2, \ldots, k$ and $j=1,2, \ldots, k$.

Constraint: the elements of THETA must be within the invertibility region.

9: $\quad \operatorname{VAR}(L D V A R, K)-\operatorname{REAL}\left(K I N D=n a g _w p\right)$ array
Input
On entry: $\operatorname{VAR}(i, j)$ must contain the (i, j) th element of Σ, for $i=1,2, \ldots, \mathrm{~K}$ and $j=1,2, \ldots, \mathrm{~K}$. Only the lower triangle is required.

Constraint: the elements of VAR must be such that Σ is positive semidefinite.
10: LDVAR - INTEGER
Input
On entry: the first dimension of the array VAR as declared in the (sub)program from which G05PJF is called.

Constraint: LDVAR $\geq \mathrm{K}$.
11: $\quad \mathrm{R}(\mathrm{LR})$ - REAL (KIND=nag_wp) array
Communication Array
On entry: if $\mathrm{MODE}=1$ or 3 , the array R as output from the previous call to G05PJF must be input without any change.
If MODE $=0$ or 2 , the contents of R need not be set.
On exit: information required for any subsequent calls to the routine with $\mathrm{MODE}=1$ or 3 . See Section 9.

12: LR - INTEGER
Input
On entry: the dimension of the array R as declared in the (sub)program from which G05PJF is called.

Constraints:

$$
\begin{aligned}
& \text { if } \mathrm{K} \geq 6, \mathrm{LR} \geq\left(5 r^{2}+1\right) \times \mathrm{K}^{2}+(4 r+3) \times \mathrm{K}+4 \\
& \text { if } \mathrm{K}<6, \mathrm{LR} \geq\left((\mathrm{IP}+\mathrm{IQ})^{2}+1\right) \times \mathrm{K}^{2}+ \\
& (4 \times(\mathrm{IP}+\mathrm{IQ})+3) \times \mathrm{K}+\max \left\{\mathrm{K} r(\mathrm{~K} r+2), \mathrm{K}^{2}(\mathrm{IP}+\mathrm{IQ})^{2}+l(l+3)+\mathrm{K}^{2}(\mathrm{IQ}+1)\right\}+4
\end{aligned}
$$

Where $\quad r=\max (\mathrm{IP}, \mathrm{IQ}) \quad$ a nd \quad if $\quad \mathrm{IP}=0, \quad l=\mathrm{K}(\mathrm{K}+1) / 2, \quad$ or \quad if $\quad \mathrm{IP} \geq 1$, $l=\mathrm{K}(\mathrm{K}+1) / 2+(\mathrm{IP}-1) \mathrm{K}^{2}$.
See Section 9 for some examples of the required size of the array R.
13: $\operatorname{STATE}(*)$ - INTEGER array
Communication Array
Note: the actual argument supplied must be the array STATE supplied to the initialization routines G05KFF or G05KGF.

On entry: contains information on the selected base generator and its current state.
On exit: contains updated information on the state of the generator.
14: $\mathrm{X}(\mathrm{LDX}, \mathrm{N})$ - REAL (KIND=nag_wp) array Output
On exit: $\mathrm{X}(i, t)$ will contain a realization of the i th component of X_{t}, for $i=1,2, \ldots, k$ and $t=1,2, \ldots, n$.

15: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which G05PJF is called.

Constraint: LDX $\geq \mathrm{K}$.
16: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this parameter, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{MODE}=\langle$ value \rangle.
Constraint: $\mathrm{MODE}=0,1,2$ or 3.
IFAIL $=2$
On entry, $\mathrm{N}=\langle$ value \rangle.
Constraint: $\mathrm{N} \geq 0$.
IFAIL $=3$
On entry, $\mathrm{K}=\langle$ value \rangle.
Constraint: $\mathrm{K} \geq 1$.

IFAIL $=5$
On entry, $\mathrm{IP}=\langle$ value \rangle.
Constraint: IP ≥ 0.
IFAIL $=6$
On entry, the AR parameters are outside the stationarity region.
IFAIL $=7$
On entry, $\mathrm{IQ}=\langle$ value \rangle.
Constraint: $\mathrm{IQ} \geq 0$.

IFAIL $=8$
On entry, the moving average parameter matrices are such that the model is non-invertible.
IFAIL $=9$
On entry, the covariance matrix VAR is not positive semidefinite to machine precision.
IFAIL $=10$
On entry, LDVAR $=\langle$ value \rangle and $\mathrm{K}=\langle$ value \rangle.
Constraint: LDVAR $\geq \mathrm{K}$.
IFAIL $=11$
K is not the same as when R was set up in a previous call.
Previous value of $\mathrm{K}=\langle$ value \rangle and $\mathrm{K}=\langle$ value \rangle.
IFAIL $=12$
On entry, LR is not large enough, $\mathrm{LR}=\langle$ value \rangle : minimum length required $=\langle$ value \rangle.
IFAIL $=13$
On entry, STATE vector has been corrupted or not initialized.
IFAIL $=15$
On entry, $\mathrm{LDX}=\langle$ value \rangle and $\mathrm{K}=\langle$ value \rangle.
Constraint: LDX $\geq \mathrm{K}$.
IFAIL $=20$
An excessive number of iterations were required by the NAG routine used to evaluate the eigenvalues of the matrices used to test for stationarity or invertibility.

IFAIL $=21$
The reference vector cannot be computed because the AR parameters are too close to the boundary of the stationarity region.

IFAIL $=22$
An excessive number of iterations were required by the NAG routine used to evaluate the eigenvalues of the covariance matrix.

IFAIL $=23$
An excessive number of iterations were required by the NAG routine used to evaluate the eigenvalues stored in the reference vector.

IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.8 in the Essential Introduction for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.7 in the Essential Introduction for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

The accuracy is limited by the matrix computations performed, and this is dependent on the condition of the parameter and covariance matrices.

8 Parallelism and Performance

G05PJF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

G05PJF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

Note that, in reference to IFAIL $=8$, G05PJF will permit moving average parameters on the boundary of the invertibility region.

The elements of R contain amongst other information details of the spectral decompositions which are used to generate future multivariate Normals. Note that these eigenvectors may not be unique on different machines. For example the eigenvectors corresponding to multiple eigenvalues may be permuted. Although an effort is made to ensure that the eigenvectors have the same sign on all machines, differences in the signs may theoretically still occur.

The following table gives some examples of the required size of the array R , specified by the parameter LR , for $k=1,2$ or 3 , and for various values of p and q.

Note that G13DXF may be used to check whether a VARMA model is stationary and invertible. The time taken depends on the values of p, q and especially n and k.

10 Example

This program generates two realizations, each of length 48 , from the bivariate $\operatorname{AR}(1)$ model

$$
X_{t}-\mu=\phi_{1}\left(X_{t-1}-\mu\right)+\epsilon_{t}
$$

with

$$
\begin{gathered}
\phi_{1}=\left[\begin{array}{ll}
0.80 & 0.07 \\
0.00 & 0.58
\end{array}\right], \\
\mu=\left[\begin{array}{l}
5.00 \\
9.00
\end{array}\right],
\end{gathered}
$$

and

$$
\Sigma=\left[\begin{array}{rr}
2.97 & 0 \\
0.64 & 5.38
\end{array}\right]
$$

The pseudorandom number generator is initialized by a call to G05KFF. Then, in the first call to G05PJF, MODE $=2$ in order to set up the reference vector before generating the first realization. In the subsequent call $\mathrm{MODE}=3$ and a new recent history is generated and used to generate the second realization.

10.1 Program Text

```
        Program g05pjfe
G05PJF Example Program Text
! Mark 25 Release. NAG Copyright 2014.
! .. Use Statements ..
    Use nag_library, Only: g05kff, g05pjf, nag_wp
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: lseed = 1, nin = 5, nout = 6
```

```
! .. Local Scalars ..
    Integer :: genid, i, ifail, ii, ip, iq, j, k, &
        k2, l, ldvar, ldx, lphi, lr, lstate, &
        ltheta, mode, n, nreal, rn, subid
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: phi(:), r(:), theta(:), var(:,:), &
    x(:,:), xmean(:)
    Integer :: seed(lseed)
    Integer, Allocatable :: state(:)
    .. Intrinsic Procedures ..
    Intrinsic :: max
    .. Executable Statements ..
    Write (nout,*) 'G05PJF Example Program Results'
    Write (nout,*)
    Skip heading in data file
    Read (nin,*)
Read in the base generator information and seed
    Read (nin,*) genid, subid, seed(1)
    Initial call to initialiser to get size of STATE array
    lstate = 0
    Allocate (state(lstate))
    ifail = 0
    Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
    Reallocate STATE
    Deallocate (state)
    Allocate (state(lstate))
    Initialize the generator to a repeatable sequence
    ifail = 0
    Call g05kff(genid,subid,seed,lseed,state,lstate,ifail)
    Read in the sample size and number of realizations
    Read (nin,*) n, nreal
    Read in the number of coefficients
    Read (nin,*) k, ip, iq
    k2 = k**2
    rn = max(ip,iq)
    l = k*(k+1)/2
    If (ip>0) Then
        l = l + (ip-1)*k2
    End If
    If (k>=6) Then
        lr = (5*rn**2+1)*k2 + (4*rn+3) + 4
    Else
    lr = ((ip+iq)**2+1)*k2 + (4*(ip+iq)+3)*k + max(k*rn*(k*rn+2),k2*(ip+iq &
        )**2+l*(l+3)+k2*(iq+1)) + 4
    End If
    lphi = ip*k*k
    ltheta = iq*k*k
    ldvar = k
    ldx = k
    Allocate (phi(lphi),theta(ltheta),var(ldvar,k),r(lr),x(ldx,n),xmean(k))
! Read in the AR parameters
    Do l = 1, ip
    Do i = 1, k
        ii = (l-1)*k*k + i
        Read (nin,*)(phi(ii+k*(j-1)),j=1,k)
    End Do
End Do
! Read in the MA parameters
Do l = 1, iq
    Do i = 1, k
        ii = (l-1)*k*k + i
```

```
            Read (nin,*)(theta(ii+k*(j-1)),j=1,k)
            End Do
    End Do
! Read in the means
    Read (nin,*) xmean(1:k)
    Read in the variance / covariance matrix
    Read (nin,*)(var(i,1:i),i=1,k)
    For the first realization we need to set up the reference vector
    as well as generate the series
    mode = 2
! Generate NREAL realizations
d_lp: Do rn = 1, nreal
            ifail = 0
            Call g05pjf(mode,n,k,xmean,ip,phi,iq,theta,var,ldvar,r,lr,state,x,ldx, &
            ifail)
! Display the results
            Write (nout,99999) ' Realization Number ', rn
            Do i = 1, k
            Write (nout,*)
            Write (nout,99999) ' Series number ', i
            Write (nout,*) ' -------------'
            Write (nout,*)
            Write (nout,99998) x(i,1:n)
            End Do
            Write (nout,*)
            For subsequent realizations we use previous reference vector
            mode = 3
            End Do d_lp
99999 Format (1X,A,IO)
9 9 9 9 8 ~ F o r m a t ~ ( 8 ( 2 X , F 8 . 3 ) ) ~
    End Program g05pjfe
```


10.2 Program Data

```
G05PJF Example Program Data
1 1 1762543 :: GENID,SUBID,SEED (1)
48 2 :: N,NREAL
2 1 0 :: K, IP, IQ
0.80 0.07
0.00 0.58 :: End of PHI
5.00 9.00 :: XMEAN
2.97 9.00 : XMEAN
0.64 5.38 :: End of VAR (lower triangle)
```


10.3 Program Results

8.458	9.140	10.866	10.975	9.245	5.054	5.023	12.486
10.534	10.590	11.376	8.793	14.445	13.237	11.030	8.405
7.187	8.291	5.920	9.390	10.055	6.222	7.751	10.604
12.441	10.664	10.960	8.022	10.073	12.870	12.665	14.064
11.867	12.894	10.546	12.754	8.594	9.042	12.029	12.557
9.746	5.487	5.500	8.629	9.723	8.632	6.383	12.484
Realization Number 2							
Series number 1							
5.396	4.811	2.685	5.824	2.449	3.563	5.663	6.209
3.130	4.308	4.333	4.903	1.770	1.278	1.340	-0.527
1.745	3.211	4.478	5.170	5.365	4.852	6.080	6.464
2.765	2.148	6.641	7.224	10.316	7.102	5.604	3.934
4.839	3.698	5.210	5.384	7.652	7.315	7.332	7.561
7.537	7.788	6.868	7.575	6.108	6.188	8.132	10.310
Series number 2							
11.345	10.070	13.654	12.409	11.329	13.054	12.465	9.867
10.263	13.394	10.553	10.331	7.814	8.747	10.025	11.167
10.626	9.366	9.607	9.662	10.492	10.766	11.512	10.813
10.799	8.780	9.221	14.245	11.575	10.620	8.282	5.447
9.935	9.386	11.627	10.066	11.394	7.951	7.907	12.616
15.246	9.962	13.216	11.350	11.227	6.021	6.968	12.428

