NAG Library

Advice on Replacement Calls for Withdrawn/Superseded Routines

The following list gives the names of routines that are suitable replacements for routines that have either been withdrawn or superseded since Mark 18.

The list indicates the minimum change necessary, but many of the replacement routines have additional flexibility and you may wish to take advantage of new features. It is strongly recommended that you consult the routine documents.

C05 – Roots of One or More Transcendental Equations

C05ADF

Withdrawn at Mark 25.
Replaced by C05AYF.

Old: FUNCTION F(XX)
... END FUNCTION F
... CALL C05ADF(A,B,EPS,ETA,F,X,IFAIL)

New: FUNCTION F(XX,IUSER,RUSER)
... INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
... END FUNCTION F
... INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
... CALL C05AYF(A,B,EPS,ETA,F,X,IUSER,RUSER,IFAIL)

C05AGF

Withdrawn at Mark 25.
Replaced by C05AUF.

Old: FUNCTION F(XX)
... END FUNCTION F
... CALL C05AGF(X,H,EPS,ETA,F,A,B,IFAIL)

New: FUNCTION F(XX,IUSER,RUSER)
... INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
... END FUNCTION F
... INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
... CALL C05AUF(X,H,EPS,ETA,F,A,B,IUSER,RUSER,IFAIL)
C05AJF
Withdrawn at Mark 25.
Replaced by C05AWF.
Old: FUNCTION F(XX)
... END FUNCTION F
... CALL C05AJF(X,EPS,ETA,F,NFMAX,IFAIL)
New: FUNCTION F(XX,IUSER,RUSER)
... INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
... END FUNCTION F
... INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
... CALL C05AWF(X,EPS,ETA,F,NFMAX,IUSER,RUSER,IFAIL)

C05NBF
Withdrawn at Mark 25.
Replaced by C05QBF.
Old: SUBROUTINE FCN(N,X,FVEC,IFLAG)
... END SUBROUTINE FCN
... CALL C05NBF(FCN,N,X,FVEC,XTOL,WA,LWA,IFAIL)
New: SUBROUTINE FCN(N,X,FVEC,IUSER,RUSER,IFLAG)
... INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
... END FUNCTION FCN
... INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: RUSER(1)
... CALL C05QBF(FCN,N,X,FVEC,XTOL,IUSER,RUSER,IFAIL)

C05NCF
Withdrawn at Mark 25.
Replaced by C05QCF.
Old: SUBROUTINE FCN(N,X,FVEC,IFLAG)
... END SUBROUTINE FCN
... REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
... CALL C05NCF(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,MODE,FACTOR, & NPRINT,NFEV,FJAC,LDFJAC,R,LR,QTF,W,IFAIL)
New: SUBROUTINE FCN(N,X,FVEC,IUSER,RUSER,IFLAG)
... INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
... END FUNCTION FCN
... INTEGER :: IUSER(1)
REAL (KIND=nag_wp) :: FJAC(N,N), RUSER(1)
... CALL C05QCF(FCN,N,X,FVEC,XTOL,MAXFEV,ML,MU,EPSFCN,MODE,FACTOR, & NPRINT,NFEV,FJAC,R,QT,F,IUSER,RUSER,IFAIL)
C05NDF
Withdrawn at Mark 25.
Replaced by C05QDF.

Old:
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)

CALL C05NDF(IREVCM,N,X,FVEC,XTOL,ML,MU,EPSFCN,DIAG,MODE,FACTOR, &
FJAC,LDFJAC,R,LR,QTF,W,IFAIL)

New:
REAL (KIND=nag_wp) :: FJAC(N,N), RWSAV(4*N+20)
INTEGER :: IWSAV(17)

CALL C05QDF(IREVCM,N,X,FVEC,XTOL,ML,MU,EPSFCN,MODE,DIAG,FACTOR, &
FJAC,R,QTF,IWSAV,RWSAV,IFAIL)

C05PBF/C05PBA
Withdrawn at Mark 25.
Replaced by C05RBF.

Old:
SUBROUTINE FCN_C05PBF(N,X,FVEC,FJAC,LDFJAC,IFLAG)

... END SUBROUTINE FCN_C05PBF ...

REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)

... CALL C05PBF(FCN_C05PBF,N,X,FVEC,FJAC,LDFJAC,XTOL,WA,LWA,IFAIL)

or

SUBROUTINE FCN_C05PBA(N,X,FVEC,FJAC,LDFJAC,IFLAG,IUSER,RUSER)

... END SUBROUTINE FCN_C05PBA ...

REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)

... CALL C05PBA(FCN_C05PBA,N,X,FVEC,FJAC,LDFJAC,XTOL,WA,LWA,IUSER,RUSER,IFAIL)

New:
SUBROUTINE FCN(N,X,FVEC,FJAC,IUSER,RUSER,IFLAG)

... END SUBROUTINE FCN ...

REAL (KIND=nag_wp) :: FJAC(N,N)

... CALL C05RBF(FCN,N,X,FVEC,FJAC,XTOL,IUSER,RUSER,IFAIL)
C05PCF/C05PCA

Withdrawn at Mark 25.
Replaced by C05RCF.

Old: SUBROUTINE FCN_C05PCF(N,X,FVEC,FJAC,LDFJAC,IFLAG)
...
END SUBROUTINE FCN_C05PCF
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05PCF(FCN_C05PCF,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,FACTOR, &
NPRINT,NFEV,NJEV,R,LR,QTF,W,IFAIL)
or
SUBROUTINE FCN_C05PCA(N,X,FVEC,FJAC,LDFJAC,IFLAG,IUSER,RUSER)
...
END SUBROUTINE FCN_C05PCA
...
REAL (KIND=nag_wp) :: FJAC(LDFJAC,N)
...
CALL C05PCA(FCN_C05PCA,N,X,FVEC,FJAC,LDFJAC,XTOL,MAXFEV,DIAG,MODE,FACTOR, &
NPRINT,NFEV,NJEV,R,LR,QTF,W,IUSER,RUSER,IFAIL)

New: SUBROUTINE FCN(N,X,FVEC,FJAC,IUSER,RUSER,IFLAG)
...
INTEGER, INTENT(INOUT) :: IUSER(*)
REAL (KIND=nag_wp), INTENT(INOUT) :: RUSER(*)
...
END FUNCTION FCN
...
REAL (KIND=nag_wp) :: FJAC(N,N)
...
CALL C05RCF(FCN,N,X,FVEC,FJAC,XTOL,MAXFEV,MODE,DIAG,FACTOR, &
NPRINT,NFEV,NJEV,R,QTF,IUSER,RUSER,IFAIL)

C05PDF/C05PDA

Withdrawn at Mark 25.
Replaced by C05RDF.

Old: REAL (KIND=nag_wp) :: FJAC(LDFJAC,N), RWSAV(10)
INTEGER :: IWSAV(15)
...
CALL C05PDF(IREVCM,N,X,FVEC,FJAC,LDFJAC,XTOL,DIAG,MODE,FACTOR, &
R,LR,QTF,W,IFAIL)
or
CALL C05PDA(IREVCM,N,X,FVEC,FJAC,LDFJAC,XTOL,DIAG,MODE,FACTOR, &
R,LR,QTF,W,LWSAV,IWSAV,RWSAV,IFAIL)

New: REAL (KIND=nag_wp) :: FJAC(N,N), RWSAV(4*N+10)
INTEGER :: IWSAV(17)
...
CALL C05RDF(IREVCM,N,X,FVEC,FJAC,XTOL,MODE,DIAG,FACTOR, &
R,QTF,IWSAV,RWSAV,IFAIL)

C05ZAF

Withdrawn at Mark 25.
Replaced by C05ZDF.

Old: CALL C05ZAF(M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,MODE,ERR)
New: IFAIL = 0
CALL C05ZDF(MODE,M,N,X,FVEC,FJAC,LDFJAC,XP,FVECP,ERR,IFAIL)

The array XP must now have dimension N regardless of the value of MODE, and likewise ERR must now have dimension M regardless. The parameter IFAIL is the standard NAG parameter for error trapping. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.
C06 – Summation of Series

C06DBF
Withdrawn at Mark 25.
Replaced by C06DCF.

Old: DO I = 1, LX
 RES(I) = C06DBF(X(I),C,N,S)
END DO

New: XMIN = -1.0D0
 XMAX = 1.0D0
 SELECT CASE (S)
 CASE (1,2,3)
 S_USE = S
 CASE DEFAULT
 S_USE = 2
 END SELECT
 IFAIL = 0
 CALL C06DCF(X,LX,XMIN,XMAX,C,N,S_USE,RES,IFAIL)

The old routine C06DBF returns a single sum at a time, whereas the new routine C06DCF returns a vector of LX values at once. The values supplied in X to C06DCF are un-normalized original variable values in the range [XMIN, XMAX]. The parameter IFAIL is the standard NAG parameter for error trapping. If you are unfamiliar with this parameter you should refer to Section 3.3 in the Essential Introduction for details.

C06EAF
Scheduled for withdrawal at Mark 26.
Replaced by C06PAF.

Old: CALL C06EAF(X,N,IFAIL)
New: CALL C06PAF('F',X,N,WORK,IFAIL)

where WORK is a real array of length 3 \times N + 100 and the dimension of the array X has been extended from the original N to N + 2. The output values X are stored in a different order with real and imaginary parts stored contiguously. The mapping of output elements is as follows:

\[X(2 \times i) \leftarrow X(i), \text{ for } i = 0, 1, \ldots, N/2 \]
\[X(2 \times i + 1) \leftarrow X(N - i), \text{ for } i = 1, 2, \ldots, (N + 1)/2. \]

C06EBF
Scheduled for withdrawal at Mark 26.
Replaced by C06PAF.

Old: CALL C06EBF(X,N,IFAIL)
New: CALL C06PAF('B',X,N,WORK,IFAIL)

where WORK is a real array of length 3 \times N + 100 and the dimension of the array X has been extended from the original N to N + 2. The input values of X are stored in a different order with real and imaginary parts stored contiguously. Also C06PAF performs the inverse transform without the need to first conjugate. If prior conjugation of original array X is assumed then the mapping of input elements is:

\[X(2 \times i) \leftarrow X(i), \text{ for } i = 0, 1, \ldots, N/2 \]
\[X(2 \times i + 1) \leftarrow X(N - i), \text{ for } i = 1, 2, \ldots, (N - 1)/2. \]

C06ECF
Scheduled for withdrawal at Mark 26.
Replaced by C06PCF.

Old: CALL C06ECF(X,Y,N,IFAIL)
New: CALL C06PCF('F',Z,N,WORK,IFAIL)
where WORK is a complex array of length $2 \times N + 15$ and Z is a complex array of length N such that $Z(i) = \text{CMPLX}(X(i), Y(i))$, for $i = 0, 1, \ldots N - 1$ on input and output.

C06EKF
Scheduled for withdrawal at Mark 26.
Replaced by C06FKF.

Old: CALL C06EKF(IJOB,X,Y,N,IFAIL)
New: CALL C06FKF(IJOB,X,Y,N,WORK,IFAIL)

where WORK is a real array of length N.

C06FRF
Scheduled for withdrawal at Mark 26.
Replaced by C06PSF.

Old: call C06FRF(m,n,x,y,init, trig, work, ifail)
New: Do j = 1, m*n
 cx(j) = cmplx(x(j), y(j), kind=nag_wp)
End Do
Call C06PSF('F',m,n,cx,cwork,ifail)
x(1:m*n) = real(cx(1:m*n))
y(1:m*n) = aimag(cx(1:m*n))

where cx and cwork are complex array of length $m \times n$ and $n \times m + 2 \times n + 15$ respectively.

C06FUF
Scheduled for withdrawal at Mark 26.
Replaced by C06PUF.

Old: Call C06FUF(m,n,x,y,init, trigm, trign, work, ifail)
New: Do j = 1, m*n
 cx(j) = cmplx(x(j), y(j), kind=nag_wp)
End Do
Call C06PUF('F',m,n,cx,cwork,ifail)
x(1:m*n) = real(cx(1:m*n))
y(1:m*n) = aimag(cx(1:m*n))

where cx and cwork are complex arrays of lengths $m \times n$ and $n \times m + 2 \times n + 2 \times m + 30$ respectively.

C06GBF
Scheduled for withdrawal at Mark 26.
There is no replacement for this routine.

C06GCF
Scheduled for withdrawal at Mark 26.
There is no replacement for this routine.

C06GQF
Scheduled for withdrawal at Mark 26.
There is no replacement for this routine.

C06GSF
Scheduled for withdrawal at Mark 26.
There is no replacement for this routine.
C06HAF
Scheduled for withdrawal at Mark 26.
Replaced by C06REF.
Old: Call C06HAF(m,n,x,init,trig,work,ifail)
New: y(1:m*(n-1)) = x(1:m*(n-1))
 Call C06RAF(m,n,y,rwork,ifail)
 x(1:m*n) = y(1:m*n)

where y and rwork are real arrays of lengths m \times (n + 2) and m \times n + 2 \times n + 2 \times m + 15 respectively.

C06HBF
Scheduled for withdrawal at Mark 26.
Replaced by C06RFF.
Old: Call c06hbf(m,n,x,init,trig,work,ifail)
New: y(1:m*(n+1)) = x(1:m*(n+1))
 Call c06rbf(m,n,y,rwork,ifail)
 x(1:m*(n+1)) = y(1:m*(n+1))

where y is a real array of length m \times (n + 3).

C06HCF
Scheduled for withdrawal at Mark 26.
Replaced by C06RGF.
Old: Call c06hcf(direct,m,n,x,init,trig,work,ifail)
New: y(1:m*n) = x(1:m*n)
 Call c06raf(direct,m,n,y,rwork,ifail)
 x(1:m*n) = y(1:m*n)

where y and rwork are real arrays of lengths m \times (n + 2) and m \times n + 2 \times n + 2 \times m + 15 respectively.

C06HDF
Scheduled for withdrawal at Mark 26.
Replaced by C06RHF.
Old: Call c06hdf(direct,m,n,x,init,trig,work,ifail)
New: y(1:m*n) = x(1:m*n)
 Call c06raf(direct,m,n,y,rwork,ifail)
 x(1:m*n) = y(1:m*n)

where y and rwork are real arrays of lengths m \times (n + 2) and m \times n + 2 \times n + 2 \times m + 15 respectively.
D01 – Quadrature

D01BAF

Scheduled for withdrawal at Mark 26.
Replaced by D01UAF.

Old : FUNCTION FUN(x)
...
real(kind=nag_wp) :: FUN
real(kind=nag_wp), intent(in) :: X
FUN = ...
END FUNCTION

DINEST = D01BAF(D01XXX,A,B,N,FUN,IFAIL)

New : SUBROUTINE F(X,NX,FV,IFLAG,IUSER,RUSER)
...
! see example below
...
END SUBROUTINE F

! set KEY according to quadrature formula
! KEY = 0 : (D01XXX=D01BAZ)
! KEY = -3 : (D01XXX=D01BAY)
! KEY = -4 : (D01XXX=D01BAW)
! KEY = -5 : (D01XXX=D01BAX)
! KEY = ABS(KEY) for normal weights
KEY = 0
allocate(iuser(liuser), ruser(lruser))
CALL D01UAF(KEY,A,B,N,F,DINEST,IUSER,RUSER,IFAIL)

IUSER and RUSER are arrays available to allow you to pass information to the user-supplied subroutine F.
IFLAG is an integer which you may use to force an immediate exit from D01UAF in case of an error in the user-supplied subroutine F.

F may be used to call the original FUN as follows, although it may be more efficient to recode the integrand.

SUBROUTINE F(X,NX,FV,IFLAG,IUSER,RUSER)
...
integer, intent(in) :: NX
integer, intent(inout) :: iflag
real(kind=nag_wp), intent(in) :: X(NX)
real(kind=nag_wp), intent(out) :: fv(nx)
real(kind=wp) , intent(inout) :: ruser(*)
integer, intent(inout) :: iuser(*)
integer :: j
external FUN

do j=1,nx
 FV(j) = FUN(x(j))
enddo

END SUBROUTINE F
D01BBF

Scheduled for withdrawal at Mark 26.
Replaced by D01TBF.

OLD : CALL D01BBF(D01XXX,A,B,ITYPE,N,WEIGHT,ABSCIS,IFAIL)
NEW :
 Integer :: key
 call D01TBF(KEY,A,B,N,WEIGHT,ABSICS,IFAIL)

The supplied subroutines D01XXX and the parameter ITYPE have been combined into a single parameter KEY. KEY < 0 is equivalent to ITYPE = 1 (adjusted weights). KEY > 0 is equivalent to ITYPE = 0 (normal weights). |KEY| indicates the quadrature rule.

- |KEY| = 0 : Gauss–Legendre (D01XXX = D01BAZ)
- |KEY| = 3 : Gauss–Laguerre (D01XXX = D01BAX)
- |KEY| = 4 : Gauss–Hermite (D01XXX = D01BAW)
- |KEY| = 5 : Rational Gauss (D01XXX = D01BAY)

D01RBF

Scheduled for withdrawal at Mark 27.
Replaced by No replacement required.
See Section 10 in D01RAF for further details.

D02 – Ordinary Differential Equations

D02BAF

Withdrawn at Mark 18.
Replaced by D02PEF and associated D02P routines.

OLD: CALL D02BAF(X,XEND,N,Y,TOL,FCN,W,IFAIL)
NEW:
 THRESH(1:N) = TOL
 CALL D02PQF(N,X,XEND,Y,TOL,THRESH, &
 -2,0.0D0,IWSAV,RWSAV,IFAIL)
 CALL D02PEF(P2,N,XEND,X,Y,YP,YMAX, &
 IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350 + 32 × N.
IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2.

The definition of F2 can use the original routine FCN as follows:

```fortran
SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
  ! .. Scalar Arguments ..
  Real (Kind=wp), Intent (In) :: t
  Integer, Intent (In) :: n
  ! .. Array Arguments ..
  Real (Kind=wp), Intent (Inout) :: ruser(1)
  Real (Kind=wp), Intent (In) :: y(n)
  Real (Kind=wp), Intent (Out) :: yp(n)
  Integer, Intent (Inout) :: iuser(1)
  ! .. Procedure Arguments ..
  External :: fcn
  ! .. Executable Statements ..
  Continue
  Call fcn(t,y,yp)
  Return
End Subroutine F2
```
D02BBF

Withdrawn at Mark 18.
Replaced by D02PEF and associated D02P routines.

Old: CALL D02BBF(X,XEND,N,Y,TOL,IRELAB,FCN,OUTPUT,W,IFAIL)
New: THRES(1:N) = TOL
 CALL D02PQF(N,X,XEND,Y,TOL,THRESH, &
 2,0.0D0,IWSAV,RWSAV,IFAIL)
 CALL D02PEF(F2,N,XEND,X,Y,YP,YMAX, &
 IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length $350 + 32 \times N$.
IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2.

The definition of F2 can use the original routine FCN as follows:

```fortran
SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
   ! .. Scalar Arguments ..
   Real (Kind=wp), Intent (In) :: t
   Integer, Intent (In) :: n
   ! .. Array Arguments ..
   Real (Kind=wp), Intent (Inout) :: ruser(1)
   Real (Kind=wp), Intent (In) :: y(n)
   Real (Kind=wp), Intent (Out) :: yp(n)
   Integer, Intent (Inout) :: iuser(1)
   ! .. Procedure Arguments ..
   External :: fcn
   ! .. Executable Statements ..
   Continue
   Call fcn(t,y,yp)
   Return
End Subroutine F2
```

D02BDF

Withdrawn at Mark 18.
Replaced by D02PEF and associated D02P routines.

Old: CALL D02BDF(X,XEND,N,Y,TOL,IRELAB,FCN,STIFF,YNORM,W, &
 IW,M,OUTPUT,IFAIL)
 CALL D02PQF(N,X,XEND,Y,TOL,THRESH, &
 2,0.0D0,IWSAV,RWSAV,IFAIL)
 ... set XWANT ...
10 CONTINUE
 CALL D02PEF(F2,N,XEND,X,Y,YP,YMAX, &
 IUSER,RUSER,IWSAV,RWSAV,IFAIL)
 IF (XWANT.LT.XEND) THEN
 ... reset XWANT ...
 GO TO 10
ELSE
 CALL D02PUF(N,RMSERR,ERRMAX,TERRMX,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length $350 + 32 \times N$.
IUSER and RUSER are arrays available to allow you to pass information to the user defined function F2.
The definition of F2 can use the original function FCN as follows:

```fortran
SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
  ! .. Scalar Arguments ..
  Real (Kind=wp), Intent (In) :: t
  Integer, Intent (In) :: n
  ! .. Array Arguments ..
  Real (Kind=wp), Intent (Inout) :: ruser(1)
  Real (Kind=wp), Intent (In) :: y(n)
  Real (Kind=wp), Intent (Out) :: yp(n)
  Integer, Intent (Inout) :: iuser(1)
  ! .. Procedure Arguments ..
  External :: fcn
  ! .. Executable Statements ..
  Continue
  Call fcn(t,y,yp)
  Return
End Subroutine F2
```

D02CAF

Withdrawn at Mark 18.
Replaced by D02CJF.

Old: CALL D02CAF(X,XEND,N,Y,TOL,FCN,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,'M',D02CJX,D02CJW,W,IFAIL)

D02CJX is a subroutine provided in the NAG Fortran Library and D02CJW is a real function also provided. Both must be declared as EXTERNAL or USEd from the nag_library MODULE. The array W needs to be 5 elements greater in length.

D02CBF

Withdrawn at Mark 18.
Replaced by D02CJF.

Old: CALL D02CBF(X,XEND,N,Y,TOL,IRELAB,FCN,OUTPUT,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,RELABS,OUTPUT,D02CJW,W,IFAIL)

D02CJW is a real function provided in the NAG Fortran Library and must be declared as EXTERNAL or USEd from the nag_library MODULE. The integer parameter IRELAB (which can take values 0, 1 or 2) is catered for by the new CHARACTER*1 argument RELABS (whose corresponding values are ‘M’, ‘A’ and ‘R’).

D02CGF

Withdrawn at Mark 18.
Replaced by D02CJF.

Old: CALL D02CGF(X,XEND,N,Y,TOL,HMAX,M,VAL,FCN,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,'M',D02CJX,G,W,IFAIL)

```
REAL (KIND=nag_wp) FUNCTION G(X,Y)
  REAL (KIND=nag_wp) X,Y(*)
  G = Y(M) - VAL
END
```

D02CJX is a subroutine provided in the NAG Fortran Library and must be declared as EXTERNAL or USEd from the nag_library MODULE. Note the functionality of HMAX is no longer available directly. Checking the value of \(Y(M) - VAL\) at intervals of length HMAX can be effected by a user-supplied procedure OUTPUT in place of D02CJX in the call described above. See the routine document for D02CJF for more details.
D02CHF

Withdrawn at Mark 18.
Replaced by D02CJF.

Old: CALL D02CHF(X,XEND,N,Y,TOL,IRELAB,HMAX,FCN,G,W,IFAIL)
New: CALL D02CJF(X,XEND,N,Y,FCN,TOL,RELABS,D02CJX,G,W,IFAIL)

D02CJX is a subroutine provided by the NAG Fortran Library and must be declared as EXTERNAL or USEd from the nag_library MODULE. The functionality of HMAX can be provided as described under the replacement call for D02CGF. The relationship between the parameters IRELAB and RELABS is described under the replacement call for D02CBF.

D02EAF

Withdrawn at Mark 18.
Replaced by D02EJF.

Old: CALL D02EAF(X,XEND,N,Y,TOL,FCN,W,IW,IFAIL)
New: CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,'M',D02EJX,D02EJW,W,IW, &
IFAIL)

D02EJY and D02EJX are subroutines provided in the NAG Fortran Library and D02EJW is a real function also provided. All must be declared as EXTERNAL or USEd from the nag_library MODULE.

D02EBF

Withdrawn at Mark 18.
Replaced by D02EJF.

Old: CALL D02EBF(X,XEND,N,Y,TOL,IRELAB,FCN,MPED,PEDERV,OUTPUT,W,IW, &
IFAIL)
New: CALL D02EJF(X,XEND,N,Y,FCN,PEDERV,TOL,RELABS,OUTPUT,D02EJW,W,IW, &
IFAIL)

D02EJW is a real function provided in the NAG Fortran Library and must be declared as EXTERNAL or USEd from the nag_library MODULE. The integer parameter IRELAB (which can take values 0, 1 or 2) is catered for by the new CHARACTER*1 argument RELABS (whose corresponding values are ‘M’, ‘A’ and ‘R’). If MPED = 0 in the call of D02EBF then PEDERV must be the routine D02EJF, which is supplied in the Library and must be declared as EXTERNAL or USEd from the nag_library MODULE.

D02EGF

Withdrawn at Mark 18.
Replaced by D02EJF.

Old: CALL D02EGF(X,XEND,N,Y,TOL,HMAX,M,VAL,FCN,W,IW,IFAIL)
New: CALL D02EJF(X,XEND,N,Y,FCN,D02EJY,TOL,'M',D02EJX,G,W,IW,IFAIL)

REAL (KIND=nag_wp) FUNCTION G(X,Y)
REAL (KIND=nag_wp) X,Y(*)
G = Y(M) - VAL
END

D02EJY and D02EJX are subroutines provided in the NAG Fortran Library and must be declared as EXTERNAL or USEd from the nag_library MODULE. Note that the functionality of HMAX is no longer available directly. Checking the value of Y(M) − VAL at intervals of length HMAX can be effected by a user-supplied procedure OUTPUT in place of D02EJX in the call described above. See the routine document for D02EJF for more details.
D02EHF
Withdrawing at Mark 18.
Replaced by D02EJF.

Old: CALL D02EHF(X,XEND,N,Y,TOL,IRELAB,HMAX,MPED,PEDERV,FCN,G,W,IFAIL)
New: CALL D02EJF(X,XEND,N,Y,FCN,PEDERV,TOL,RELABS,D02EJX,G,W,IW,IFAIL)

D02EJX is a subroutine provided by the NAG Fortran Library and must be declared as EXTERNAL or USEd from the nag_library MODULE. The functionality of HMAX can be provided as described under the replacement call for D02EJF. The relationship between the parameters IRELAB and RELABS is described under the replacement call for D02EBF. If MPED = 0 in the call of D02EJF then PEDERV must be the routine D02EJY, which is supplied in the Library and must be declared as EXTERNAL or USEd from the nag_library MODULE.

D02PAF
Withdrawn at Mark 18.
Replaced by D02PEF and associated D02P routines.

Existing programs should be modified to call D02PQF and D02PEF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine documents.

D02PCF
Scheduled for withdrawal at Mark 26.
Replaced by D02PEF and associated D02P routines.

Old: CALL D02PVF(N,TSTART,YINIT,TEND,TOL,THRESH,METHOD,'U',ERRASS, &
HSTART,W,LW,IFAIL)
... CALL D02PCF(F,TWANT,T,Y,YP,YMAX,W,IFAIL)
New: IF (.Not. ERRASS) METHOD = -METHOD
CALL D02PQF(N,TSTART,TEND,YINIT,TOL,THRESH,METHOD,HSTART,IWSAV, &
RWSAV,IFAIL)
... CALL D02PEF(F2,N,TWANT,T,Y,YP,YMAX,IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length $350 + 32 \times N$.

IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2 (see F in D02PEF).

The definition of F2 (see F in D02PEF) can use the original routine F as follows:

```fortran
SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
! .. Scalar Arguments ..
Real (Kind=wp), Intent (In) :: t
Integer, Intent (In) :: n
! .. Array Arguments ..
Real (Kind=wp), Intent (Inout) :: ruser(1)
Real (Kind=wp), Intent (In) :: y(n)
Real (Kind=wp), Intent (Out) :: yp(n)
Integer, Intent (Inout) :: iuser(1)
! .. Procedure Arguments ..
External :: f
! .. Executable Statements ..
Continue
Call f(t,y,yp)
Return
End Subroutine F2
```
D02PDF
Scheduled for withdrawal at Mark 26.
Replaced by D02PFF and associated D02P routines.

Old: CALL D02PVF(N,TSTART,YINIT,TEND,TOL,THRESH,METHOD,'U',ERRASS, &
 HSTART,W,LW,IFAIL)
 ...
 CALL D02PDF(F,T,Y,YP,WORK,IFAIL)

New: IF (.Not. ERRASS) METHOD = -METHOD
 CALL D02PQF(N,TSTART,TEND,YINIT,TOL,THRESH,METHOD,HSTART,IWSAV, &
 RWSAV,IFAIL)
 ...
 CALL D02PFF(F2,N,T,Y,YP,IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350 + 32 × N.
IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2
(see F in D02PEF).
The definition of F2 (see F in D02PEF) can use the original routine F as follows:

SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
 ! .. Scalar Arguments ..
 Real (Kind=wp), Intent (In) :: t
 Integer, Intent (In) :: n
 ! .. Array Arguments ..
 Real (Kind=wp), Intent (Inout) :: ruser(1)
 Real (Kind=wp), Intent (In) :: y(n)
 Real (Kind=wp), Intent (Out) :: yp(n)
 Integer, Intent (Inout) :: iuser(1)
 ! .. Procedure Arguments ..
 External :: f
 ! .. Executable Statements ..
 Continue
 Call f(t,y,yp)
 Return
End Subroutine F2

D02PVF
Scheduled for withdrawal at Mark 26.
Replaced by D02PQF.
See D02PCF and D02PDF for further information.

D02PWDF
Scheduled for withdrawal at Mark 26.
Replaced by D02PRF.

Old: CALL D02PWDF(TENDNU,IFAIL)
New: CALL D02PRF(TENDNU,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350.
D02PXF

Scheduled for withdrawal at Mark 26.
Replaced by D02PSF.

Old: CALL D02PXF(TWANT,REQEST,NWANT,YWANT,YPWANT,F,WORK,WRKINT, & LENINT,IFAIL)
New:
If (REQEST=='S' .or. REQEST=='s') Then
IDERIV = 0
Else if (REQEST=='D' .or. REQEST=='d') Then
IDERIV = 1
Else
IDERIV = 2
End If
CALL D02PSF(TWANT,IDERIV,NWANT,YWANT,YPWANT,F2,WORKINT, & LENINT,IUSER,RUSER,IWSAV,RWSAV,IFAIL)

IWSAV is an integer array of length 130 and RWSAV is a real array of length 350 + 32 × N.
IUSER and RUSER are arrays available to allow you to pass information to the user defined routine F2 (see F in D02PSF).
WCOMM is a real array of length LWCOMM. See the routine document for D02PSF for further information.

The definition of F2 (see F in D02PSF) can use the original routine F as follows:

SUBROUTINE F2(T,N,Y,YP,IUSER,RUSER)
! .. Scalar Arguments ..
Real (Kind=wp), Intent (In) :: t
Integer, Intent (In) :: n
! .. Array Arguments ..
Real (Kind=wp), Intent (Inout) :: y(n)
Real (Kind=wp), Intent (In) :: yp(n)
Integer, Intent (Inout) :: iuser(1)
! .. Procedure Arguments ..
External :: f
! .. Executable Statements ..
Continue
Call f(t,y,yp)
Return
End Subroutine F2

D02PYF

Scheduled for withdrawal at Mark 26.
Replaced by D02PTF.

Old: Call D02PYF(TOTFCN,STPCST,WASTE,STPSOK,HNEXT,IFAIL)
New: Call D02PTF(TOTFCN,STPCST,WASTE,STPSOK,HNEXT,IWSAV, & RWSAV,IFAIL)

D02PZF

Scheduled for withdrawal at Mark 26.
Replaced by D02PUF.

Old: Call D02PZF(RMSERR,ERRMAX,TERMX,WORK,IFAIL)
New: Call D02PUF(N,RMSERR,ERRMAX,TERMX,IWSAV,RWSAV,IFAIL)

N must be unchanged from that passed to D02PQF.
IWSAV is an integer array of length 130 and RWSAV is a real array of length 350 + 32 × N.
D02TKF
Scheduled for withdrawal at Mark 27.
Replaced by D02TLF.
Old: Call D02TKF(FFUN,FJAC,GAFUN,GBFUN,GAJAC,GBJAC,GUESS,RCOMM,ICOMM,IFAIL)
New: Call D02TLF(FFUN,FJAC,GAFUN,GBFUN,GAJAC,GBJAC,GUESS,RCOMM,ICOMM,IUSER, & RUSER,IFAIL)

The arrays IUSER and RUSER are also supplied as an additional two parameters to the seven user-supplied routines. These arrays are free to use to supply information to the seven routine parameters.

D02XAF
Withdrawn at Mark 18.
Replaced by D02PSF and associated D02P routines.
Not needed except with D02PAF.

D02XBF
Withdrawn at Mark 18.
Replaced by D02PSF and associated D02P routines.
Not needed except with D02PAF.

D02YAF
Withdrawn at Mark 18.
Replaced by D02PFF and associated D02P routines.
There is no precise equivalent to this routine.

E01 – Interpolation

E01SEF
Withdrawn at Mark 20.
Replaced by E01SGF.
Old: CALL E01SEF(M,X,Y,F,RNW,RNQ,NW,NQ,FNODES,MINNQ,WRK,IFAIL)
New: CALL E01SGF(M,X,Y,F,NW,NQ,IQ,LIQ,RQ,LRQ,IFAIL)

E01SEF has been superseded by E01SGF which gives improved accuracy, facilities for obtaining gradient values and a consistent interface with E01TGF for interpolation of scattered data in three dimensions.

The interpolant generated by the two routines will not be identical, but similar results may be obtained by using the same values of NW and NQ. Details of the interpolant are passed to the evaluator through the arrays IQ and RQ rather than FNODES and RNW.

E01SFF
Withdrawn at Mark 20.
Replaced by E01SHF.
Old: CALL E01SFF(M,X,Y,F,RNW,FNODES,PX,PY,PF,IFAIL)
New: CALL E01SHF(M,X,Y,F,IQ,LIQ,RQ,LRQ,1,PX,PY,PF,QX,QY,IFAIL)

The two calls will not produce identical results due to differences in the generation routines E01SEF and E01SGF. Details of the interpolant are passed from E01SGF through the arrays IQ and RQ rather than FNODES and RNW.

E01SHF also returns gradient values in QX and QY and allows evaluation at arrays of points rather than just single points.
E02 – Curve and Surface Fitting

E02ACF

Scheduled for withdrawal at Mark 27.
Replaced by E02ALF.

Old: CALL E02ACF(X, Y, N, A, M1, REF)
New: CALL E02ALF(N, X, Y, M1, A, REF, IFAIL)

E04 – Minimizing or Maximizing a Function

E04CCF/E04CCA

Withdrawn at Mark 24.
Replaced by E04CBF.

Old: CALL E04CCF(N,X,F,TOL,IW,W1,W2,W3,W4,W5,W6,FUNCT,MONIT,MAXCAL, & IFAIL)
or
CALL E04CCA(N,X,F,TOL,IW,W1,W2,W3,W4,W5,W6,FUNCT2,MONIT2,MAXCAL, & IUSER,RUSER,IFAIL)
New: CALL E04CBF(N,X,F,TOLF,TOLX,FUNCT2,MONIT3,MAXCAL,IUSER,RUSER, & IFAIL)

SUBROUTINE MONIT3(FMIN,FMAX,SIM,N,NCALL,SERROR,VRATIO,IUSER,RUSER)
INTEGER N, NCALL, IUSER(*)
REAL (KIND=nag_wp) FMIN, FMAX, SIM(N+1,N), SERROR, VRATIO, RUSER(*)
CALL MONIT2(FMIN,FMAX,SIM,N,N+1,NCALL,IUSER,RUSER)
! Add code here to monitor the values of SERROR and VRATIO, if necessary
RETURN
END

E04FDF

Withdrawn at Mark 19.
Replaced by E04FYF.

Old: CALL E04FDF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04FYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN1 of E04FDF. LSFUN must be declared as EXTERNAL or be a module subroutine USEd in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN1. It may be derived from LSFUN1 as follows:

SUBROUTINE LSFUN(M,N,XC,FVECC,IUSER,USER)
INTEGER M, N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), USER(*)
CALL LSFUN1(M,N,XC,FVECC)
RETURN
END

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing. If however, a COMMON block was used to pass information into LSFUN1, or get information from LSFUN1, then the arrays IUSER and USER should be declared appropriately and used for this purpose.

E04GCF

Withdrawn at Mark 19.
Replaced by E04GYF.

Old: CALL E04GCF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04GYF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

Mark 25
LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN2 of E04GCF. LSFUN must be declared as EXTERNAL or be a module subprogram used in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN2. It may be derived from LSFUN2 as follows:

```fortran
SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), FJACC(LJC,N), USER(*)
CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing. If however, a COMMON block was used to pass information through E04GCF into LSFUN2, or get information from LSFUN2, then the arrays IUSER and USER should be declared appropriately and used for this purpose.

E04GEF

Withdrawn at Mark 19.
Replaced by E04GZF.

Old: CALL E04GEF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04GZF(M,N,LSFUN,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN appears in the parameter list instead of the fixed-name subroutine LSFUN2 of E04GEF. LSFUN must be declared as EXTERNAL or be a module subprogram used in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of LSFUN2. It may be derived from LSFUN2 as follows:

```fortran
SUBROUTINE LSFUN(M,N,X,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), FJACC(LJC,N), USER(*)
CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
RETURN
END
```

In general the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing. If however, a COMMON block was used to pass information through E04GEF into LSFUN2, or get information from LSFUN2, then the arrays IUSER and USER should be declared appropriately and used for this purpose.

E04HFF

Withdrawn at Mark 19.
Replaced by E04HYF.

Old: CALL E04HFF(M,N,X,FSUMSQ,IW,LIW,W,LW,IFAIL)
New: CALL E04HYF(M,N,LSFUN,LSHES,X,FSUMSQ,W,LW,IUSER,USER,IFAIL)

LSFUN and LSHES appear in the parameter list instead of the fixed-name subroutines LSFUN2 and LSHES2 of E04HFF. LSFUN and LSHES must be declared as EXTERNAL or be a module subprogram used in the calling (sub)program. In addition they have an extra two parameters, IUSER and USER,
over and above those of LSFUN2 and LSHES2. They may be derived from LSFUN2 and LSHES2 as follows:

```fortran
SUBROUTINE LSFUN(M,N,XC,FVECC,FJACC,LJC,IUSER,USER)
INTEGER M, N, LJC, IUSER(*)
REAL (KIND=nag_wp) XC(N), FVECC(M), FJACC(LJC,N), USER(*)
CALL LSFUN2(M,N,XC,FVECC,FJACC,LJC)
RETURN
END

SUBROUTINE LSHES(M,N,FVECC,XC,B,LB,IUSER,USER)
INTEGER M, N, LB, IUSER(*)
REAL (KIND=nag_wp) FVECC(M), XC(N), B(LB), USER(*)
CALL LSHES2(M,N,FVECC,XC,B,LB)
RETURN
END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing. If, however, a COMMON block was used to pass information through E04HFF into LSFUN2 or LSHES2, or to get information from LSFUN2 or LSHES2, then the arrays IUSER and RUSER should be declared appropriately and used for this purpose.

E04JAF

Withdrawn at Mark 19.

Replaced by E04JYF.

Old: CALL E04JAF(N,IBOUND,BL,BU,X,F,IW,LIW,LW,IFAIL)
New: CALL E04JYF(N,IBOUND,FUNCT,BL,BU,X,F,IW,LIW,W,LW,IFAIL)

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT1 of E04JAF. FUNCT must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT1. It may be derived from FUNCT1 as follows:

```fortran
SUBROUTINE FUNCT(N,XC,FC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, USER(*)
CALL FUNCT1(N,XC,FC)
RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing.

E04KAF

Withdrawn at Mark 19.

Replaced by E04KYF.

Old: CALL E04KAF(N,IBOUND,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04KYF(N,IBOUND,FUNCT,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT2 of E04KAF. FUNCT must be declared as EXTERNAL or be a module subprogram USEd in the calling.
(sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT2. It may be derived from FUNCT2 as follows:

```fortran
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), USER(*)
CALL FUNCT2(N,XC,FC,GC)
RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing.

E04KCF

Withdrawn at Mark 19.
Replaced by E04KZF.

Old: CALL E04KCF(N,IBOUND,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04KZF(N,IBOUND,FUNCT,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,USER,IFAIL)

FUNCT appears in the parameter list instead of the fixed-name subroutine FUNCT2 of E04KCF. FUNCT must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In addition it has an extra two parameters, IUSER and USER, over and above those of FUNCT2. It may be derived from FUNCT2 as follows:

```fortran
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), USER(*)
CALL FUNCT2(N,XC,FC,GC)
RETURN
END
```

The extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing.

E04LAF

Withdrawn at Mark 19.
Replaced by E04LYF.

Old: CALL E04LAF(N,IBOUND,BL,BU,X,F,G,IW,LIW,W,LW,IFAIL)
New: CALL E04LYF(N,IBOUND,FUNCT,HESS,BL,BU,X,F,G,IW,LIW,W,LW,IUSER,USER, & IFAIL)

FUNCT and HESS appear in the parameter list instead of the fixed-name subroutines FUNCT2 and HESS2 of E04LAF. FUNCT and HESS must be declared as EXTERNAL or be a module subprogram USEd in the calling (sub)program. In addition they have an extra two parameters, IUSER and USER,
over and above those of FUNCT2 and HESS2. They may be derived from FUNCT2 and HESS2 as follows:

```fortran
SUBROUTINE FUNCT(N,XC,FC,GC,IUSER,USER)
INTEGER N, IUSER(*)
REAL (KIND=nag_wp) XC(N), FC, GC(N), USER(*)
CALL FUNCT2(N,XC,FC,GC)
RETURN
END

SUBROUTINE HESS(N,XC,HESLC,LH,HESDC,IUSER,USER)
INTEGER N, LH, IUSER(*)
REAL (KIND=nag_wp) XC(N), HESLC(LH), HESDC(N), USER(*)
CALL HESS2(N,XC,HESLC,LH,HESDC)
RETURN
END
```

In general, the extra parameters, IUSER and USER, should be declared in the calling program as IUSER(1) and USER(1), but will not need initializing.

E04MBF

Withdrawn at Mark 18.
Replaced by E04MFF/E04MFA.

Old: CALL E04MBF(ITMAX,MSGLVL,N,NCLIN,NCTOTL,NROWA,A,BL,BU,CVEC, &
LINOBJ,X,ISTATE,OBJLP,CLAMDA,IWORK,LIWORK,WORK, &
LWORK,IFAIL)
New: CALL E04MFF(N,NCLIN,A,NROWA,BL,BU,CVEC,ISTATE,X,ITER,OBJLP, &
AX,CLAMDA,IWORK,LIWORK,WORK,LWORK,IFAIL)

The parameter NCTOTL is no longer required. Values for ITMAX, MSGLVL and LINOBJ may be supplied by calling an option setting routine.

E04MFF/E04MFA contains two additional parameters as follows:

- **ITER** – integer.
- **AX(*)** – real array of dimension at least max(1,NCLIN).

The minimum value of the parameter LIWORK must be increased from \(2 \times N\) to \(2 \times N + 3\). The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04NAF

Withdrawn at Mark 18.
Replaced by E04NFF/E04NFA.

Old: CALL E04NAF(ITMAX,MSGLVL,N,NCLIN,NCTOTL,NROWA,NROWH,NCOLH, &
BIGBND,A,BL,BU,CVEC,FEATOL,HESS,QPHESS,COLD,LP, &
ORTHOG,X,ISTATE,ITER,OBJ,CLAMDA,IWORK,LIWORK, &
WORK,LWORK,IFAIL)
New: CALL E04NFF(N,NCLIN,A,NROWA,BL,BU,CVEC,HESS,NROWH,QPHESS, &
ISTATE,X,ITER,OBJ,AX,CLAMDA,IWORK,LIWORK,WORK, &
LWORK,IFAIL)

The specification of the subroutine QPHESS must also be changed as follows:

Old: SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX)
INTEGER N, NROWH, NCOLH, JTHCOL
REAL (KIND=nag_wp) HESS(NROWH,NCOLH), X(N), HX(N)
New: SUBROUTINE QPHESS(N,JTHCOL,HESS,NROWH,X,HX)
INTEGER N, JTHCOL, NROWH
REAL (KIND=nag_wp) HESS(NROWH,*), X(N), HX(N)
The parameters NCTOTL, NCOLH and ORTHOG are no longer required. Values for ITMAX, MSGlvl, BIGBND, FEATOL, COLD and LP may be supplied by calling an option setting routine.

E04NFF/E04NFA contains one additional parameter as follows:

\[\text{AX}(\ast) \] – real array of dimension at least \[\max(1, \text{NCLIN}) \].

The minimum value of the parameter LIWORK must be increased from \[2 \times N \] to \[2 \times N + 3 \]. The minimum value of the parameter LWORK may also need to be changed. See the routine documents for further information.

E04UNF

Withdrawn at Mark 22.

Replaced by E04USF/E04USA.

Old:

\[
\text{CALL E04UNF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,} \\
\text{LDR,A,BL,BU,Y,CONFUN,OBJFUN,ITER,} \\
\text{ISTATE,C,CJAC,F,FJAC,CLAMDA,OBJF,} \\
\text{R,X,LIWORK,LWORK,USER,IFAIL)}
\]

New:

\[
\text{CALL E04USF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,} \\
\text{LDR,A,BL,BU,Y,CONFUN,OBJFUN,ITER,} \\
\text{ISTATE,C,CJAC,F,FJAC,CLAMDA,OBJF,} \\
\text{R,X,LIWORK,LWORK,USER,IFAIL)}
\]

The specification of the subroutine OBJFUN must also be changed as follows:

Old:

\[
\text{SUBROUTINE OBJFUN(MODE,M,N,LDFJ,X,F,FJAC,NSTATE,} \\
\text{IUSER,USER)}
\]

\[
\text{REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),USER(*)}
\]

New:

\[
\text{SUBROUTINE OBJFUN(MODE,M,N,LDFJ,NEEDFI,X,F,FJAC,NSTATE,} \\
\text{IUSER,USER)}
\]

\[
\text{REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),USER(*)}
\]

See the routine documents for further information.

E04UPF

Withdrawn at Mark 19.

Replaced by E04USF/E04USA.

Old:

\[
\text{CALL E04UPF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,LDR,A,BL,BU,} \\
\text{CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC,} \\
\text{CLAMDA,OBJF,R,X,LIWORK,LWORK,OBJF,} \\
\text{R,X,USER,IFAIL)}
\]

New:

\[
\text{CALL E04USF(M,N,NCLIN,NCNLN,LDA,LDCJ,LDFJ,LDR,A,BL,BU,} \\
\text{Y,CONFUN,OBJFUN,ITER,ISTATE,C,CJAC,F,FJAC,} \\
\text{CLAMDA,OBJF,R,X,LIWORK,LWORK,OBJF,} \\
\text{R,X,USER,IFAIL)}
\]

E04USF/E04USA contains one additional parameter as follows:

\[Y(M) \] – real array.

Note that a call to E04UPF is the same as a call to E04USF/E04USA with \[Y(i) = 0.0 \], for \(i = 1, 2, \ldots, M \).

The specification of the subroutine OBJFUN must also be changed as follows:

Old:

\[
\text{SUBROUTINE OBJFUN(MODE,M,N,LDFJ,X,F,FJAC,NSTATE,} \\
\text{IUSER,USER)}
\]

\[
\text{REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),USER(*)}
\]

New:

\[
\text{SUBROUTINE OBJFUN(MODE,M,N,LDFJ,NEEDFI,X,F,FJAC,NSTATE,} \\
\text{IUSER,USER)}
\]

\[
\text{REAL (KIND=nag_wp) X(N),F(*),FJAC(LDFJ,*),USER(*)}
\]

See the routine documents for further information.
E04ZCF/E04ZCA
Withdrawn at Mark 24.
There is no replacement for this routine.

F01 – Matrix Operations, Including Inversion

F01AEF
Withdrawn at Mark 18.
Replaced by F07FDF (DPOTRF), F08SEF (DSYGST) and F06EGF (DSWAP).

Old: CALL F01AEF(N,A,IA,B,IB,DL,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J, N
 A(I,J) = A(J,I)
 B(I,J) = B(J,I)
 10 CONTINUE
 DL(J) = B(J,J)
 20 CONTINUE
 CALL DPOTRF('L',N,B,IB,INFO)
 IF (INFO.EQ.0) THEN
 CALL DSYGST(1,'L',N,A,IA,B,IB,INFO)
 ELSE
 IFAIL = 1
 END IF
 CALL DSWAP(N,DL,1,B,IB+1)

INFO is set to a positive value if the matrix B is not positive definite. It is essential to test IFAIL.

F01AFF
Withdrawn at Mark 18.
Replaced by F06EGF (DSWAP) and F06YJF (DTRSM).

Old: CALL F01AFF(N,M1,M2,B,IB,DL,Z,IZ)
New: CALL DSWAP(N,DL,1,B,IB+1)
 CALL DTRSM('L','L','T','N',N,M2-M1+1,1.0D0,B,IB,Z(1,M1),IZ)
 CALL DSWAP(N,DL,1,B,IB+1)

F01AGF
Withdrawn at Mark 18.
Replaced by F08FEF (DSYTRD).

Old: CALL F01AGF(N,TOL,A,IA,D,E,E2)
New: CALL DSYTRD('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
 E(1) = 0.0D0
 DO 10 I = 1, N
 E2(I) = E(I)*E(I)
 10 CONTINUE

where TAU is a real array of length at least (N − 1), WORK is a real array of length at least (1) and LWORK is its actual length.

Note that the tridiagonal matrix computed by F08FEF (DSYTRD) is different from that computed by F01AGF, but it has the same eigenvalues.

F01AHF
Withdrawn at Mark 18.
Replaced by F08FGF (DORMTR).
The following replacement is valid only if the previous call to F01AGF has been replaced by a call to F08FEF (DSYTRD) as shown above.

Old: CALL F01AHF(N,M1,M2,A,IA,E,Z,I2)
New: CALL DORMTR('L','L','N',N,M2-M1+1,A,IA,TAU,Z(1,M1),I2,WORK, & LWORK,INFO)

where WORK is a real array of length at least (M2 – M1 + 1), and LWORK is its actual length.

F01AJF

Withdrawn at Mark 18.
Replaced by F08FEF (DSYTRD) and F08FFF (DORGTR).

Old: CALL F01AJF(N,TOL,A,IA,D,E,Z,IZ)
New: CALL DSYTRD('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
E(1) = 0.0D0
CALL DORGTR('L',N,Z,I2,TAU,WORK,LWORK,INFO)

where TAU is a real array of length at least (N – 1), WORK is a real array of length at least (N – 1) and LWORK is its actual length.

Note that the tridiagonal matrix \(T \) and the orthogonal matrix \(Q \) computed by F08FEF (DSYTRD) and F08FFF (DORGTR) are different from those computed by F01AJF, but they satisfy the same relation \(Q^T AQ = T \).

F01AKF

Withdrawn at Mark 18.
Replaced by F08NEF (DGEHRD).

Old: CALL F01AKF(N,K,L,A,IA,INTGER)
New: CALL DGEHRD(N,K,L,A,IA,TAU,WORK,LWORK,INFO)

where TAU is a real array of length at least (N – 1), WORK is a real array of length at least (N) and LWORK is its actual length.

Note that the Hessenberg matrix computed by F08NEF (DGEHRD) is different from that computed by F01AKF, because F08NEF (DGEHRD) uses orthogonal transformations, whereas F01AKF uses stabilized elementary transformations.

F01ALF

Withdrawn at Mark 18.
Replaced by F08NGF (DORMHR).

The following replacement is valid only if the previous call to F01AKF has been replaced by a call to F08NEF (DGEHRD) as indicated above.

Old: CALL F01ALF(K,L,IR,A,IA,INTGER,Z,IZ,N)

where WORK is a real array of length at least (IR) and LWORK is its actual length.

F01AMF

Withdrawn at Mark 18.
Replaced by F08NSF (ZGEHRD).

Old: CALL F01AMF(N,K,L,AR,IAR,AI,IAI,INTGER)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
10 CONTINUE
20 CONTINUE
CALL ZGEHRD(N,K,L,A,IA,TAU,WORK,LWORK,INFO)
where A is a complex array of dimension (IA,N), TAU is a complex array of length at least $(N - 1)$, $WORK$ is a complex array of length at least (N) and $LWORK$ is its actual length.

Note that the Hessenberg matrix computed by F08NSF (ZGEHRD) is different from that computed by F01AMF, because F08NSF (ZGEHRD) uses orthogonal transformations, whereas F01AMF uses stabilized elementary transformations.

F01ANF

Withdrawn at Mark 18.
Replaced by F08NUF (ZUNMHR).

The following replacement is valid only if the previous call to F01AMF has been replaced by a call to F08NSF (ZGEHRD) as indicated above.

Old: CALL F01ANF(K,L,IR,AR,IAR,AI,IAI,INTGER,ZR,IZR,ZI,IZI,N)

\[
\text{DO } 20 \text{ J } = 1, \text{ IR} \\
\text{DO } 10 \text{ I } = 1, \text{ N} \\
\text{ZR}(I,J) = \text{REAL}(Z(I,J)) \\
\text{ZI}(I,J) = \text{AIMAG}(Z(I,J)) \\
10 \text{ CONTINUE} \\
20 \text{ CONTINUE}
\]

where A is a complex array of dimension (IA,N), TAU is a complex array of length at least $(N - 1)$, Z is a complex array of dimension (IZ,IR), $WORK$ is a complex array of length at least (IR) and $LWORK$ is its actual length.

F01APF

Withdrawn at Mark 18.
Replaced by F06QFF and F08NFF (DORGHR).

The following replacement is valid only if the previous call to F01AKF has been replaced by a call to F08NEF (DGEHRD) as indicated above.

Old: CALL F01APF(N,K,L,INTGER,H,IH,V,IV)
New: CALL F06QFF('L',N,N,H,IH,V,IV)
CALL DORGHR(N,K,L,V,IV,TAU,WORK,LWORK,INFO)

where $WORK$ is a real array of length at least (N), and $LWORK$ is its actual length.

Note that the orthogonal matrix formed by F08NFF (DORGHR) is not the same as the non-orthogonal matrix formed by F01APF. See F01AKF above.

F01ATF

Withdrawn at Mark 18.
Replaced by F08NHF (DGEBAL).

Old: CALL F01ATF(N,IB,A,IA,K,L,D)
New: CALL DGEBAL('B',N,A,IA,K,L,D,INFO)

Note that the balanced matrix returned by F08NHF (DGEBAL) may be different from that returned by F01ATF.

F01AUF

Withdrawn at Mark 18.
Replaced by F08NJF (DGEBAK).

Old: CALL F01AUF(N,K,L,M,D,Z,IZ)
New: CALL DGEBAK('B','R',N,K,L,D,M,Z,IZ,INFO)
F01AVF

Withdrawn at Mark 18.
Replaced by F08NVF (ZGEBAL).

Old: CALL F01AVF(N,IB,AR,IAR,AL,IAI,K,L,D)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
CALL ZGEBAL('B',N,A,IA,K,L,D,INFO)
DO 20 J = 1, N
 DO 10 I = 1, N
 AR(I,J) = REAL(A(I,J))
 AI(I,J) = AIMAG(A(I,J))
 10 CONTINUE
20 CONTINUE

where A is a complex array of dimension (IA,N).

Note that the balanced matrix returned by F08NVF (ZGEBAL) may be different from that returned by F01AVF.

F01AWF

Withdrawn at Mark 18.
Replaced by F08NWF (ZGEBAK).

Old: CALL F01AWF(N,K,L,M,D,ZR,IZR,ZI,IZI)
New: DO 20 J = 1, M
 DO 10 I = 1, N
 Z(I,J) = CMPLX(ZR(I,J),ZI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
CALL ZGEBAK('B','R',N,K,L,D,M,Z,IZ,INFO)
DO 40 J = 1, M
 DO 30 I = 1, N
 ZR(I,J) = REAL(Z(I,J))
 ZI(I,J) = AIMAG(Z(I,J))
 30 CONTINUE
40 CONTINUE

where Z is a complex array of dimension (IZ,M).

F01AXF

Withdrawn at Mark 18.
Replaced by F06EFF (DCOPY) and F08BEF (DGEQPF).

Old: CALL F01AXF(M,N,QR,IQR,ALPHA,IPIV,Y,E,IFAIL)
New: CALL DGEQPF(M,N,QR,IQR,IPIV,Y,WORK,INFO)
 CALL DCOPY(N,QR,IQR+1,ALPHA,1)
 where WORK is a real array of length at least \(3 \times N\).

Note that the details of the Householder matrices returned by F08BEF (DGEQPF) are different from those returned by F01AXF, but they determine the same orthogonal matrix Q.

F01AYF

Withdrawn at Mark 18.
Replaced by F08GEF (DSPTRD).

Old: CALL F01AYF(N,TOL,A,IA,D,E,E2)
New: CALL DSPTRD('U',N,A,D,E(2),TAU,INFO)
 E(1) = 0.0D0
 DO 10 I = 1, N
 E2(I) = E(I)*E(I)
 10 CONTINUE
where TAU is a real array of length at least \((N - 1)\).

F01AZF

Withdrawn at Mark 18.
Replaced by F08GGF (DOPMTR).

The following replacement is valid only if the previous call to F01AYF has been replaced by a call to F08GEF (DSPTRD) as shown above.

Old: CALL F01AZF(N,M1,M2,A,IA,Z,IZ)
New: CALL DOPMTR('L','U','N',N,M2-M1+1,A,TAU,Z(1,M1),IZ,WORK,INFO)

where WORK is a real array of length at least \((M2 - M1 + 1)\).

F01BCF

Withdrawn at Mark 18.
Replaced by F08FSF (ZHETRD) and F08FTF (ZUNGTR).

Old: CALL F01BCF(N,TOL,AR,IAR,AI,IAI,D,E,WK1,WK2)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
 CALL ZHETRD('L',N,A,IA,D,E(2),TAU,WORK,LWORK,INFO)
 E(1) = 0.0D0
 CALL ZUNGTR('L',N,A,IA,TAU,WORK,LWORK,INFO)
 DO 40 J = 1, N
 DO 30 I = 1, N
 AR(I,J) = REAL(A(I,J))
 AI(I,J) = AIMAG(A(I,J))
 30 CONTINUE
40 CONTINUE

where A is a complex array of dimension \((IA,N)\), TAU is a complex array of length at least \((N - 1)\), WORK is a complex array of length at least \((N - 1)\), and LWORK is its actual length.

Note that the tridiagonal matrix \(T\) and the unitary matrix \(Q\) computed by F08FSF (ZHETRD) and F08FTF (ZUNGTR) are different from those computed by F01BCF, but they satisfy the same relation \(Q^H A Q = T\).

F01BDF

Withdrawn at Mark 18.
Replaced by F07DF (DPOTRF), F08SEF (DSYGST) and F06EGF (DSWAP).

Old: CALL F01BDF(N,A,IA,B,IB,DL,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J, N
 A(I,J) = A(J,I)
 B(I,J) = B(J,I)
 10 CONTINUE
 DL(J) = B(J,J)
20 CONTINUE
 CALL DPOTRF('L',N,B,IB,INFO)
 IF (INFO.EQ.0) THEN
 CALL DSYGST(2,'L',N,A,IA,B,IB,INFO)
 ELSE
 IFAIL = 1
 END IF
 CALL DSWAP(N,DL,1,B,IB+1)

IFAIL is set to 1 if the matrix B is not positive definite. It is essential to test IFAIL.
F01BEF
Withdrawn at Mark 18.
Replaced by F06YFF (DTRMM) and F06EGF (DSWAP).

Old: CALL F01BEF(N,M1,M2,B,IB,DL,V,IV)
New: CALL DSWAP(N,DL,1,B,IB+1)
 CALL DTRMM('L','L','N','N',N,M2-M1+1,1.0D0,B,IB,V(1,M1),IV)
 CALL DSWAP(N,DL,1,B,IB+1)

F01BTF
Withdrawn at Mark 18.
Replaced by F07ADF (DGETRF).

Old: CALL F01BTF(N,A,IA,P,DP,IFAIL)
New: CALL DGETRF(N,N,A,IA,IPIV,INFO)

where IPIV is an integer array of length N which holds the indices of the pivot elements, and the array P is no longer required. It may be important to note that after a call of F07ADF (DGETRF), A is overwritten by the upper triangular factor U and the off-diagonal elements of the unit lower triangular factor L, whereas the factorization returned by F01BTF gives U the unit diagonal. The permutation determinant DP returned by F01BTF is not computed by F07ADF (DGETRF). If this value is required, it may be calculated after a call of F07ADF (DGETRF) by code similar to the following:

```
DP = 1.0D0
DO 10 I = 1, N
   IF (I.NE.IPIV(I)) DP = -DP
10 CONTINUE
``` 

F01BWF
Withdrawn at Mark 18.
Replaced by F08HEF (DSBTRD).

Old: CALL F01BWF(N,M1,A,IA,D,E)
New: CALL DSBTRD('N','U',N,M1-1,A,IA,D,E(2),Q,1,WORK,INFO)

where Q is a dummy real array of length (1) (not used in this call), and WORK is a real array of length at least (N).

Note that the tridiagonal matrix computed by F08HEF (DSBTRD) is different from that computed by F01BWF, but it has the same eigenvalues.

F01LBFW
Withdrawn at Mark 18.
Replaced by F07BDF (DGBTRF).

Old: CALL F01LBFW(N,M1,M2,A,IA,AL,IL,IN,IV,IFAIL)
New: CALL DGBTRF(N,N,M1,M2,A,IA,IN,INFO)

where the size of array A must now have a leading dimension IA of at least $2 \times M1 + M2 + 1$. The array AL, its associated dimension parameter IL, and the parameter IV are not required for F07BDF (DGBTRF) because this routine overwrites A by both the L and U factors. The scheme by which the matrix is packed into the array is completely different from that used by F01LBFW; the relevant routine document should be consulted for details.

F01MAF
Withdrawn at Mark 19.
Replaced by F11JAF.

Existing programs should be modified to call F11JAF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.
F01QCF
Withdrawn at Mark 18.
Replaced by F08AEF (DGEQRF).

Old: CALL F01QCF(M,N,A,LDA,ZETA,IFAIL)
New: CALL DGEQRF(M,N,A,LDA,ZETA,WORK,LWORK,INFO)

where WORK is a real array of length at least (N), and LWORK is its actual length.

The subdiagonal elements of A and the elements of ZETA returned by F08AEF (DGEQRF) are not the same as those returned by F01QCF. Subsequent calls to F01QDF or F01QEF must also be replaced by calls to F08AFF (DORGQR) or F08AGF (DORMQR) as shown below.

F01QDF
Withdrawn at Mark 18.
Replaced by F08AGF (DORMQR).

The following replacement is valid only if the previous call to F01QCF has been replaced by a call to F08AEF (DGEQRF) as shown below or if the previous call to F01QFF has been replaced by a call to F08BEF (DGEQPF) as shown below. It also assumes that the second argument of F01QDF is set to WHERE = 'S', which is appropriate if the contents of A and ZETA have not been changed after the call of F01QCF.

Old: CALL F01QDF(TRANS,'S',M,N,A,LDA,ZETA,NCOLB,B,LDB,WORK,IFAIL)
New: CALL DORMQR('L',TRANS,M,NCOLB,N,A,LDA,ZETA,B,LDB,WORK,LWORK,INFO)

where LWORK is the actual length of WORK.

F01QEF
Withdrawn at Mark 18.
Replaced by F08AFF (DORGQR).

The following replacement is valid only if the previous call to F01QCF has been replaced by a call to F08AEF (DGEQRF) as shown above or if the previous call to F01QFF has been replaced by a call to F08BEF (DGEQPF) as shown below. It also assumes that the first argument of F01QEF is set to WHERE = 'S', which is appropriate if the contents of A and ZETA have not been changed after the call of F01QCF.

Old: CALL F01QEF('S',M,N,NCOLQ,A,LDA,ZETA,WORK,IFAIL)
New: CALL DORGQR(M,NCOLQ,N,A,LDA,ZETA,WORK,LWORK,INFO)

where LWORK is the actual length of WORK.

F01QFF
Withdrawn at Mark 18.
Replaced by F08BEF (DGEQPF).

The following replacement assumes that the first argument of F01QFF (PIVOT) is 'C'. There is no direct replacement if PIVOT = 'S'.

Old: DO 10 I = 1, N
 PERM(I) = 0
10 CONTINUE
 CALL DGEQPF(M,N,A,LDA,PERM,ZETA,WORK,INFO)

where WORK is a real array of length at least (3 x N) (F01QFF only requires WORK to be of length (2 x N)).

The subdiagonal elements of A and the elements of ZETA returned by F08BEF (DGEQPF) are not the same as those returned by F01QFF. Subsequent calls to F01QDF or F01QEF must also be replaced by calls to F08AGF (DORMQR) or F08AFF (DORGQR) as shown above. Note also that the array PERM returned by F08BEF (DGEQPF) holds details of the interchanges in a different form than that returned by F01QFF.
F01RCF
Withdrawn at Mark 18.
Replaced by F08ASF (ZGEQRF).
The subdiagonal elements of A and the elements of THETA returned by F08ASF (ZGEQRF) are not the same as those returned by F01RCF. Subsequent calls to F01RDF or F01REF must also be replaced by calls to F08AUF (ZUNMQR) or F08ATF (ZUNGQR) as shown below.

Old: CALL F01RCF(M,N,A,LDA,THETA,IFAIL)
New: CALL ZGEQRF(M,N,A,LDA,THETA,WORK,LWORK,INFO)

where WORK is a complex array of length at least (N), and LWORK is its actual length.

F01RDF
Withdrawn at Mark 18.
Replaced by F08AUF (ZUNMQR).
The following replacement is valid only if the previous call to F01RCF has been replaced by a call to F08ASF (ZGEQRF) as shown below or if the previous call to F01RFF has been replaced by a call to F08BSF (ZGEQPF) as shown below. It also assumes that the second argument of F01RDF is set to WHEREQ = 'S', which is appropriate if the contents of A and THETA have not been changed after the call of F01RCF.

Old: CALL F01RDF(TRANS,'S',M,N,A,LDA,THETA,NCOLB,B,LDB,WORK,IFAIL)
New: CALL ZUNMQR('L',TRANS,M,NCOLB,N,A,LDA,THETA,B,LDB,WORK,LWORK, & INFO)

where LWORK is the actual length of WORK.

F01REF
Withdrawn at Mark 18.
Replaced by F08ATF (ZUNGQR).
The following replacement is valid only if the previous call to F01RCF has been replaced by a call to F08ASF (ZGEQRF) as shown below or if the previous call to F01RFF has been replaced by a call to F08BSF (ZGEQPF) as shown below. It also assumes that the first argument of F01REF is set to WHEREQ = 'S', which is appropriate if the contents of A and THETA have not been changed after the call of F01RCF.

Old: CALL F01REF('S',M,N,NCOLQ,A,LDA,THETA,WORK,IFAIL)
New: CALL ZUNGQR(M,NCOLQ,N,A,LDA,THETA,WORK,LWORK,INFO)

where LWORK is the actual length of WORK.

F01RFF
Withdrawn at Mark 18.
Replaced by F08BSF (ZGEQPF).
The following replacement assumes that the first argument of F01RFF (PIVOT) is 'C'. There is no direct replacement if PIVOT = 'S'.

Old: CALL F01RFF('C',M,N,A,LDA,THETA,PERM,WORK,IFAIL)
New: DO 10 I = 1, N
 PERM(I) = 0
 10 CONTINUE
 CALL ZGEQPF(M,N,A,LDA,PERM,THETA,CWORK,WORK,INFO)

where CWORK is a complex array of length at least (N).
The subdiagonal elements of A and the elements of THETA returned by F08BSF (ZGEQPF) are not the same as those returned by F01RFF. Subsequent calls to F01RDF or F01REF must also be replaced by calls to F08AUF (ZUNMQR) or F08ATF (ZUNGQR) as shown above. Note also that the array PERM returned by F08BSF (ZGEQPF) holds details of the interchanges in a different form than that returned by F01RFF.
F02 – Eigenvalues and Eigenvectors

F02AAF
Withdrawn at Mark 18.
Replaced by F08FAF (DSYEV).

Old: CALL F02AAF(A,IA,N,R,E,IFAIL)
New: CALL DSYEV('N','L',N,A,IA,R,WORK,LWORK,INFO)
 IF (INFO.NE.0) THEN ... where WORK is a real array of length at least \((3 \times N)\) and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve performance.

F02ABF
Withdrawn at Mark 18.
Replaced by F08FAF (DSYEV).

Old: CALL F02ABF(A,IA,N,R,V,IV,E,IFAIL)
New: CALL F06QFF('L',N,N,A,IA,V,IV)
 CALL DSYEV('V','L',N,V,IV,R,WORK,LWORK,INFO)
 IF (INFO.NE.0) THEN ... where WORK is a real array of length at least \((3 \times N)\) and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve performance. If F02ABF was called with the same array supplied for V and A, then the call to F06QFF may be omitted.

F02ADF
Withdrawn at Mark 18.
Replaced by F08SAF (DSYGV).

Old: CALL F02ADF(A,IA,B,IB,N,R,DE,IFAIL)
New: CALL DSYGV(1,'N','U',N,A,IA,B,IB,R,WORK,LWORK,INFO)
 IF (INFO.NE.0) THEN ... where WORK is a real array of length at least \((3 \times N)\) and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve performance.

Note that the call to F08SAF (DSYGV) will overwrite the upper triangles of the arrays A and B and leave the subdiagonal elements unchanged, whereas the call to F02ADF overwrites the lower triangle and leaves the elements above the diagonal unchanged.

F02AEF
Withdrawn at Mark 18.
Replaced by F08SAF (DSYGV).

Old: CALL F02AEF(A,IA,B,IB,N,R,V,IV,DL,E,IFAIL)
New: CALL F06QFF('U',N,N,A,IA,V,IV)
 CALL DSYGV(1,'V','U',N,V,IV,B,IB,R,WORK,LWORK,INFO)
 IF (INFO.NE.0) THEN ...

where WORK is a real array of length at least \((3 \times N)\) and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve performance.

Note that the call to F08SAF (DSYGV) will overwrite the upper triangle of the array B and leave the subdiagonal elements unchanged, whereas the call to F02AEF overwrites the lower triangle and leaves the elements above the diagonal unchanged. The call to F06QFF copies A to V, so A is left unchanged. If F02AEF was called with the same array supplied for V and A, then the call to F06QFF may be omitted.
F02AFF

Withdrawn at Mark 18.
Replaced by F08NAF (DGEEV).

Old: CALL F02AFF(A,IA,N,RR,RI,INTGER,IFAIL)
New: CALL DGEEV(‘N’,’N’,N,A,IA,RR,RI,VR,1,VI,1, &
WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
....

where VR and VI are real arrays of length (1) (not used in this call), WORK is a real array of length at
least (4 × N) and LWORK is its actual length; the iteration counts (returned by F02AFF in the array
INTGER) are not available from F08NAF (DGEEV). Larger values of LWORK, up to some optimal
value, may improve performance.

F02AGF

Withdrawn at Mark 18.
Replaced by F08NAF (DGEEV).

Old: CALL F02AGF(A,IA,N,RR,RI,VR,IVR,VI,IVI,INTGER,IFAIL)
New: CALL DGEEV(‘N’,’V’,N,A,IA,RR,RI,VL,LDVL,VR1,LDVR1, &
WORK,LWORK,INFO)

IF (INFO.EQ.0) THEN
! Eigenvector information is stored differently in VR1
! VR(j)=VR1(j) if RI(j) = 0.0
! VR(j)=VR1(j) and VI(j)=VR1(j+1) and
! VR(j+1)=VR1(j) and VI(j+1) = - VR1(j+1) if RI(j)/= (not equals) 0 and
! RI(j) = -RI(j+1)
....

where WORK is a real array of length at least (4 × N) and LWORK is its actual length; the iteration
counts (returned by F02AGF in the array INTGER) are not available from F08NAF (DGEEV). Larger
values of LWORK, up to some optimal value, may improve performance.

F02AJF

Withdrawn at Mark 18.
Replaced by F08NNF (ZGEEV).

Old: CALL F02AJF(AR,IAR,AR,IAI,N,RR,RI,INTGER,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
 CALL ZGEEV(‘N’,’N’,N,A,LDA,R,VL,1,VR,1,WORK, &
LWORK,RWORK,INFO)
 IF (INFO.EQ.0) THEN
 DO 30 I = 1, N
 RR(I) = REAL(R(I))
 RI(I) = AIMAG(R(I))
 30 CONTINUE
....

where A is a complex array of dimension (LDA,N), LDA must be at least max(1,N), R is a complex
array of dimension (N), VR and VL are dummy complex array of length (1) (not used in this call),
RWORK is a real array of length at least (2 × N), WORK is a complex array of length at least (2 × N)
and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve
performance. The iteration counts (returned by F02AJF in the array INTGER) are not available from
F08NNF (ZGEEV).
F02AKF
Withdrawn at Mark 18.
Replaced by F08NNF (ZGEEV).

Old: CALL F02AKF(AR,IA,AR,AI,IA,N,RR,RI,VR,IVR,VI,IVI,INTGER,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
 20 CONTINUE
 CALL ZGEEV(‘N’,‘V’,N,A,LDA,R,VL,LDVL,VR1,LDVR,&
 WORK,LWORK,RWORK,INFO)
 IF (INFO.EQ.0) THEN
 DO 40 J = 1, N
 RR(J) = REAL(R(J))
 RI(J) = AIMAG(R(J))
 DO 30 I = 1, N
 VR(I,J) = REAL(VR1(I,J))
 VI(I,J) = AIMAG(VR1(I,J))
 30 CONTINUE
 40 CONTINUE
...

where A is a complex array of dimension (LDA,N), LDA is at least max(1,N), R is a complex array of length (N), VL is a complex array of dimension (1,N), LDVL is 1, VR1 is a complex array of dimension (LDVR,N), LDVR is at least max(1,N), RWORK is a real array of length at least (2 × N), WORK is a complex array of length at least (2 × N) and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve performance. The iteration counts (returned by F02AKF in the array INTGER) are not available from F08NNF (ZGEEV).

F02AMF
Withdrawn at Mark 18.
Replaced by F08JEF (DSTEQR).

Old: CALL F02AMF(N,EPS,D,E,V,IV,IFAIL)
New: CALL DSTEQR(‘V’,N,D,E(2),V,IV,WORK,INFO)

where WORK is a real array of length at least (2 × (N − 1)).

F02ANF
Withdrawn at Mark 18.
Replaced by F08PSF (ZHSEQR).

Old: CALL F02ANF(N,EPS,HR,IHR,HI,IHI,RR,RI,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 H(I,J) = CMPLX(HR(I,J),HI(I,J),KIND=nag_wp)
 10 CONTINUE
 20 CONTINUE
 CALL ZHSEQR(‘E’,‘N’,N,1,N,H,IH,R,Z,1,WORK,1,INFO)
 DO 30 I = 1, N
 RR(I) = REAL(R(I))
 RI(I) = AIMAG(R(I))
 30 CONTINUE

where H is a complex array of dimension (IH,N), R is a complex array of length (N), Z is a dummy complex array of length (1) (not used in this call), and WORK is a complex array of length at least (N).

F02APF
Withdrawn at Mark 18.
Replaced by F08PEF (DHSEQR).

Old: CALL F02APF(N,EPS,H,IH,RI,ICNT,IFAIL)
New: CALL DHSEQR(‘E’,‘N’,N,1,N,H,1,RR,1,R,1,WORK,1,INFO)
where Z is a dummy real array of length (1) (not used in this call), and WORK is a real array of length at least $(3 \times N)$; the iteration counts (returned by F02APF in the array ICNT) are not available from F08PEF (DHSEQR).

F02AQF

Withdrawn at Mark 18.
Replaced by F08PEF (DHSEQR) and F08QKF (DTREVC).

Old: CALL F02AQF(N,K,L,EPS,H,IV,IH,H,IH,RR,RH.Linked,INTGER,IFAIL)
CALL DTREVC('R','O',SELECT,N,H,IH,H,IV,H,IV,N,N,M,WORK,INFO)

where SELECT is a dummy logical array of length (1) (not used in this call), and WORK is a real array of length at least $(3 \times N)$; the iteration counts (returned by F02AQF in the array INTGER) are not available from F08PEF (DHSEQR); M is an integer which is set to N by F08QKF (DTREVC).

F02ARF

Withdrawn at Mark 18.
Replaced by F08PSF (ZHSEQR) and F08QXF (ZTREVC).

Old: CALL F02ARF(N,K,L,EPS,INTGER,HR,IHR,HI,IHI,RR,RH.Linked,VR,IVR,VI,IVI,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 H(I,J) = CMPLX(HR(I,J),HI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
CALL ZHSEQR('S','V',N,K,L,H,IH,R,V,IV,WORK,1,INFO)
CALL ZTREVC('R','O',SELECT,N,H,IH,V,IV,V,IV,N,N,M,WORK,RWORK,INFO)
DO 40 J = 1, N
 RR(J) = REAL(R(J))
 RI(J) = AIMAG(R(J))
 DO 30 I = 1, N
 VR(I,J) = REAL(V(I,J))
 VI(I,J) = AIMAG(V(I,J))
 30 CONTINUE
40 CONTINUE

where H is a complex array of dimension (IH,N), R is a complex array of length (N), V is a complex array of dimension (IV,N), WORK is a complex array of length at least $(2 \times N)$ and RWORK is a real array of length at least (N); M is an integer which is set to N by F08QXF (ZTREVC).

If F02ARF was preceded by a call to F01AMF to reduce a full complex matrix to Hessenberg form, then the call to F01AMF must also be replaced by calls to F08NSF (ZGEHRD) and F08NTF (ZUNGHR). IH must be $\geq \max(1,N)$ and IV must be $\geq \max(1,N)$.

F02AVF

Withdrawn at Mark 18.
Replaced by F08JFF (DSTERF).

Old: CALL F02AVF(N,EPS,D,E,IFAIL)
New: CALL DSTERF(N,D,E(2),INFO)
F02AWF

Withdrawn at Mark 18.
Replaced by F08FNF (ZHEEV).

Old: CALL F02AWF(AR,IAR,ALN,III,NN,RR,WK1,WK2,WK3,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
CALL ZHEEV('N','L',N,A,LDA,R,WORK,LWORK,RWORK,INFO)
IF (INFO.EQ.0) THEN
 ...
where A is a complex array of dimension (LDA,N), LDA is at least max(1,N) RWORK is a real array of length at least max(1,3×N−2), WORK is a complex array of length at least (2×N) and LWORK is its actual length. Larger values of LWORK, up to some optimal value, may improve performance.

F02AXF

Withdrawn at Mark 18.
Replaced by F08FNF (ZHEEV).

Old: CALL F02AXF(AR,IAR,ALN,III,NN,RR,VR,IVR,VI,IVI,WK1,WK2,WK3,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
CALL F06TFF('L',N,N,A,LDA,V,LDV)
CALL ZHEEV('V','L',N,V,LDV,R,WORK,LWORK,RWORK,INFO)
IF (INFO.EQ.0) THEN
 DO 40 J = 1, N
 DO 30 I = 1, N
 VR(I,J) = REAL(V(I,J))
 VI(I,J) = AIMAG(V(I,J))
 30 CONTINUE
 40 CONTINUE
 ...
where A is a complex array of dimension (LDA,N), LDA is at least max(1,N), V is a complex array of dimension (LDV,N), LDV is at least max(1,N), RWORK is a real array of length at least max(1,3×N−2), WORK is a complex array of length at least (2×N) and LWORK is its actual length. If F02AXF was called with the same arrays supplied for VR and AR and for VI and AI, then the call to F06TFF may be omitted.

F02AYF

Withdrawn at Mark 18.
Replaced by F08JSF (ZSTEQR).

Old: CALL F02AYF(N,NN,RR,VR,IVR,VI,IVI,IFAIL)
New: CALL ZSTEQR('V',N,D,E(2),V,IV,WORK,INFO)
 DO 40 J = 1, N
 DO 30 I = 1, N
 VR(I,J) = REAL(V(I,J))
 VI(I,J) = AIMAG(V(I,J))
 30 CONTINUE
 40 CONTINUE
where V is a complex array of dimension (IV,N), and WORK is a real array of length at least (2×(N−1)).
F02BBF

Withdrawn at Mark 19.
Replaced by F08FBF (DSYEVD).

ICOUNT,IFAIL)
New: CALL DSYEVD('U', 'V', 'L', N, A, LDA, RLB, RUB, &
0, 0, 2*X02AMF(), MM, R, V, LDV, WORK, LWORK, IWORK, &
JFAIL, INFO)

where R must have dimension at least max(1,N), WORK is a real array of length at least (4 × N),
LWORK is its actual length, JFAIL is an integer array of length at least max(1,N), and IWORK is an
integer array of length at least (5 × N). Note that in the call to F02BBF R needs only to be of dimension
(M). Larger values of LWORK, up to some optimal value, may improve performance. Arguments C,
ICOUNT, X, G, E2, E and D are not used.

F02BCF

Withdrawn at Mark 19.
Replaced by F02ECF.

Old: CALL F02BCF(A,IA,N,ALB,UB,M,MM,RR,RI,VR,IVR,VI,IVI, &
INTEGER,ICNT,C,B,IB,U,V,IFAIL)
New: CALL F02ECF('Moduli',N,A,IA,ALB,UB,M,MM,RR,RI,VR,IVR, &
VI,IVI,WORK,LWORK,ICNT,C,IFAIL)

where WORK is a real array of length at least (N × (N + 4)) and LWORK is its actual length.

F02BDF

Withdrawn at Mark 19.
Replaced by F02GCF.

Old: CALL F02BDF(AR,IAR,IAI,IA,N,ALB,UB,M,MM,RR,RI,VR,IVR, &
VI,IVI,INTEGER,C,BR,IBR,BI,IBI,U,V,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = 1, N
 A(I,J) = CMPLX(AR(I,J),AI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
 CALL F02GCF('Moduli',N,A,IA,ALB,UB,M,MM,R,V,IV,WORK, &
LWORK,RWORK,INTEGER,C,IFAIL)
 DO 30 I = 1, N
 RR(I) = REAL(R(I))
 RI(I) = AIMAG(R(I))
 30 CONTINUE
 DO 50 J = 1, MM
 DO 40 I = 1, N
 VR(I,J) = REAL(V(I,J))
 VI(I,J) = AIMAG(V(I,J))
 40 CONTINUE
 50 CONTINUE

where A is a complex array of dimension (IA,N), R is a complex array of dimension (N), V is a
complex array of dimension (IV,M), WORK is a complex array of length at least (N × (N + 2)),
LWORK is its actual length, and RWORK is a real array of length at least (2 × N).

F02BEF

Withdrawn at Mark 18.
Replaced by F08JJF (DSTEBZ) and F08JKF (DSTEIN).

Old: CALL F02BEF(N,D,ALB,UB,EPS,EPS1,E,E2,M,MM,R,V,IV,ICOUNT,X,C, &
IFAIL)
New: CALL DSTEBZ('B',N,ALB,UB,0,0,EPS1,D,0,NSPLIT,IBLOCK, &
ISPLIT,X,INFO)
 CALL DSTEIN(N,D,E(2),MM,R,IBLOCK,ISPLIT,V,IV,X,IWORK,IFAILV,INFO)
where NSPLIT is an integer variable, IBLOCK, ISPLIT and IFAILV are integer arrays of length at least \((N)\), and IWORK is an integer array of length at least \((3 \times N)\).

F02BFF

Withdrawn at Mark 18.
Replaced by F08JJF (DSTEBZ).

Old: CALL F02BFF(D,E,E2,N,M1,M2,MM12,EPS1,EPS,EPS2,I2,R,WU)
New: CALL DSTEB2('I','E',N,0.0D0,0.0D0,M1,M2,EPS1,D,E(2),M, & NSPLIT,R,IBLOCK,ISPLIT,WORK,IWORK,INFO)

where \(M\) and NSPLIT are integer variables, IBLOCK and ISPLIT are integer arrays of length at least \((N)\), WORK is a real array of length at least \((4 \times N)\), and IWORK is an integer array of length at least \((3 \times N)\).

F02BJF

Withdrawn at Mark 23.
Replaced by F08WAF (DGGEV).

Old: CALL F02BJF(N,A,LDA,B,LDB,EPS1,ALFR,ALFI,BETA,MATV,V,LDV,ITER,IFAIL)
New: IF (MATV) THEN
 JOBVR = 'V'
ELSE
 JOBVR = 'N'
ENDIF
CALL DGGEV('N',JOBVR,N,A,LDA,B,LDB,ALFR,ALFI,BETA,VL,LDVL, & VR,LDVL,WORK,INFO)
IF (INFO.EQ.0) THEN
...}

F02BKF

Withdrawn at Mark 18.
Replaced by F08PKF (DHSEIN).

where M2 is an integer variable, and IFAILR is an integer array of length at least \((N)\).

Note that the array C may be modified by F08PKF (DHSEIN) if there are complex conjugate pairs of eigenvalues.
F02BLF

Withdrawn at Mark 18.
Replaced by F08PXF (ZHSEIN).

Old: CALL F02BLF(N,M,HR,IHR,HI,IHI,RI,RR,IVR,IVI,VI,IVI,BR,IBR,BI, &
 IBI,U,W,IFAIL)
New: DO 20 J = 1, N
 R(J) = CMPLX(RR(J),RI(J),KIND=nag_wp)
 DO 10 I = 1, N
 H(I,J) = CMPLX(HR(I,J),HI(I,J),KIND=nag_wp)
 10 CONTINUE
20 CONTINUE
 IFAILR,IFAILR,INFO)
 DO 30 I = 1, N
 RR(I) = REAL(R(I))
 30 CONTINUE
 DO 50 J = 1, M
 DO 40 I = 1, N
 VR(I,J) = REAL(V(I,J))
 VI(I,J) = AIMAG(V(I,J))
 40 CONTINUE
50 CONTINUE

where H is a complex array of dimension (IH,N), R is a complex array of length (N), V is a complex
array of dimension (IV,M), M2 is an integer variable, WORK is a complex array of length at least
(N×N), RWORK is a real array of length at least (N×N), and IFAILR is an integer array of length at least
(N).

F02EAF

Withdrawn at Mark 23.
Replaced by F08PAF (DGEES).

Old: CALL F02EAF(JOB,N,A,LDA,WR,VI,Z,LDZ,WORK,LWORK,IFAIL)
New: LOGICAL SELECT
 EXTERNAL SELECT
 ... IF (JOB.EQ.'N') THEN
 JOBVS = 'N'
 ELSE
 JOBVS = 'V'
 END IF
 CALL DGEES(JOBVS,'N',SELECT,N,A,LDA,0,WR,VI,Z,LDZ,WORK, &
 LWORK,BWORK,INFO)
 IF (INFO.EQ.0) THEN
 ... LOGICAL FUNCTION SELECT(AR, AI)
 REAL (KIND=nag_wp) :: AR, AI
 SELECT = .TRUE.
 RETURN
 ENDK
F02EBF

Withdrawn at Mark 23.
Replaced by F08NAF (DGEEV).

Old: CALL F02EBF(JOB,N,A,LDA,WR,VI,VR,LDVR,VI,LDVI,WORK,LWORK,
 &
 IFAIL)
New: IF (JOB.EQ.'N') THEN
 JOBVR = 'N'
 ELSE
 JOBVR = 'V'
 END IF
 CALL DGEEV('N',JOBVR,N,A,LDA,WR,VI,VL,LDVL,VR1,LDVR1,
 &
 WORK,LWORK,INFO)
 IF (INFO.EQ.0) THEN
 ! Eigenvector information is stored differently.
 ! For complex conjugate pairs (that is, corresponding
 ! to the j-th eigenvector such that WI(j) is nonzero,
 ! and WI(j) = -WI(j+1)), the real and imaginary parts
 ! of the first of the pair of eigenvectors are stored
 ! as consecutive columns of VR1: VR1(:,j), VR1(:,j+1).
 ! The second in the pair is just the conjugate of the
 ! first, so can be constructed by negating the
 ! elements in VR1(:,j+1).
 ! If the j-th eigenvector is real (WI(j)=0), the
 ! corresponding real eigenvector is stored in the
 ! j-th column of VR1, VR1(1:N,j).

F02FAF

Withdrawn at Mark 23.
Replaced by F08FAF (DSYEV).

Old: CALL F02FAF(JOB,UPLO,N,A,LDA,W,WORK,LWORK,IFAIL)
New: CALL DSYEV(JOB,UPLO,N,A,LDA,W,WORK,LWORK,INFO)
 IF (INFO.EQ.0) THEN
 ...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.

F02FCF

Withdrawn at Mark 23.
Replaced by F08FBF (DSYEVX).

Old: CALL F02FCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,MEST,M,
 &
 Z,LDZ,WORK,LWORK,IWORK,IFAIL)
New: CALL DSYEVX(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IU,ABSTOL,M,
 &
 Z,LDZ,WORK,LWORK,IWORK,JFAIL,INFO)
 IF (INFO.EQ.0) THEN
 ...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.

F02FDF

Withdrawn at Mark 23.
Replaced by F08SAF (DSYGV).

Old: CALL F02FDF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,IFAIL)
New: CALL DSYGV(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,INFO)
 IF (INFO.EQ.0) THEN
 ...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.
The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = −1) should be used to determine the requirement for optimal performance.

F02FHF

Withdrawn at Mark 23.
Replaced by F08UAF (DSBGV).

Old: CALL F02FHF(N,MA,A,LDA,MB,B,LDB,D,WORK,LWORK,IFAIL)

IF (INFO.EQ.0) THEN
...

The order of eigenvalues in D changes from descending to ascending.
The minimum workspace requirement has changed to become LWORK = 3 × N

F02GAF

Withdrawn at Mark 23.
Replaced by F08PNF (ZGEES).

Old: CALL F02GAF(JOB,N,A,LDA,W,Z,LDZ,RWORK,WORK,LWORK,IFAIL)
New: LOGICAL BWORK(1)
 LOGICAL SELECT
 EXTERNAL SELECT
 ...
 IF (JOB.EQ.’N’) THEN
 JOBVS = ’N’
 ELSE
 JOBVS = ’V’
 END IF
 CALL ZGEES(JOBVS,’N’,SELECT,N,A,LDA,0,W,Z,LDZ, &
 WORK,LWORK,BWORK,INFO)
 IF (INFO.NE.0) THEN
 ...
 END

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = −1) should be used to determine the requirement for optimal performance.

F02GBF

Withdrawn at Mark 23.
Replaced by F08NNF (ZGEEV).

Old: CALL F02GBF(JOB,N,A,LDA,W,V,LDV,RWORK,WORK,LWORK,IFAIL)
New: CALL ZGEEV(’N’,JOB,N,A,LDA,W,VL,LDVL,V,LDV, &
 WORK,LWORK,INFO)
 IF (INFO.EQ.0) THEN
 ...

F02GJF

Withdrawn at Mark 23.
Replaced by F08WNF (ZGGEV).

Old:
CALL F02GJF(N,AR,LDA,AR,LDAR,AI,LDAI,BR,LDBR,BI,LDBI,EPS1,ALFR, &
ALFI,BETEA,VR,LDVR,VL,LDVL,ITER,IFAIL)

New:
IF (MATV) THEN
JOBVR = 'V'
ELSE
JOBVR = 'N'
END IF

! Set A=AR + iAI and B = BR+iBI
CALL ZGGEV('N',JOBVR,N,A,LDA,B,LDB,ALPHA,BETA,VL,LDVL, &
V,LDV,WORK,LWORK,RWORK,INFO)

IF (INFO.EQ.0) THEN
...

Note that the separated real and imaginary parts of input and output data in F02GJF has been replaced by combined complex types in F08WNF (ZGGEV).

F02HAF

Withdrawn at Mark 23.
Replaced by F08FNF (ZHEEV).

Old:
CALL F02HAF(JOB,UPLO,N,A,LDA,W,RWORK,WORK,LWORK,IFAIL)

New:
CALL ZHEEV(JOB,UPLO,N,A,LDA,W,WORK,LWORK,RWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.

F02HCF

Withdrawn at Mark 23.
Replaced by F08FPF (ZHEEVX).

Old:
CALL F02HCF(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IL,INFO,MEST,M, &
W,Z,LDZ,WORK,LWORK,RWORK,INFO)

New:
CALL ZHEEVX(JOB,RANGE,UPLO,N,A,LDA,WL,WU,IL,IL,ABSTOL,M, &
W,Z,LDZ,WORK,LWORK,RWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.

F02HDF

Withdrawn at Mark 23.
Replaced by F08SNF (ZHEGV).

Old:
CALL F02HDF(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,RWORK,WORK, &
LWORK,IFAIL)

New:
CALL ZHEGV(ITYPE,JOB,UPLO,N,A,LDA,B,LDB,W,WORK,LWORK,RWORK,INFO)

IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.
F02SDF

Scheduled for withdrawal at Mark 27.
Replaced by F12AGF and F12FGF.

Old: CALL F02SDF(N,MA+1,MB+1,A,LDA,B,LDB,SYM,RELEP,RMU,VEC,D,IWORK,WORK, &
 LWORK,IFAIL)
New: LICOMM = 140
 LCOMM = 3*N + 3*NCV*NCV + 6*NCV + 60
 ALLOCATE (COMM(LCOMM),DR(NCV),DI(NCV),RESID(N),V(N,NCV), &
 ICOMM(LICOMM))
 ! B is symmetric definite:
 IF (B_symm_def) THEN
 CALL F12AFF(N,1,NCV,ICOMM,LICOMM,COMM,LCOMM,IFAIL)
 CALL F12ADF(’Generalized’,ICOMM,COMM,IFAIL)
 CALL F12ADF(’Shifted Inverse’,ICOMM,COMM,IFAIL)
 CALL F12AGF(KL,KU,A,LDA,B,LDB,RMU,0.0,NCONV,DR,DI,V,N,RESID, &
 V,LDV,COMM,ICOMM,IFAIL)
 VEC(1:N) = V(1:N,1)
 ELSE
 CALL F12AAF(N,NEV,NCV,ICOMM,LICOMM,COMM,LCOMM,IFAIL)
 ALLOCATE(C(LDA,N),IPIV(N),X(N),MX(N))
 C = A - RMU*B
 CALL DGBTRF(N,N,KL,KU,C,LDA,IPIV,INFO)
 IREVCM = 0
 DO WHILE (IREVCM/=5)
 CALL F12ABF(IREVCM,RESID,V,LDV,X,MX,NSHIFT,COMM,ICOMM,IFAIL)
 IF (IREVCM==1) THEN
 ! Perform x <-- OP*x = inv[A-SIGMA*B]*Bx.
 CALL DGBMV(’N’,N,N,KL,KU,ONE,B,LDB,X,1,ZERO,MX,1)
 X(1:N) = MX(1:N)
 CALL DGBTRS(’N’,N,KL,KU,1,C,LDA,IPIV,X,N,INFO)
 END IF
 END IF
 ! Post-process using F12ACF to compute eigenvalue.
 CALL F12ACF(NCONV,DR,DI,V,LDV,RMU,0.0,RESID,V,N,COMM,ICOMM,IFAIL)
 LR = DR(1)/(DR(1)**2+DI(1)**2) + RMU
 END IF

F02SWF

Withdrawn at Mark 18.
Replaced by F08KEF (DGEBRD).

The following replacement ignores the triangular structure of A, and therefore references the subdiagonal
elements of A; however on many machines the replacement code will be more efficient.

Old: CALL F02SWF(N,A,LDA,D,E,NCOLY,Y,LDY,WANTQ,Q,LDQ,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J+1, N
 A(I,J) = 0.0D0
 10 CONTINUE
 20 CONTINUE
 CALL DGEBRD(N,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO)
 IF (WANTQ) THEN
 CALL F06QFF(’L’,N,N,A,LDA,Q,LDQ)
 CALL DORGBR(’Q’,N,N,N,Q,LDQ,TAUQ,WORK,LWORK,INFO)
 END IF
 IF (NCOLY.GT.0) THEN
 CALL DORMBR(’Q’,’L’,’T’,N,NCOLY,N,A,LDA,TAUQ,Y,LDY, &
 WORK,LWORK,INFO)
 END IF

where TAUQ, TAUP and WORK are real arrays of length at least (N), and LWORK is the actual length
of WORK.
Replacement Calls

F02SXF
Withdrawn at Mark 18.
Replaced by F08KFF (DORGBR) and F08KGF (DORMBR).
The following replacement is valid only if the previous call to F02SWF has been replaced by a call to
F08KEF (DGEBRD) as shown above.
Old: CALL F02SXF(N,A,LDA,NCOLY,Y,LDY,WORK,IFAIL)
New: IF (NCOLY.EQ.0) THEN
 CALL DORGBR('P',N,N,N,A,LDA,TAUP,WORK,LWORK,INFO)
 ELSE
 CALL DORMBR('P','L','T',N,NCOLY,N,A,LDA,TAUP,Y,LDY,WORK, &
 LWORK,INFO)
 END IF

F02SYF
Withdrawn at Mark 18.
Replaced by F08MEF (DBDSQR).
Old: CALL F02SYF(N,D,E,NCOLB,B,LDB,NROWY,Y,LDY,NCOLZ,Z,LDZ,WORK, &
 IFAIL)
New: CALL DBDSQR('U',N,NCOLZ,NROWY,NCOLB,D,E,Z,LDZ,Y,LDY,B,LDB,WORK, &
 INFO)
where WORK is a real array of length at least \(4 \times (N - 1)\) unless NCOLB = NROWY = NCOLZ = 0.

F02UWF
Withdrawn at Mark 18.
Replaced by F08KSF (ZGEBRD), F06TFF, F08KTF (ZUNGBR) and F08KUF (ZUNMBR).
The following replacement ignores the triangular structure of A; however on many machines the replacement code will be more efficient.
Old: CALL F02UWF(N,A,LDA,D,E,NCOLY,Y,LDY,WANTQ,Q,LDQ,WORK,IFAIL)
New: DO 20 J = 1, N
 DO 10 I = J+1, N
 A(I,J) = 0.0D0
 10 CONTINUE
 20 CONTINUE
 CALL ZGEBRD(N,N,A,LDA,D,E,TAUQ,TAUP,WORK,LWORK,INFO)
 IF (WANTQ) THEN
 CALL F06TFF('L',N,N,A,LDA,Q,LDQ)
 CALL ZUNGBR('Q',N,N,N,Q,LDQ,TAUQ,WORK,LWORK,INFO)
 END IF
 IF (NCOLY.GT.0) THEN
 CALL ZUNMBR('Q','L','C',N,NCOLY,N,A,LDA,TAUQ,Y,LDY, &
 WORK,LWORK,INFO)
 END IF
where TAUQ and TAUP are complex arrays of length at least (N), and LWORK is the actual length of WORK.

F02UXF
Withdrawn at Mark 18.
Replaced by F08KTF (ZUNGBR) or F08KUF (ZUNMBR).
The following replacement is valid only if the previous call to F02UWF has been replaced by a call to
F08KSF (ZGEBRD) as shown above.
Old: CALL F02UXF(N,A,LDA,NCOLY,Y,LDY,RWORK,CWORK,IFAIL)
New: IF (NCOLY.EQ.0) THEN
 CALL ZUNGBR('P',N,N,N,A,LDA,TAUP,CWORK,LWORK,INFO)
 ELSE
 CALL ZUNMBR('P','L','C',N,NCOLY,N,A,LDA,TAUP,Y,LDY,CWORK, &
 LWORK,INFO)
 END IF

Mark 25

REPLACE.43
where LWORK is the actual length of CWORK.

F02UYF

Withdrawn at Mark 18.
Replaced by F08MSF (ZBDSQR).

```
Old: CALL F02UYF(N,D,E,NCOLB,B,LDB,NROWY,Y,LDY,NCOLZ,Z,LDZ,WORK, & IFAIL)
New: CALL ZBDSQR('U',N,NCOLZ,NROWY,NCOLB,D,E,Z,LDZ,Y,LDY,B,LDB,WORK, & INFO)
```

where WORK is a real array of length at least $(4 \times (N - 1))$ unless NCOLB = NROWY = NCOLZ = 0.

F02WDF

Scheduled for withdrawal at Mark 27.
Replaced by F02WUF and F08AEF (DGEQRF).

The Householder QU factorization part of the functionality can be achieved with F08AEF (DGEQRF).
The action Q^Tb can be computed by a call to F08AGF (DORMQR). The orthogonal matrix Q can be explicitly constructed, in-place, by a subsequent call to F08AFF (DORGQR).

If the singular value decomposition (SVD) of U is required, the result of F08AEF (DGEQRF) must be fed to F02WUF, remembering that the first orthogonal matrix of the SVD is called Q in F02WUF and R in F02WDF.

```
Old: IFAIL = 0
CALL F02WDF(M,N,A,LDA,WANTB,B,TOL,SVD,IRANK,Z,SV,WANTR,R, & LDR,WANTPT,PT,LDPT,WORK,LWORK,IFAIL)
New: LWORK = -1
CALL DGEQRF(M,N,A,LDA,Z,WORK,LWORK,INFO)
ALLOCATE (WORK)
CALL DGEQRF(M,N,A,LDA,Z,WORK,LWORK,INFO)
NCOLB = 1
IF (WANTB) THEN
   CALL DORMQR('L','T',M,NCOLB,N,A,LDA,Z,B,M,WORK,LWORK,INFO)
END IF
IF (.NOT. SVD) THEN
   ! construct Q explicitly, overwrites A
   CALL DORGQR(M,M,A,LDA,Z,WORK,LWORK,INFO)
ELSE
   ! SVD factorization, PT overwrites A
   DEALLOCATE (WORK)
   ALLOCATE (WORK(5*N))
   CALL F02WUF(N,A,LDA,NCOLB,B,M,WANTR,R,LDR,SV,WANTPT,WORK,IFAIL)
   ! compute rank
   IRANK = F06KLF(N,SV,1,TOL)
END IF
```
F02WEF

Withdrawn at Mark 23.
Replaced by F08KBF (DGESVD).

Old:
\[\text{CALL F02WEF(M,N,A,LDA,NCOLB,B,LDB,WANTQ,Q,LDQ,SV,WANTP, PT,LDPT,WORK,IFAIL)} \]

New:
\[\text{IF (WANTQ) THEN} \]
\[\text{JOBU = 'A'} \]
\[\text{ELSE} \]
\[\text{JOBU = 'N'} \]
\[\text{END IF} \]
\[\text{IF (WANTP) THEN} \]
\[\text{JOBVT = 'A'} \]
\[\text{ELSE} \]
\[\text{JOBVT = 'N'} \]
\[\text{END IF} \]
\[\text{LWORK = -1} \]
\[\text{CALL DGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,WORK,LWORK,INFO)} \]
\[\text{LWORK = ANINT(WORK(1))} \]
\[\text{ALLOCATE (W(LWORK))} \]
\[\text{CALL DGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,W,LWORK,INFO)} \]
\[\text{DEALLOCATE (W)} \]

WORK must be a one-dimensional real array of length at least \(lwork \) given by:
\[\text{max(1, } 3 \times \text{min(M,N)} + \max(M,N), 5 \times \text{min(M,N})) \]

Larger values of LWORK, up to some optimal value, may improve performance.

Please note that the facility to return \(Q^T B \) is not provided so arguments WANTB and B are not required. Instead, F08KBF (DGESVD) has an option to return the entire \(M \times M \) orthogonal matrix \(Q \), referred to as \(U \) in its documentation, through its 8th argument.

F02XEF

Withdrawn at Mark 23.
Replaced by F08KPF (ZGESVD).

Old:
\[\text{CALL F02XEF(M,N,A,LDA,NCOLB,B,LDB,WANTQ,Q,LDQ,SV,WANTP, PH,LDPH,RWORK,CWORK,IFAIL)} \]

New:
\[\text{IF (WANTQ) THEN} \]
\[\text{JOBU = 'A'} \]
\[\text{ELSE} \]
\[\text{JOBU = 'N'} \]
\[\text{END IF} \]
\[\text{IF (WANTP) THEN} \]
\[\text{JOBVT = 'A'} \]
\[\text{ELSE} \]
\[\text{JOBVT = 'N'} \]
\[\text{END IF} \]
\[\text{LWORK = -1} \]
\[\text{CALL ZGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,WORK, RWORK,INFO)} \]
\[\text{LWORK = ANINT(WORK(1))} \]
\[\text{ALLOCATE (W(LWORK))} \]
\[\text{CALL ZGESVD(JOBU,JOBVT,M,N,A,LDA,SV,Q,LDQ,PT,LDPT,W,RWORK,INFO)} \]
\[\text{DEALLOCATE (W)} \]

WORK must be a one-dimensional complex array of length at least \(lwork \) given by:
\[\text{max(1, } 2 \times \text{min(M,N)} + \max(M,N)) \]

WORK must be a one-dimensional real array of length \(\max(1, 5 \times \text{min(M,N)}) \).
Larger values of LWORK, up to some optimal value, may improve performance.

Please note that the facility to return $Q^H B$ is not provided so parameters WANTB and B are not required. Instead, F08KPF (ZGESVD) has an option to return the entire $M \times M$ unitary matrix Q, referred to as U in its documentation, through its 8th argument.

F03 – Determinants

F03AAF

Withdrawn at Mark 25.

Replaced by F07ADF (DGETRF) and F03BAF.

Old: IFAIL = 0
 CALL F03AAF(A,LDA,N,DET,WKSPCE,IFAIL)
New: INTEGER IPIV(N)
 ...
 CALL DGETRF(N,N,A,IPIV,INFO)
 IFAIL = 0
 CALL F03BAF(N,A,IPIV,D,ID,IFAIL)
 DET = D*2**ID

Note: the real array WKSPCE has been replaced by the integer array IPIV for holding the pivots of the factorization.

F03ABF

Withdrawn at Mark 25.

Replaced by F07FDF (DPOTRF) and F03BFF.

Old: IFAIL = 0
 CALL F03ABF(A,LDA,N,DET,WKSPCE,IFAIL)
New: CALL DPOTRF('U',N,A,LDA,INFO)
 IFAIL = 0
 CALL F03BFF(N,A,LDA,D,ID,IFAIL)
 DET = D*2**ID

Note: the real array WKSPCE is no longer required. Also the upper triangular part of A, stored in A, has been replaced here by its Cholesky factorization; the lower triangular part of A can be used and overwritten by replacing ‘U’ by ‘L’ in the call to DPOTRF above.

F03ACF

Withdrawn at Mark 25.

Replaced by F07HDF (DPBTRF) and F03BHF.

Old: IFAIL = 0
 CALL F03ACF(A,LDA,N,M,DET,RL,LDRL,M1,IFAIL)
New: CALL DPBTRF('L',N,M,AB,LDAB,INFO)
 IFAIL = 0
 CALL F03BHF('L',N,KD,AB,LDAB,D,ID,IFAIL)
 DET = D*2**ID

Note: the storage of A in arrays A and AB is different. In fact $AB(i,j) = A(j,i)$, for $i = 1, 2, \ldots, m$ and $j = \max(1, i - m), \ldots, i$ which conforms to the LAPACK banded storage scheme. The factorization is returned in AB rather than in a separate array (RL). The upper part of matrix A can also be stored in AB on input to DPBTRF.
F03ADF

Withdrawn at Mark 25.
Replaced by F07ARF (ZGETRF) and F03BNF.

Old: IFAIL = 0
 CALL F03ADF(A,LDA,N,DETR,DETI,WKSPCE,IFAIL)
New: INTEGER IPIV(N)
 ...
 CALL ZGETRF(N,N,A,LDA,IPIV,INFO)
 IFAIL = 0
 CALL F03BNF(N,A,LDA,IPIV,D,ID,IFAIL)
 DETR = REAL(D)*2**ID(1)
 DETI = AIMAG(D)*2**ID(2)

Note: the real array WKSPCE has been replaced by the integer array IPIV for holding the pivots of the factorization. The real and imaginary parts of the determinant are independently scaled.

F03AEF

Withdrawn at Mark 25.
Replaced by F07FDF (DPOTRF) and F03BFF.

Old: IFAIL = 0
 CALL F03AEF(N,A,LDA,P,D1,ID,IFAIL)
New: CALL DPOTRF('U',N,A,LDA,INFO)
 IFAIL = 0
 CALL F03BFF(N,A,LDA,D1,ID,IFAIL)

Note: the upper triangular part of A, stored in A, has been replaced here by its Cholesky factorization; the lower triangular part of A can be used and overwritten by replacing UPLO = 'U' by UPLO = 'L' in the call to F07FDF (DPOTRF) above.

F03AFF

Withdrawn at Mark 25.
Replaced by F07ADF (DGETRF) and F03BAF.

Old: IFAIL = 0
 CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)
New: INTEGER IPIV(N)
 ...
 CALL DGETRF(N,N,A,LDA,IPIV,INFO)
 IFAIL = 0
 CALL F03BAF(N,A,LDA,IPIV,D1,ID,IFAIL)

Note: real array P has been replaced by the integer array IPIV for holding the pivots of the factorization.

F04 – Simultaneous Linear Equations

F04AAF

Withdrawn at Mark 23.
Replaced by F07AAF (DGESV).

Old: CALL F04AAF(A,LDA,B,LDB,N,M,C,LDC,WKSPCE,IFAIL)
New: CALL DGESV(N,M,A,LDA,IPIV,B,LDB,INFO)
 IF (INFO.EQ.0) THEN
 Answer now in B
 ...

Mark 25

REPLACE.47
F04ACF
Withdrawn at Mark 23.
Replaced by F07HAF (DPBSV).

Old: CALL F04ACF(A,LDA,B,LDB,N,M,IR,C,LDC,RL,LDRL,M1,IFAIL)
New: CALL DPBSV('U',N,M,IR,AB,LDAB,B,LDB,INFO)
IF (INFO.EQ.0) THEN
 ! A and AB are stored differently.
 ! AB may be regarded as the transpose of A, with the 'U' option.
 ! Thus LDAB might be M+1
 ! Answer now in B
...

F04ADF
Withdrawn at Mark 23.
Replaced by F07ANF (ZGESV).

Old: CALL F04ADF(A,LDA,B,LDB,N,M,C,LDC,WKSPCE,IFAIL)
New: CALL ZGESV(N,M,A,IPIV,B,LDB,INFO)
IF (INFO.EQ.0) THEN
 ! Answer now in B
...

F04AFF
Withdrawn at Mark 25.
There is no replacement for this routine.
The factorization and solution of a positive definite linear system can be handled by calls to routines
from Chapter F07, e.g., F07FBF (DPOSVX).
For example:
Old: IFAIL = 0
 CALL F03AEF(N,A,LDA,P,D1,ID,IFAIL)
 CALL F04AFF(N,NRHS,A,LDA,P,B,LDB,EPS,X,LDX,BB,LDBB,K,IFAIL)
New: CALL DPOSVX('equil','upper',N,NRHS,A,LDA,AF,LDAF,'Yes',P,B, &
 LDB,X,LDX,RCOND,FERR,BERR,WORK,IWORK,INFO)
 IFAIL = 0
 CALL F03BFF(N,A,LDA,D1,ID,IFAIL)

F04AGF
Withdrawn at Mark 25.
There is no replacement for this routine.
The factorization and solution of a positive definite linear system can be handled by calls to routines
from Chapter F07, e.g., F07FAF (DPOSV).
For example:
Old: IFAIL = 0
 CALL F03AEF(N,A,LDA,P,D1,ID,IFAIL)
 CALL F04AGF(N,NRHS,A,LDA,P,B,LDB,X,LDX)
New: CALL DPOSV('upper',N,NRHS,A,LDA,B,LDB,INFO)
 IFAIL = 0
 CALL F03BFF(N,A,LDA,D1,ID,IFAIL)

F04AHF
Withdrawn at Mark 25.
There is no replacement for this routine.
The factorization and solution of a real general linear system can be handled by calls to routines from
the Chapter F07, e.g., F07ABF (DGESVX).
For example:

Old: IFAIL = 0
CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)
CALL F04AHF(N,NRHS,A,LDA,AA,LDAA,P,B,LDB,EPSCL,X,LDX,BB, &
 LDBB,K,IFAIL)
New: CALL DGESVX('Equil','No trans',N,NRHS,A,LDA,AA,LDAA,IPIV, &
 'Yes',R,C,B,LDB,X,LDX,RCOND,FERR,BERR,WORK, &
 IWORK,INFO)
 IFAIL = 0
CALL F03BAF(N,A,LDA,IPIV,D1,ID,IFAIL)

F04AJF
Withdrawn at Mark 25.
There is no replacement for this routine.

The factorization and solution of a real general linear system can be handled by calls to routines from
Chapter F07, e.g., F07AAF (DGESV).

For example:

Old: IFAIL = 0
CALL F03AFF(N,EPS,A,LDA,D1,ID,P,IFAIL)
CALL F04AJF(N,NRHS,A,LDA,P,B,LDB)
New: CALL DGESV(N,NRHS,A,LDA,IPIV,B,LDB,INFO)
 IFAIL = 0
CALL F03BAF(N,A,LDA,IPIV,D1,ID,IFAIL)

F04ANF
Withdrawn at Mark 18.
Replaced by F06EFF (DCOPY), F06PJF (DTRSV) and F08AGF (DORMQR).

Old: CALL F04ANF(M,N,QR,IQR,ALPHA,IPIV,B,X,Z)
New: CALL DCOPY(N,ALPHA,1,QR,IQR+1)
 CALL DORMQR('L','T',M,1,N,QR,IQR,Y,B,M,Z,N,INFO)
 CALL DTRSV('U','N','N',N,QR,IQR,B,1)
 DO 10 I = 1, N
 X(IPIV(I)) = B(I)
 10 CONTINUE

where Y must be the same real array as was used as the seventh argument in the previous call of
F01AXF.

This replacement is valid only if the previous call to F01AXF has been replaced by a call to F08BEF
(DGEQPF) as shown above.

F04ARF
Withdrawn at Mark 23.
Replaced by F07AAF (DGESV).

Old: CALL F04ARF(A,LDA,B,N,C,WKSPCE,IFAIL)
New: CALL DGESV(N,1,A,LDA,IPIV,B,N,INFO)
 IF (INFO.EQ.0) THEN
 ! Answer now in B
 ...

F04AYF
Withdrawn at Mark 18.
Replaced by F07AEF (DGETRS).

Old: CALL F04AYF(N,IR,A,IA,P,B,IB,IFAIL)
New: CALL DGETRS('No Transpose',N,IR,A,IA,IPIV,B,IB,INFO)

It is assumed that the matrix has been factorized by a call of F07ADF (DGETRF). IPIV is an integer
array of length N, and the array P is no longer required.
Replacement Calls

F04EAF
Withdrawn at Mark 23.
Replaced by F07CAF (DGTSV).

Old: CALL F04EAF(N,D,DU,DL,B,IFAIL)
New: CALL DGTSV(N,1,DL(2),D,DU(2),B,N,INFO)
 IF (INFO.EQ.0) THEN
 ! Answer now in B
 ...

F04FAF
Withdrawn at Mark 23.
Replaced by F07JAF (DPTSV), or F07JDF (DPTTRF) and F07JEF (DPTTRS).

Old: CALL F04FAF(JOB,N,D,E,B,IFAIL)
New: CALL DPTSV(N,1,D,E(2),B,1,INFO)
 ...

F04JAF
Withdrawn at Mark 23.
Replaced by F08KAF (DGELSS).

Old: CALL F04JAF(M,N,A,LDA,B,TOL,SIGMA,IRANK,WORK,LWORK,IFAIL)
New: CALL DGELSS(M,N,1,A,LDA,B,1,S,RCOND,IRANK,WORK,LWORK,INFO)
 IF (INFO.EQ.0) THEN
 ! Answer now in B
 ! Singular values now in S, not WORK.
 ! The standard error is not computed
 ...

 The minimum workspace requirement has changed from \(4 \times N\) to \(3 \times \min(N,M) + \max(2 \times \min(N,M),\max(M,N),1)\).

F04JDF
Withdrawn at Mark 23.
Replaced by F08KAF (DGELSS).

Old: CALL F04JDF(M,N,A,LDA,B,TOL,SIGMA,IRANK,WORK,LWORK,IFAIL)
New: CALL DGELSS(M,N,1,A,LDA,B,1,S,RCOND,IRANK,WORK,LWORK,INFO)
 ! Note workspace requirements are different.
 IF (INFO.EQ.0) THEN
 ! Answer now in B
 ! Singular values now in S, not WORK.
 ! The standard error is not computed
 ...

 The minimum workspace requirement has changed from \(N \times (M+4)\) to \(3 \times \min(N,M) + \max(2 \times \min(N,M),\max(M,N),1)\).

F04JLF
Withdrawn at Mark 23.
Replaced by F08ZBF (DGGGLM).

Old: CALL F04JLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL DGGGLM(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)
 IF (INFO.EQ.0) THEN
 ...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.

REPLACE.50

Mark 25
F04JMF

Withdrawn at Mark 23.
Replaced by F08ZAF (DGGLSE).

Old: CALL F04JMF(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,IFAIL)
New: CALL DGGLSE(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,INFO)
IF (INFO.EQ.0) THEN
...

The minimum workspace requirement has not increased but the requirement for optimal performance might be different. The workspace query mechanism (LWORK = -1) should be used to determine the requirement for optimal performance.

F04KLF

Withdrawn at Mark 23.
Replaced by F08ZPF (ZGGGLM).

Old: CALL F04KLF(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,IFAIL)
New: CALL ZGGGLM(M,N,P,A,LDA,B,LDB,D,X,Y,WORK,LWORK,INFO)
IF (INFO.EQ.0) THEN
...

F04KMF

Withdrawn at Mark 23.
Replaced by F08ZNF (ZGGLSE).

Old: CALL F04KMF(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,IFAIL)
New: CALL ZGGLSE(M,N,P,A,LDA,B,LDB,C,D,X,WORK,LWORK,INFO)
IF (INFO.EQ.0) THEN
...

F04LDF

Withdrawn at Mark 18.
Replaced by F07BEF (DGBTRS).

Old: CALL F04LDF(N,M1,M2,IR,A,IA,AL,IL,IN,B,IB,IFAIL)
New: CALL DGBTRS('No Transpose',N,M1,M2,IR,A,IA,IN,B,IB,INFO)

It is assumed that the matrix has been factorized by a call of F07BDF (DGBTRF). The array AL and its associated dimension parameter IL are no longer required.

F04MAF

Withdrawn at Mark 19.
Replaced by F11JCF.

Existing programs should be modified to call F11JCF. The interfaces are significantly different and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.

F04MBF

Withdrawn at Mark 19.
Replaced by F11GDF, F11GEF and F11GFF (or F11JCF or F11JEF).

If a user-defined preconditioner is required existing programs should be modified to call F11GDF, F11GEF and F11GFF. Otherwise F11JCF or F11JEF may be used. The interfaces for these routines are significantly different from that for F04MBF and therefore precise details of a replacement call cannot be given. Please consult the appropriate routine document.
F04YCF

Scheduled for withdrawal at Mark 26.
Replaced by F04YDF.

Old: CALL F04YCF(ICASE,N,X,ESTNRM,WORK,IWORK,IFAIL)
New: CALL F04YDF(IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK,IWORK,IFAIL)

F04YDF returns an estimate of the 1-norm of a rectangular $M \times N$ matrix, whereas F04YCF only works with square matrices. The real array X, which was previously used to return matrix–vector products to F04YCF, has been replaced with two real arrays X(LDX,*) and Y(LDY,*) which are used to return matrix-matrix products to F04YDF. Here, LDX \geq N, LDY \geq M and the second dimensions of X and Y are at least of size T, where you can choose parameter T. The sizes of the workspace arrays WORK and IWORK have been increased to $M \times T$ and $2 \times N + 5 \times T + 20$ respectively. The integer SEED provides a seed for the random number generator used by F04YDF. The integer ICASE has been replaced by IREVCM, which can take the values 0, 1 or 2. See the routine documentation for F04YDF for further details about the reverse communication interface.

F04ZCF

Scheduled for withdrawal at Mark 26.
Replaced by F04ZDF.

Old: CALL F04ZCF(ICASE,N,X,ESTNRM,WORK,IFAIL)
New: CALL F04ZDF(IREVCM,M,N,X,LDX,Y,LDY,ESTNRM,T,SEED,WORK,RWORK,IWORK,IFAIL)

F04ZDF returns an estimate of the 1-norm of a rectangular $M \times N$ matrix, whereas F04ZCF only works with square matrices. The complex array X, which was previously used to return matrix–vector products to F04ZCF, has been replaced with two complex arrays X(LDX,*) and Y(LDY,*) which are used to return matrix-matrix products to F04ZDF. Here, LDX \geq N, LDY \geq M and the second dimensions of X and Y are at least of size T, where you can choose the parameter T. The sizes of the workspace arrays WORK and IWORK have been increased to $M \times T$ and $2 \times N + 5 \times T + 20$ respectively and there is an additional real workspace array RWORK of size $2 \times N$. The integer SEED provides a seed for the random number generator used by F04ZDF. The integer ICASE has been replaced by IREVCM, which can take the values 0, 1 or 2. See the routine documentation for F04ZDF for further details about the reverse communication interface.

F11 – Large Scale Linear Systems

F11BAF

Withdrawn at Mark 21.
Replaced by F11BDF.

Old: CALL F11BAF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN, & ANORM,SIGMAX,MONIT,LWREQ,IFAIL)
New: CALL F11BDF(METHOD,PRECON,NORM,WEIGHT,ITERM,N,M,TOL,MAXITN, & ANORM,SIGMAX,MONIT,WORK,LWORK,LWREQ,IFAIL)

F11BDF contains two additional parameters as follows:

WORK(LWORK) – real array.
LWORK – integer.

See the routine document for further information.

F11BBF

Withdrawn at Mark 21.
Replaced by F11BEF.

Old: CALL F11BBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11BEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)

WGT must be a one-dimensional real array of length at least n (the order of the matrix) if weights are to be used in the termination criterion, and 1 otherwise. Note that the call to F11BEF requires the weights
to be supplied in WGT(1:n) rather than WORK(1:n). The minimum value of the parameter LWORK may also need to be changed.

F11BCF
Withdrawn at Mark 21.
Replaced by F11BFF.

Old: CALL F11BCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,IFAIL)
New: CALL F11BFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,WORK,LWORK,IFAIL)

F11BFF contains two additional parameters as follows:

- WORK(LWORK) – real array.
- LWORK – integer.

See the routine document for further information.

F11GAF
Withdrawn at Mark 22.
Replaced by F11GDF.

Old: CALL F11GAF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,MAXITN, &
ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,IFAIL)
New: CALL F11GDF(METHOD,PRECON,SIGCMP,NORM,WEIGHT,ITERM,N,TOL,MAXITN, &
ANORM,SIGMAX,SIGTOL,MAXITS,MONIT,LWREQ,WORK,LWORK,IFAIL)

F11GDF contains two additional parameters as follows:

- WORK(LWORK) – real array.
- LWORK – integer.

See the routine document for further information.

F11GBF
Withdrawn at Mark 22.
Replaced by F11GEF.

Old: CALL F11GBF(IREVCM,U,V,WORK,LWORK,IFAIL)
New: CALL F11GEF(IREVCM,U,V,WGT,WORK,LWORK,IFAIL)

WGT must be a one-dimensional real array of length at least n (the order of the matrix) if weights are to be used in the termination criterion, and 1 otherwise. Note that the call to F11GEF requires the weights to be supplied in WGT(1:n) rather than WORK(1:n). The minimum value of the parameter LWORK may also need to be changed.

F11GCF
Withdrawn at Mark 22.
Replaced by F11GFF.

Old: CALL F11GCF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR,IFAIL)
New: CALL F11GFF(ITN,STPLHS,STPRHS,ANORM,SIGMAX,ITS,SIGERR, &
WORK,LWORK,IFAIL)

F11GFF contains two additional parameters as follows:

- WORK(LWORK) – real array.
- LWORK – integer.

See the routine document for further information.
G01 – Simple Calculations on Statistical Data

G01AAF

Scheduled for withdrawal at Mark 26.
Replaced by G01ATF.

Old:
```
CALL G01AAF(N,X,IWT,WT,XMEAN,S2,S3,S4,XMIN,XMAX,WTSUM,IFAIL)
```

New:
```
PN = 0
CALL G01ATF(N,X,IWT,PN,XMEAN,S2,S3,S4,XMIN,XMAX,RCOMM,IFAIL)
IWT = PN
WTSUM = RCOMM(1)
```

G01CEF

Withdrawn at Mark 18.
Replaced by G01FAF.

Old: \(X = G01CEF(P,IFAIL) \)
New: \(X = G01FAF('Lower-tail',P,IFAIL) \)

G05 – Random Number Generators

G05CAF

Withdrawn at Mark 22.
Replaced by G05SAF.

Old:
```
DO 20 I = 1, N
   X(I) = G05CAF(X(I))
20 CONTINUE
```

New:
```
CALL G05SAF(N,STATE,X,IFAIL)
```

The integer array STATE in the call to G05SAF contains information on the base generator being used. This array must have been initialized prior to calling G05SAF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SAF is likely to be different from those produced by G05CAF.

G05CBF

Withdrawn at Mark 22.
Replaced by G05KFF.

Old:
```
CALL G05CBF(I)
```

New:
```
LSEED = 1
SEED(1) = I
GENID = 1
SUBID = 1
CALL G05KFF(GENID,SUBID,SEED,LSEED,STATE,LSTATE,IFAIL)
```

The integer array STATE in the call to G05KFF contains information on the base generator being used. The base generator is chosen via the integer parameters GENID and SUBID. The required length of the array STATE depends on the base generator chosen. Due to changes in the underlying code a sequence of values produced by using a random number generator initialized via a call to G05KFF is likely to be different from a sequence produced by a generator initialized by G05CBF, even if the same value for I is used.
G05CCF
Withdrawn at Mark 22.
Replaced by G05KGF.
Old: CALL G05CCF
New: GENID = 1
 SUBID = 1
 CALL G05KGF(GENID,SUBID,STATE,LSTATE,IFAIL)

The integer array STATE in the call to G05KGF contains information on the base generator being used. The base generator is chosen via the integer parameters GENID and SUBID. The required length of the array STATE depends on the base generator chosen.

G05CFF
Withdrawn at Mark 22.
Replaced by F06DFF.
Old: CALL G05CFF(IA,NI,XA,NX,IFAIL)
New: LSTATE = STATE(1)
 CALL F06DFF(LSTATE,STATE,1,CSTATE,1)

The state of the base generator for the group of routines G05KFF, G05KGF, G05KHF, G05KJF, G05NCF, G05NDF, G05PDF–G05PZF, G05RCF–G05RZF, G05S and G05T can be saved by simply creating a local copy of the array STATE. The first element of the STATE array contains the number of elements that are used by the random number generating routines, therefore either this number of elements can be copied, or the whole array (as defined in the calling program).

G05CGF
Withdrawn at Mark 22.
Replaced by F06DFF.
Old: CALL G05CGF(IA,NI,XA,NX,IFAIL)
New: LSTATE = CSTATE(1)
 CALL F06DFF(LSTATE,CSTATE,1,STATE,1)

The state of the base generator for the group of routines G05KFF, G05KGF, G05KHF, G05KJF, G05NCF, G05NDF, G05PDF–G05PZF, G05RCF–G05RZF, G05S and G05T can be restored by simply copying back the previously saved copy of the STATE array. The first element of the STATE array contains the number of elements that are used by the random number generating routines, therefore either this number of elements can be copied, or the whole array (as defined in the calling program).

G05DAF
Withdrawn at Mark 22.
Replaced by G05SQF.
Old: DO 10 I = 1, N
 X(I) = G05DAF(AA,BB)
10 CONTINUE
New: A = MIN(AA,BB)
 B = MAX(AA,BB)
 IFAIL = 0
 CALL G05SQF(N,A,B,STATE,X,IFAIL)

The old routine G05DAF returns a single variate at a time, whereas the new routine G05SQF returns a vector of N values in one go. In G05SQF the minimum value must be held in the parameter A and the maximum in parameter B, therefore A < B. This was not the case for the equivalent parameters in G05DAF.

The integer array STATE in the call to G05SQF contains information on the base generator being used. This array must have been initialized prior to calling G05SQF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SQF is likely to be different from those produced by G05DAF.
G05DBF
Withdrawn at Mark 22.
Replaced by G05SFF.

Old: DO 10 I = 1, N
 X(I) = G05DBF(AA)
 10 CONTINUE

New: A = ABS(AA)
 IFAIL = 0
 CALL G05SFF(N,A,STATE,X,IFAIL)

The old routine G05DBF returns a single variate at a time, whereas the new routine G05SFF returns a vector of N values in one go. In G05SFF parameter A must be non-negative, this was not the case for the equivalent parameter in G05DBF.

The integer array STATE in the call to G05SFF contains information on the base generator being used. This array must have been initialized prior to calling G05SFF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SFF is likely to be different from those produced by G05DBF.

G05DCF
Withdrawn at Mark 22.
Replaced by G05SLF.

Old: DO 10 I = 1, N
 X(I) = G05DCF(A,BB)
 10 CONTINUE

New: B = ABS(BB)
 IFAIL = 0
 CALL G05SLF(N,A,B,STATE,X,IFAIL)

The old routine G05DCF returns a single variate at a time, whereas the new routine G05SLF returns a vector of N values in one go. In G05SLF the spread (parameter A) must be positive, this was not the case for the equivalent parameters in G05DCF.

The integer array STATE in the call to G05SLF contains information on the base generator being used. This array must have been initialized prior to calling G05SLF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SLF is likely to be different from those produced by G05DCF.

G05DDF
Withdrawn at Mark 22.
Replaced by G05SKF.

Old: DO 10 I = 1, N
 X(I) = G05DDF(XMU,SD)
 10 CONTINUE

New: VAR = SD**2
 IFAIL = 0
 CALL G05SKF(N,XMU,VAR,STATE,X,IFAIL)

The old routine G05DDF returns a single variate at a time, whereas the new routine G05SKF returns a vector of N values in one go. G05SKF expects the variance of the Normal distribution (parameter VAR), compared to G05DDF which expected the standard deviation.

The integer array STATE in the call to G05SKF contains information on the base generator being used. This array must have been initialized prior to calling G05SKF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SKF is likely to be different from those produced by G05DDF.
G05DEF
Withdrawn at Mark 22.
Replaced by G05SMF.

Old: DO 10 I = 1, N
 X(I) = G05DEF(XMU,SD)
 10 CONTINUE
New: VAR = SD**2
 IFAIL = 0
 CALL G05SMF(N,XMU,VAR,STATE,X,IFAIL)

The old routine G05DEF returns a single variate at a time, whereas the new routine G05SMF returns a vector of N values in one go. G05SMF expects the variance of the corresponding Normal distribution (parameter VAR), compared to G05DEF which expected the standard deviation.

The integer array STATE in the call to G05SMF contains information on the base generator being used. This array must have been initialized prior to calling G05SMF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SMF is likely to be different from those produced by G05DEF.

G05DFF
Withdrawn at Mark 22.
Replaced by G05SCF.

Old: DO 10 I = 1, N
 X(I) = G05DFF(XMED,B)
 10 CONTINUE
New: SEMIQR = ABS(B)
 IFAIL = 0
 CALL G05SCF(N,XMED,SEMIQR,STATE,X,IFAIL)

The old routine G05DFF returns a single variate at a time, whereas the new routine G05SCF returns a vector of N values in one go. G05SCF expects the semi-interquartile range (parameter SEMIQR) to be non-negative, this was not the case for the equivalent parameter in G05DFF.

The integer array STATE in the call to G05SCF contains information on the base generator being used. This array must have been initialized prior to calling G05SCF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SCF is likely to be different from those produced by G05DFF.

G05DHF
Withdrawn at Mark 22.
Replaced by G05SDF.

Old: DO 10 I = 1, N
 X(I) = G05DHF(DF,IFAIL)
 10 CONTINUE
New: CALL G05SDF(N,DF,STATE,X,IFAIL)

The old routine G05DHF returns a single variate at a time, whereas the new routine G05SDF returns a vector of N values in one go.

The integer array STATE in the call to G05SDF contains information on the base generator being used. This array must have been initialized prior to calling G05SDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SDF is likely to be different from those produced by G05DHF.
G05DJF
Withdrawn at Mark 22.
Replaced by G05SNF.

Old: DO 10 I = 1, N
 X(I) = G05DJF(DF,IFAIL)
10 CONTINUE

New: CALL G05SNF(N,DF,STATE,X,IFAIL)

The old routine G05DJF returns a single variate at a time, whereas the new routine G05SNF returns a vector of N values in one go.

The integer array STATE in the call to G05SNF contains information on the base generator being used. This array must have been initialized prior to calling G05SNF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SNF is likely to be different from those produced by G05DJF.

G05DKF
Withdrawn at Mark 22.
Replaced by G05SHF.

Old: DO 10 I = 1, N
 X(I) = G05DKF(DF1,DF2,IFAIL)
10 CONTINUE

New: CALL G05SHF(N,DF1,DF2,STATE,X,IFAIL)

The old routine G05DKF returns a single variate at a time, whereas the new routine G05SHF returns a vector of N values in one go.

The integer array STATE in the call to G05SHF contains information on the base generator being used. This array must have been initialized prior to calling G05SHF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SHF is likely to be different from those produced by G05DKF.

G05DPF
Withdrawn at Mark 22.
Replaced by G05SSF.

Old: DO 10 I = 1, N
 X(I) = G05DPF(A,B,IFAIL)
10 CONTINUE

New: CALL G05SSF(N,A,B,STATE,X,IFAIL)

The old routine G05DPF returns a single variate at a time, whereas the new routine G05SSF returns a vector of N values in one go.

The integer array STATE in the call to G05SSF contains information on the base generator being used. This array must have been initialized prior to calling G05SSF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SSF is likely to be different from those produced by G05DPF.

G05DRF
Withdrawn at Mark 22.
Replaced by G05TKF.

Old: DO 10 I = 1, N
 X(I) = G05DRF(LAMDA,IFAIL)
10 CONTINUE

New: MODE = 3
 CALL G05TJF(MODE,N,LAMDA,R,LR,STATE,X,IFAIL)

The old routine G05DRF returns a single variate at a time, whereas the new routine G05TKF returns a vector of N values in one go.

The integer array STATE in the call to G05TKF contains information on the base generator being used. This array must have been initialized prior to calling G05TKF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TKF is likely to be different from those produced by G05DRF.
The old routine G05DRF returns a single variate at a time, whereas the new routine G05TJF returns a vector of N values in one go. For efficiency, the new routine can make use of a reference vector, R. If, as in this case, the integer parameter MODE is set to 3, the real reference vector R is not referenced, and its length, LR, need only be at least one.

The integer array STATE in the call to G05TJF contains information on the base generator being used. This array must have been initialized prior to calling G05TJF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TJF is likely to be different from those produced by G05DRF.

G05DYF
Withdrawn at Mark 22.
Replaced by G05TLF.

Old: DO 10 I = 1, N
 X(I) = G05DYF(AA,BB)
10 CONTINUE
New: IFAIL = 0
 A = MIN(AA,BB)
 B = MAX(AA,BB)
 CALL G05TLF(N,A,B,STATE,X,IFAIL)

The old routine G05DYF returns a single variate at a time, whereas the new routine G05TLF returns a vector of N values in one go. In G05TLF the minimum value must be held in the parameter A and the maximum in parameter B, therefore A ≤ B. This was not the case for the equivalent parameters in G05DYF.

The integer array STATE in the call to G05TLF contains information on the base generator being used. This array must have been initialized prior to calling G05TLF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TLF is likely to be different from those produced by G05DYF.

G05DZF
Withdrawn at Mark 22.
Replaced by G05TBF.

Old: DO 20 I = 1, N
 X(I) = G05DZF(PP)
20 CONTINUE
New: P = MAX(0.0D0,MIN(PP,1.0D0))
 IFAIL = 0
 CALL G05TBF(N,P,STATE,X,IFAIL)

The old routine G05DZF returns a single variate at a time, whereas the new routine G05TBF returns a vector of N values in one go. The real parameter P in G05TBF must not be less than zero or greater than one, this was not the case for the equivalent parameter in G05DZF.

The integer array STATE in the call to G05TBF contains information on the base generator being used. This array must have been initialized prior to calling G05TBF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TBF is likely to be different from those produced by G05DZF.

G05EAF
Withdrawn at Mark 22.
Replaced by G05RZF.

Old: CALL G05EAF(XMU,M,C,LDC,EPS,R1,LR1,IFAIL)
New: MODE = 0
 CALL G05RZF(MODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)
The old routine G05EAF sets up a reference vector for use by G05EZF. The functionality of both these routines has been combined into the single new routine G05RZF. Setting MODE = 0 in the call to G05RZF only sets up the real reference vector R and hence mimics the functionality of G05EAF.

The length of the real reference vector, R, in G05RZF must be at least $M \times (M + 1) + 1$. In contrast to the equivalent parameter in G05EAF, this array must be allocated in the calling program.

G05EBF

Withdrawn at Mark 22.
Replaced by G05TLF.

There is no direct replacement for routine G05EBF. G05EBF sets up a reference vector for use by G05EYF, this reference vector is no longer required. The replacement routine for G05EYF is G05TLF.

G05ECF

Withdrawn at Mark 22.
Replaced by G05TJF.

Old: CALL G05ECF(LAMBDA,R1,LR1,IFAIL)

DO 10 I = 1, N
 X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2

CALL G05TJF(MODE,N,LAMBDA,R,LR,STATE,X,IFAIL)

The old routine G05ECF sets up a reference vector for use by G05EYF. The replacement routine G05TJF is now used to both set up a reference vector and generate the required variates. Setting MODE = 0 in the call to G05TJF sets up the real reference vector R and hence mimics the functionality of G05ECF. Setting MODE = 1 generates a series of variates from a reference vector mimicking the functionality of G05EYF for this particular distribution. Setting MODE = 2 initializes the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TJF returns a vector of N values in one go.

The length of the real reference vector, R, in G05TJF, must be allocated in the calling program in contrast to the equivalent parameter in G05ECF, see the documentation for more details.

The integer array STATE in the call to G05TJF contains information on the base generator being used. This array must have been initialized prior to calling G05TJF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TJF is likely to be different from those produced by a combination of G05ECF and G05EYF.

G05EDF

Withdrawn at Mark 22.
Replaced by G05TAF.

Old: CALL G05EDF(M,P,R1,LR1,IFAIL)

DO 10 I = 1, N
 X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2

CALL G05TAF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The old routine G05EDF sets up a reference vector for use by G05EYF. The replacement routine G05TAF is now used to both set up a reference vector and generate the required variates. Setting MODE = 0 in the call to G05TAF sets up the real reference vector R and hence mimics the functionality of G05EDF. Setting MODE = 1 generates a series of variates from a reference vector mimicking the functionality of G05EYF for this particular distribution. Setting MODE = 2 initializes the reference vector and generates the variates in one go.
The routine G05EYF returns a single variate at a time, whereas the new routine G05TAF returns a vector of N values in one go.

The length of the real reference vector, R, in G05TAF, needs to be a different length from the equivalent parameter in G05EDF, see the documentation for more details.

The integer array STATE in the call to G05TAF contains information on the base generator being used. This array must have been initialized prior to calling G05TAF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TAF is likely to be different from those produced by a combination of G05EDF and G05EYF.

G05EEF

Withdrawn at Mark 22.

Replaced by G05THF.

Old: CALL G05EEF(M,P,R1,LR1,IFAIL)

DO 10 I = 1, N
 X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2

CALL G05THF(MODE,N,M,P,LR,STATE,X,IFAIL)

The old routine G05EEF sets up a reference vector for use by G05EYF. The replacement routine G05THF is now used to both set up a reference vector and generate the required variates. Setting MODE = 0 in the call to G05THF sets up the real reference vector R and hence mimics the functionality of G05EEF. Setting MODE = 1 generates a series of variates from a reference vector mimicking the functionality of G05EYF for this particular distribution. Setting MODE = 2 initializes the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05THF returns a vector of N values in one go.

The length of the real reference vector, R, in G05THF, needs to be a different length from the equivalent parameter in G05EEF, see the documentation for G05THF for more details.

The integer array STATE in the call to G05THF contains information on the base generator being used. This array must have been initialized prior to calling G05THF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05THF is likely to be different from those produced by a combination of G05EEF and G05EYF.

G05EFF

Withdrawn at Mark 22.

Replaced by G05TEF.

Old: CALL G05EFF(NS,M,NP,R1,LR1,IFAIL)

DO 10 I = 1, N
 X(I) = G05EYF(R1,LR1)
10 CONTINUE

New: MODE = 2

CALL G05TEF(MODE,N,NS,NP,M,R,LR,STATE,X,IFAIL)

The old routine G05EFF sets up a reference vector for use by G05EYF. The replacement routine G05TEF is now used to both set up a reference vector and generate the required variates. Setting MODE = 0 in the call to G05TEF sets up the real reference vector R and hence mimics the functionality of G05EFF. Setting MODE = 1 generates a series of variates from a reference vector mimicking the functionality of G05EYF for this particular distribution. Setting MODE = 2 initializes the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TEF returns a vector of N values in one go.
The length of the real reference vector, R, in G05TEF, needs to be a different length from the equivalent parameter in G05EFF, see the documentation for more details.

The integer array STATE in the call to G05TEF contains information on the base generator being used. This array must have been initialized prior to calling G05TEF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TEF is likely to be different from those produced by a combination of G05EFF and G05EYF.

G05EGF

Withdrawn at Mark 22. Replaced by G05PHF.

Old: CALL G05EGF(E,A,NA,B,NB,R,NR,VAR,IFAIL)

New: AVAR = B(1)**2

IQ = NB - 1

IF (AVAR.GT.0.0D0) THEN
 DO 10 I = 1, IQ
 THETA(I) = -B(I+1)/B(1)
 10 CONTINUE
ELSE
 DO 20 I = 1, IQ
 THETA(I) = 0.0D0
 20 CONTINUE
END IF

MODE = 0
CALL G05PHF(MODE,N,E,NA,A,IQ,THETA,AVAR,R,LR,STATE,VAR,X,IFAIL)

The real vector THETA must be of length at least IQ = NB − 1.

The old routine G05EGF sets up a reference vector for use by G05EWF. The replacement routine G05PHF is now used to both set up a reference vector and generate the required variates. Setting MODE = 0 in the call to G05PHF sets up the real reference vector R and hence mimics the functionality of G05EGF. When MODE = 0, the integer array STATE in the call to G05PHF need not be set.

G05EHF

Withdrawn at Mark 22. Replaced by G05NCF.

Old: CALL G05EHF(INDEX,N,IFAIL)

New: CALL G05NCF(INDEX,N,STATE,IFAIL)

The integer array STATE in the call to G05NCF contains information on the base generator being used. This array must have been initialized prior to calling G05NCF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05NCF is likely to be different from those produced by G05EHF.

G05EJF

Withdrawn at Mark 22. Replaced by G05NDF.

Old: CALL G05EJF(IA,N,IZ,M,IFAIL)

New: CALL G05NDF(IA,N,IZ,M,STATE,IFAIL)

The integer array STATE in the call to G05NDF contains information on the base generator being used. This array must have been initialized prior to calling G05NDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05NDF is likely to be different from those produced by G05EJF.
G05EWF

Withdrawn at Mark 22.
Replaced by G05PHF.

Old:
```
CALL G05EGF(E,A,NA,B,NB,R,NR,VAR,IFAIL)
   DO 10 I = 1, N
      X(I) = G05EWF(R,NR,IFAIL)
10 CONTINUE
```
New:
```
AVAR = B(1)**2
IQ = NB - 1
IF (AVAR.GT.0.0D0) THEN
   DO 10 I = 1, IQ
      THETA(I) = -B(I+1)/B(1)
10 CONTINUE
ELSE
   DO 20 I = 1, IQ
      THETA(I) = 0.0D0
20 CONTINUE
END IF
MODE = 2
CALL G05PHF(MODE,N,E,NA,A,NB-1,THETA,AVAR,VAR,R,LR,STATE,X,IFAIL)
```

The real vector THETA must be of length at least IQ = NB - 1.

The old routine G05EGF sets up a reference vector for use by G05EWF. The replacement routine G05PHF is now used to both set up a reference vector and generate the required variates. Setting the integer parameter MODE to 0 in the call to G05PHF sets up the real reference vector R and hence mimics the functionality of G05EGF. Setting MODE to 1 generates a series of variates from a reference vector mimicking the functionality of G05EWF. Setting MODE to 2 initializes the reference vector and generates the variates in one go.

The integer array STATE in the call to G05PHF contains information on the base generator being used. This array must have been initialized prior to calling G05PHF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PHF is likely to be different from those produced by G05EGF.

G05EXF

Withdrawn at Mark 22.
Replaced by G05TDF.

Old:
```
CALL G05EXF(P,NP,IP1,ITYPE,R1,LR1,IFAIL)
   DO 10 I = 1, N
      X(I) = G05EYF(R1,LR1)
10 CONTINUE
```
New:
```
MODE = 2
CALL G05TDF(MODE,N,P,NP,IP1,ITYPE,R,LR,STATE,X,IFAIL)
```

The old routine G05EXF sets up a reference vector for use by G05EYF. The replacement routine G05TDF is now used to both set up a reference vector and generate the required variates. Setting MODE = 0 in the call to G05TDF sets up the real reference vector R and hence mimics the functionality of G05EXF. Setting MODE = 1 generates a series of variates from a reference vector mimicking the functionality of G05EYF for this particular distribution. Setting MODE = 2 initializes the reference vector and generates the variates in one go.

The routine G05EYF returns a single variate at a time, whereas the new routine G05TDF returns a vector of N values in one go.

The length of the real reference vector, R, in G05TDF must be allocated in the calling program in contrast to the equivalent parameter in G05EXF, see the documentation for more details.

The integer array STATE in the call to G05TDF contains information on the base generator being used. This array must have been initialized prior to calling G05TDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05TDF is likely to be different from those produced by a combination of G05EXF and G05EYF.
G05EYF
Withdrawn at Mark 22.
Replaced by G05TDF.

There is no direct replacement routine for G05EYF.

G05EYF is designed to generate random draws from a distribution defined by a reference vector. These reference vectors are created by other routines in Chapter G05, for example G05EBF, which have themselves been superseded. In order to replace a call to G05EYF you must identify which NAG routine generated the reference vector being used and look up its replacement. For example, to replace a call to G05EYF preceded by a call to G05EBF, as in:

```
CALL G05EBF(M,IB,R,NR,IFAIL)
X = G05EYF(R,NR)
```

you would need to look at the replacement routine for G05EBF.

G05EZF
Withdrawn at Mark 22.
Replaced by G05RZF.

Old:
```
CALL G05EAF(XMU,N,C,LDC,EPS,R1,LR1,IFAIL)
DO 20 I = 1, N
    CALL G05EZF(CX,M,R,NR,IFAIL)
    DO 30 J = 1, M
        X(I,J) = CX(J)
    30 CONTINUE
20 CONTINUE
```

New:
```
MODE = 2
CALL G05RZF(MODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)
```

The old routine G05EAF sets up a reference vector for use by G05EZF. The functionality of both these routines has been combined into the single new routine G05RZF. Setting MODE = 2 in the call to G05RZF sets up the real reference vector R and generates the draws from the multivariate Normal distribution in one go.

The old routine G05EZF returns a single (M-dimensional vector) draw from the multivariate Normal distribution at a time, whereas the new routine G05RZF returns an N by M matrix of N draws in one go.

The integer array STATE in the call to G05RZF contains information on the base generator being used. This array must have been initialized prior to calling G05RZF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05RZF is likely to be different from those produced by G05EZF.

G05FAF
Withdrawn at Mark 22.
Replaced by G05SQF.

Old:
```
CALL G05FAF(AA,BB,N,X)
```

New:
```
A = MIN(AA,BB)
B = MAX(AA,BB)
IFAIL = 0
CALL G05SQF(N,A,B,STATE,X,IFAIL)
```

In G05SQF the minimum value must be held in the parameter A and the maximum in parameter B, therefore A ≤ B. This was not the case for the equivalent parameters in G05FAF.

The integer array STATE in the call to G05SQF contains information on the base generator being used. This array must have been initialized prior to calling G05SQF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SQF is likely to be different from those produced by G05FAF.
G05FBF
Withdrawn at Mark 22.
Replaced by G05SFF.
Old: CALL G05FBF(AA,N,X)
New: A = ABS(AA)
 IFAIL = 0
 CALL G05SFF(N,A,STATE,X,IFAIL)

In G05SFF parameter A must be non-negative, this was not the case for the equivalent parameter in G05FBF.

The integer array STATE in the call to G05SFF contains information on the base generator being used. This array must have been initialized prior to calling G05SFF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SFF is likely to be different from those produced by G05FBF.

G05FDF
Withdrawn at Mark 22.
Replaced by G05SKF.
Old: CALL G05FDF(XMU,SD,N,X)
New: VAR = SD**2
 IFAIL = 0
 CALL G05SKF(N,XMU,VAR,STATE,X,IFAIL)

G05SKF expects the variance of the Normal distribution (parameter VAR), compared to G05FDF which expected the standard deviation.

The integer array STATE in the call to G05SKF contains information on the base generator being used. This array must have been initialized prior to calling G05SKF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SKF is likely to be different from those produced by G05FDF.

G05FEF
Withdrawn at Mark 22.
Replaced by G05SBF.
Old: CALL G05FEF(A,B,N,X,IFAIL)
New: CALL G05SBF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SBF contains information on the base generator being used. This array must have been initialized prior to calling G05SBF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SBF is likely to be different from those produced by G05FEF.

G05FFF
Withdrawn at Mark 22.
Replaced by G05SJF.
Old: CALL G05FFF(A,B,N,X,IFAIL)
New: CALL G05SJF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SJF contains information on the base generator being used. This array must have been initialized prior to calling G05SJF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SJF is likely to be different from those produced by G05FFF.
G05FSF
Withdrawn at Mark 22.
Replaced by G05SRF.
Old: CALL G05FSF(VK,N,X,IFAIL)
New: CALL G05SRF(N,VK,STATE,X,IFAIL)

The integer array STATE in the call to G05SRF contains information on the base generator being used. This array must have been initialized prior to calling G05SRF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05SRF is likely to be different from those produced by G05FSF.

G05GAF
Withdrawn at Mark 22.
Replaced by G05PXF.
Old: CALL G05GAF(SIDE,INIT,M,N,A,LDA,WK,IFAIL)
New: CALL G05PXF(SIDE,INIT,M,N,STATE,A,LDA,IFAIL)

The integer array STATE in the call to G05PXF contains information on the base generator being used. This array must have been initialized prior to calling G05PXF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PXF is likely to be different from those produced by G05GAF.

G05GBF
Withdrawn at Mark 22.
Replaced by G05PYF.
Old: CALL G05GBF(N,D,C,LDC,EPS,WK,IFAIL)
New: CALL G05PYF(N,D,EPS,STATE,C,LDC,IFAIL)

The integer array STATE in the call to G05PYF contains information on the base generator being used. This array must have been initialized prior to calling G05PYF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PYF is likely to be different from those produced by G05GBF.
G05HDF

Withdrawn at Mark 22.
Replaced by G05PJF.

Old: CALL G05HDF(MODE,K,IP,IQ,MEAN,PARM,LPARM,LQQ,LQQ,N,W,REF,LREF, & IWORK,LIWOR,IFAIL)

New: IF (MODE.EQ.'S') THEN
 IMODE = 0
ELSE IF (MODE.EQ.'C') THEN
 IMODE = 1
ELSE IF (MODE.EQ.'R') THEN
 IMODE = 3
END IF
LL = 0
DO 30 L = 1, IP
 DO 10 I = 1, K
 LL = LL + 1
 PHI(I,J,L) = PAR(LL)
 10 CONTINUE
20 CONTINUE
30 CONTINUE
DO 60 L = 1, IQ-1
 DO 50 I = 1, K
 LL = LL + 1
 THETA(I,J,L) = PAR(LL)
 50 CONTINUE
60 CONTINUE
IF (MEAN.EQ.'M') THEN
 DO 70 I = 1, K
 LL = LL + 1
 XMEAN(I) = PAR(LL)
 70 CONTINUE
ELSE
 DO 80 I = 1, K
 XMEAN(I) = 0.0D0
 80 CONTINUE
END IF
LDW = N
CALL G05PJF(IMODE,N,K,XMEAN,IP,PHI,IQ,THETA,LQQ,LQQ,REF,LREF, & STATE,W,LDW,IWORK,LIWOR,IFAIL)

The integer parameter IMODE should be set to 0, 1 or 3 in place of the parameter MODE having settings of 'S', 'C' or 'R' respectively. The real array PHI should have length at least max(1, IP x (K x K)); if dimensioned as PHI(K,K,IP) (as in the above example) then PHI(i,j,l) will contain the element PAR((l-1) x k x (K x K) + (i-1) x k). The real array THETA should have length at least max(1, IQ x (K x K)); if dimensioned as THETA(K,K,IQ) (as in the above example) then THETA(i,j,l) will contain the element PAR(IP x k x k x IQ x (K x K) + (j-1) x k). The real array XMEAN should have length at least K; if MEAN = 'M' then XMEAN(i) will contain the element PAR(IP + IQ x k x k x i), otherwise XMEAN should contain an array of zero values.

The integer array STATE in the call to G05PJF contains information on the base generator being used. This array must have been initialized prior to calling G05PJF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PJF is likely to be different from those produced by G05HDF.
Replacement Calls

G05HKF

Withdrawn at Mark 24.
Replaced by G05PDF.

Old: CALL G05HKF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,RVEC,IGEN, &
ISEED,RWSAV,IFAIL)
New: CALL G05PDF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,R,LR,STATE, &
IFAIL)

The integer array STATE in the call to G05PDF contains information on the base generator being used. This array must have been initialized prior to calling G05PDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PDF is likely to be different from those produced by G05HKF.

G05HLF

Withdrawn at Mark 24.
Replaced by G05PEF.

Old: CALL G05HLF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,RVEC,IGEN, &
ISEED,RWSAV,IFAIL)
New: CALL G05PEF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,R,LR,STATE, &
IFAIL)

The integer array STATE in the call to G05PEF contains information on the base generator being used. This array must have been initialized prior to calling G05PEF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PEF is likely to be different from those produced by G05HLF.

G05HMF

Withdrawn at Mark 24.
Replaced by G05PFF.

Old: CALL G05HMF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,RVEC,IGEN, &
ISEED,RWSAV,IFAIL)
New: CALL G05PFF(DIST,NUM,IP,IQ,THETA,GAMMA,DF,HT,ET,FCALL,R,LR,STATE, &
IFAIL)

The integer array STATE in the call to G05PFF contains information on the base generator being used. This array must have been initialized prior to calling G05PFF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization. Due to changes in the underlying code the sequence of values produced by G05PFF is likely to be different from those produced by G05HMF.

G05HNF

Withdrawn at Mark 24.
Replaced by G05PGF.

Old: CALL G05HNF(DIST,NUM,IP,IQ,THETA,DF,HT,ET,FCALL,RVEC,IGEN,ISEED, &
RWSAV,IFAIL)
New: CALL G05PGF(DIST,NUM,IP,IQ,THETA,DF,HT,ET,FCALL,RVEC,STATE, &
IFAIL)

The integer array STATE in the call to G05PGF contains information on the base generator being used. This array must have been initialized prior to calling G05PGF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.
G05KAF

Withdrawn at Mark 24.
Replaced by G05SAF.

Old: DO 20 I = 1, N
 X(I) = G05KAF(IGEN,ISEED)
 20 CONTINUE
New: CALL G05SAF(N,STATE,X,IFAIL)

The old routine G05KAF returns a single variate at a time, whereas the new routine G05SAF returns a vector of N values in one go.

The integer array STATE in the call to G05SAF contains information on the base generator being used. This array must have been initialized prior to calling G05SAF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05KBF

Withdrawn at Mark 24.
Replaced by G05KFF.

Old: G05KBF(IGEN,ISEED)
New: IF (IGEN.EQ.0) THEN
 CALL G05KFF(1,1,ISEED,LSEED,STATE,LSTATE,IFAIL)
 ELSE
 CALL G05KFF(2,IGEN,ISEED,LSEED,STATE,LSTATE,IFAIL)
 END IF

G05KCF

Withdrawn at Mark 24.
Replaced by G05KGF.

Old: CALL G05KCF(IGEN,ISEED)
New: IF (IGEN.EQ.0) THEN
 CALL G05KGF(1,1,STATE,LSTATE,IFAIL)
 ELSE
 CALL G05KGF(2,IGEN,STATE,LSTATE,IFAIL)
 END IF

G05KEF

Withdrawn at Mark 24.
Replaced by G05TBF.

Old: DO 20 I = 1, N
 X(I) = G05KEF(P,IGEN,ISEED,IFAIL)
 20 CONTINUE
New: CALL G05TBF(N,P,STATE,X,IFAIL)

The old routine G05KEF returns a single variate at a time, whereas the new routine G05TBF returns a vector of N values in one go.

The integer array STATE in the call to G05TBF contains information on the base generator being used. This array must have been initialized prior to calling G05TBF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LAF

Withdrawn at Mark 24.
Replaced by G05SKF.

Old: CALL G05LAF(XMU,VAR,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SKF(N,XMU,VAR,STATE,X,IFAIL)
The integer array STATE in the call to G05SKF contains information on the base generator being used. This array must have been initialized prior to calling G05SKF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LBF
Withdrawn at Mark 24. Replaced by G05SNF.

Old: CALL G05LBF(DF,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SNF(N,DF,STATE,X,IFAIL)

The integer array STATE in the call to G05SNF contains information on the base generator being used. This array must have been initialized prior to calling G05SNF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LCF
Withdrawn at Mark 24. Replaced by G05SDF.

Old: CALL G05LCF(DF,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SDF(N,DF,STATE,X,IFAIL)

The integer array STATE in the call to G05SDF contains information on the base generator being used. This array must have been initialized prior to calling G05SDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LDF
Withdrawn at Mark 24. Replaced by G05SHF.

Old: CALL G05LDF(DF1,DF2,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SHF(N,DF1,DF2,STATE,X,IFAIL)

The integer array STATE in the call to G05SHF contains information on the base generator being used. This array must have been initialized prior to calling G05SHF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LEF
Withdrawn at Mark 24. Replaced by G05SBF.

Old: CALL G05LEF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SBF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SBF contains information on the base generator being used. This array must have been initialized prior to calling G05SBF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LFF
Withdrawn at Mark 24. Replaced by G05SJF.

Old: CALL G05LFF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SJF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SJF contains information on the base generator being used. This array must have been initialized prior to calling G05SJF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.
G05LGF
Withdrawn at Mark 24.
Replaced by G05SQF.

Old: CALL G05LGF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SQF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SQF contains information on the base generator being used. This array must have been initialized prior to calling G05SQF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LHF
Withdrawn at Mark 24.
Replaced by G05SPF.

Old: CALL G05LHF(XMIN,XMAX,XMED,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SPF(N,XMIN,XMED,XMAX,STATE,X,IFAIL)

The integer array STATE in the call to G05SPF contains information on the base generator being used. This array must have been initialized prior to calling G05SPF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LJF
Withdrawn at Mark 24.
Replaced by G05SFF.

Old: CALL G05LJF(A,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SFF(N,A,STATE,X,IFAIL)

The integer array STATE in the call to G05SFF contains information on the base generator being used. This array must have been initialized prior to calling G05SFF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LKF
Withdrawn at Mark 24.
Replaced by G05SMF.

Old: CALL G05LKF(XMU,VAR,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SMF(N,XMU,VAR,STATE,X,IFAIL)

The integer array STATE in the call to G05SMF contains information on the base generator being used. This array must have been initialized prior to calling G05SMF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LLF
Withdrawn at Mark 24.
Replaced by G05SJF.

Old: CALL G05LLF(XMED,SEMIQR,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SCF(N,XMED,SEMIQR,STATE,X,IFAIL)

The integer array STATE in the call to G05SCF contains information on the base generator being used. This array must have been initialized prior to calling G05SCF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LMF
Withdrawn at Mark 24.
Replaced by G05SSF.

Old: CALL G05LMF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SSF(N,A,B,STATE,X,IFAIL)
The integer array STATE in the call to G05SSF contains information on the base generator being used. This array must have been initialized prior to calling G05SSF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LNF
Withdrawn at Mark 24.
Replaced by G05SLF.

Old: CALL G05LNF(A,B,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SLF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05SLF contains information on the base generator being used. This array must have been initialized prior to calling G05SLF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LPF
Withdrawn at Mark 24.
Replaced by G05SRF.

Old: CALL G05LPF(VK,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SRF(N,VK,STATE,X,IFAIL)

The integer array STATE in the call to G05SRF contains information on the base generator being used. This array must have been initialized prior to calling G05SRF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LQF
Withdrawn at Mark 24.
Replaced by G05SGF.

Old: CALL G05LQF(NMIX,A,WGT,N,X,IGEN,ISEED,IFAIL)
New: CALL G05SGF(N,NMIX,A,WGT,STATE,X,IFAIL)

The integer array STATE in the call to G05SGF contains information on the base generator being used. This array must have been initialized prior to calling G05SGF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LXF
Withdrawn at Mark 24.
Replaced by G05RYF.

Old: CALL G05LXF(MODE,DF,M,XMU,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN
 NMODE = 1
 ELSE IF (MODE == 1) THEN
 NMODE = 0
 ELSE
 NMODE = MODE
 END IF
 CALL G05RYF(NMODE,N,DF,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RYF contains information on the base generator being used. This array must have been initialized prior to calling G05RYF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

Replacement Calls
NAG Library Manual

REPLACE.72
Mark 25
G05LYF
Withdrawn at Mark 24.
Replaced by G05RZF.

Old: G05LYF(MODE,M,XMU,C,LDC,N,X,LDX,IGEN,ISEEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN
 NMODE = 1
 ELSE IF (MODE == 1) THEN
 NMODE = 0
 ELSE
 NMODE = MODE
 END IF
 CALL G05RZF(NMODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RZF contains information on the base generator being used. This array must have been initialized prior to calling G05RZF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05LZF
Withdrawn at Mark 24.
Replaced by G05RZF.

Old: CALL G05LZF(MODE,M,XMU,C,LDC,X,IGEN,ISEEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN
 NMODE = 1
 ELSE IF (MODE == 1) THEN
 NMODE = 0
 ELSE
 NMODE = MODE
 END IF
 CALL G05RZF(NMODE,N,M,XMU,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RZF contains information on the base generator being used. This array must have been initialized prior to calling G05RZF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MAF
Withdrawn at Mark 24.
Replaced by G05TLF.

Old: CALL G05MAF(A,B,N,X,IGEN,ISEEED,IFAIL)
New: CALL G05TLF(N,A,B,STATE,X,IFAIL)

The integer array STATE in the call to G05TLF contains information on the base generator being used. This array must have been initialized prior to calling G05TLF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MBF
Withdrawn at Mark 24.
Replaced by G05TCF.

Old: CALL G05MBF(MODE,P,N,X,IGEN,ISEEED,R,NR,IFAIL)
New: CALL G05TCF(MODE,N,P,R,LR,STATE,X,IFAIL)

 DO 20 I = 1, N
 X(I) = X(I) + 1
 20 CONTINUE

G05MBF returned the number of trials required to get the first success, whereas G05TCF returns the number of failures before the first success, therefore the value returned by G05TCF is one less than the equivalent value returned from G05MBF.

The integer array STATE in the call to G05TCF contains information on the base generator being used. This array must have been initialized prior to calling G05TCF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.
G05MCF
Withdrawn at Mark 24.
Replaced by G05THF.
Old: CALL G05MCF(MODE,M,P,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05THF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05THF contains information on the base generator being used. This array must have been initialized prior to calling G05THF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MDF
Withdrawn at Mark 24.
Replaced by G05TFF.
Old: CALL G05MDF(MODE,A,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TFF(MODE,N,A,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TFF contains information on the base generator being used. This array must have been initialized prior to calling G05TFF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MEF
Withdrawn at Mark 24.
Replaced by G05TKF.
Old: CALL G05MEF(M,VLAMDA,X,IGEN,ISEED,IFAIL)
New: CALL G05TKF(M,VLAMDA,STATE,X,IFAIL)

The integer array STATE in the call to G05TKF contains information on the base generator being used. This array must have been initialized prior to calling G05TKF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MJF
Withdrawn at Mark 24.
Replaced by G05TAF.
Old: CALL G05MJF(MODE,M,P,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TAF(MODE,N,M,P,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TAF contains information on the base generator being used. This array must have been initialized prior to calling G05TAF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MKF
Withdrawn at Mark 24.
Replaced by G05TJF.
Old: CALL G05MKF(MODE,LAMBDA,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TJF(MODE,N,LAMBDA,STATE,X,IFAIL)

The integer array STATE in the call to G05TJF contains information on the base generator being used. This array must have been initialized prior to calling G05TJF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MLF
Withdrawn at Mark 24.
Replaced by G05TEF.
Old: CALL G05MLF(MODE,NS,NP,M,N,X,IGEN,ISEED,R,NR,IFAIL)
New: CALL G05TEF(MODE,N,NS,NP,M,R,LR,STATE,X,IFAIL)
The integer array STATE in the call to G05TEF contains information on the base generator being used. This array must have been initialized prior to calling G05TEF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MRF
Withdrawn at Mark 24.
Replaced by G05TGF.

Old: CALL G05MRF(MODE,M,K,P,N,X,LDX,igen,ISEED,R,NR,IFAIL)
New: CALL G05TGF(MODE,N,M,K,P,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05TGF contains information on the base generator being used. This array must have been initialized prior to calling G05TGF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05MZf
Withdrawn at Mark 24.
Replaced by G05TDF.

Old: CALL G05MZf(MODE,P,NP,IP1,ITYPE,N,X,igen,ISEED,R,NR,IFAIL)
New: CALL G05TDF(MODE,N,P,NP,IP1,ITYPE,R,LR,STATE,X,IFAIL)

The integer array STATE in the call to G05TDF contains information on the base generator being used. This array must have been initialized prior to calling G05TDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05NAF
Withdrawn at Mark 24.
Replaced by G05NCF.

Old: CALL G05NAF(INDEX,N,igen,ISEED,IFAIL)
New: CALL G05NCF(INDEX,N,STATE,IFAIL)

The integer array STATE in the call to G05NCF contains information on the base generator being used. This array must have been initialized prior to calling G05NCF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05NBF
Withdrawn at Mark 24.
Replaced by G05NDF.

Old: CALL G05NBF(IPOP,N,ISAMPL,M,igen,ISEED,IFAIL)
New: CALL G05NDF(IPOP,N,ISAMPL,M,STATE,IFAIL)

The integer array STATE in the call to G05NDF contains information on the base generator being used. This array must have been initialized prior to calling G05NDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05PAF
Withdrawn at Mark 24.
Replaced by G05PHF.

Old: CALL G05PAF(MODE,XMEAN,IP,PHI,IQ,THETA,AVAR,VAR,N,X,igen,ISEED,R, &
NR,IFAIL)
New: CALL G05PHF(MODE,N,XMEAN,IP,PHI,IQ,THETA,AVAR,R,LR,STATE,VAR,X, &
IFAIL)

The integer array STATE in the call to G05PHF contains information on the base generator being used. This array must have been initialized prior to calling G05PHF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.
Replacement Calls

G05PCF
Withdrawn at Mark 24.
Replaced by G05PJF.

Old: CALL G05PCF (MODE, K, XMEAN, IP, PHI, IQ, THETA, VAR, LDV, N, X, IGEN, ISEED, R, &
NR, IWORK, LIWORK, IFAIL)
New: CALL G05PJF (MODE, N, K, XMEAN, IP, PHI, IQ, THETA, VAR, LDV, R, LR, STATE, X, LDX, &
IFAIL)

The integer array STATE in the call to G05PJF contains information on the base generator being used.
This array must have been initialized prior to calling G05PJF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05QAF
Withdrawn at Mark 24.
Replaced by G05PXF.

Old: CALL G05QAF (SIDE, INIT, M, N, A, LDA, IGEN, ISEED, WK, IFAIL)
New: CALL G05PXF (SIDE, INIT, M, N, STATE, A, LDA, IFAIL)

The integer array STATE in the call to G05PXF contains information on the base generator being used.
This array must have been initialized prior to calling G05PXF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05QBF
Withdrawn at Mark 24.
Replaced by G05PYF.

Old: CALL G05QBF (N, D, C, LDC, EPS, IGEN, ISEED, WK, IFAIL)
New: CALL G05PYF (N, D, EPS, STATE, C, LDC, IFAIL)

The integer array STATE in the call to G05PYF contains information on the base generator being used.
This array must have been initialized prior to calling G05PYF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05QDF
Withdrawn at Mark 24.
Replaced by G05PZF.

Old: CALL G05QDF (MODE, NROW, NCOL, TOTR, TOTC, X, LDX, IGEN, ISEED, R, NR, IW, LIW, &
IFAIL)
New: CALL G05PZF (MODE, NROW, NCOL, TOTR, TOTC, R, LR, STATE, X, LDX, IFAIL)

The integer array STATE in the call to G05PZF contains information on the base generator being used.
This array must have been initialized prior to calling G05PZF with a call to either G05KFF or G05KGF.
The required length of the array STATE will depend on the base generator chosen during initialization.

G05RAF
Withdrawn at Mark 24.
Replaced by G05RDF.

Old: CALL G05RAF (MODE, M, C, LDC, N, X, LDX, IGEN, ISEED, R, LR, IFAIL)
New: IF (MODE == 0) THEN
 NMODE = 1
ELSE IF (MODE == 1) THEN
 NMODE = 0
ELSE
 NMODE = MODE
END IF
CALL CALL G05RDF (NMODE, M, C, LDC, R, LR, STATE, X, LDX, IFAIL)
The integer array STATE in the call to G05RDF contains information on the base generator being used. This array must have been initialized prior to calling G05RDF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05RBF
Withdrawn at Mark 24.
Replaced by G05RCF.

Old: CALL G05RBF(MODE,DF,M,C,LDC,N,X,LDX,IGEN,ISEED,R,LR,IFAIL)
New: IF (MODE == 0) THEN
 NMODE = 1
 ELSE IF (MODE == 1) THEN
 NMODE = 0
 ELSE
 NMODE = MODE
END IF
CALL CALL G05RCF(NMODE,N,DF,M,C,LDC,R,LR,STATE,X,LDX,IFAIL)

The integer array STATE in the call to G05RCF contains information on the base generator being used. This array must have been initialized prior to calling G05RCF with a call to either G05KFF or G05KGF. The required length of the array STATE will depend on the base generator chosen during initialization.

G05YAF
Withdrawn at Mark 23.
Replaced by G05YLF and G05YMF.

Faure quasi-random numbers
Old: CALL G05YAF(.TRUE.,’F’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YLF(4,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YAF(.FALSE.,’F’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YMF(1,2,QUAS,LDQUAS,IREF,IFAIL)

Sobol quasi-random numbers
Old: CALL G05YAF(.TRUE.,’S’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YLF(2,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YAF(.FALSE.,’S’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YMF(1,2,QUAS,LDQUAS,IREF,IFAIL)

Neiderreiter quasi-random numbers
Old: CALL G05YAF(.TRUE.,’N’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YLF(3,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YAF(.FALSE.,’N’,ISKIP,IDIM,QUAS,IREF,IFAIL)
New: CALL G05YMF(1,2,QUAS,LDQUAS,IREF,IFAIL)

G05YBF
Withdrawn at Mark 23.
Replaced by G05YLF and either G05YJF or G05YKF.

This routine has been replaced by a suite of routines consisting of the relevant initialization routine followed by one of two possible generator routines.
Faure quasi-random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,’F’,FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(4,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,’F’,FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(MEAN,STD,N,QUASI,IREF,IFAIL)

Sobol quasi-random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,’S’,FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(2,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,’S’,FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(MEAN,STD,N,QUASI,IREF,IFAIL)

Neiderreiter quasi-random numbers with Gaussian probability:

Old: CALL G05YBF(.TRUE.,’N’,FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(3,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,’N’,FALSE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YJF(MEAN,STD,N,QUASI,IREF,IFAIL)

Faure quasi-random numbers with log Normal probability:

Old: CALL G05YBF(.TRUE.,’F’,TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(4,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,’F’,TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(MEAN,STD,N,QUASI,IREF,IFAIL)

Sobol quasi-random numbers with log Normal probability:

Old: CALL G05YBF(.TRUE.,’S’,TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(2,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,’S’,TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(MEAN,STD,N,QUASI,IREF,IFAIL)

Neiderreiter quasi-random numbers with log Normal probability:

Old: CALL G05YBF(.TRUE.,’N’,TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YLF(3,IDIM,IREF,LIREF,ISKIP,IFAIL)
Old: CALL G05YBF(.FALSE.,’N’,TRUE.,MEAN,STD,ISKIP,IDIM,QUASI,IREF,IFAIL)
New: CALL G05YKF(MEAN,STD,N,QUASI,IREF,IFAIL)

G05YCF
Withdrawn at Mark 24.
Replaced by G05YLF.

Old: CALL G05YCF(IDIM,IREF,IFAIL)
New: GENID = 4
CALL G05YLF(GENID,IDIM,IREF,LIREF,ISKIP,IFAIL)

G05YDF
Withdrawn at Mark 24.
Replaced by G05YMF.

Old: CALL G05YDF(N,QUASI,IREF,IFAIL)
New: CALL G05YMF(N,QUASI,LDQUAS,IREF,IFAIL)

G05YEF
Withdrawn at Mark 24.
Replaced by G05YLF.

Old: CALL G05YEF(IDIM, IREF, ISKIP, IFAIL)
New: GENID = 2
CALL G05YLF(GENID,IDIM,IREF,LIREF,ISKIP,IFAIL)
G05YFF

Withdrawn at Mark 24.
Replaced by G05YMF.

Old: CALL G05YFF(N,QUASI,IREF,IFAIL)
New: CALL G05YMF(N,QUAS,LDQUAS,IREF,IFAIL)

G05YGF

Withdrawn at Mark 24.
Replaced by G05YLF.

Old: CALL G05YGF(IDIM,IREF,ISKIP,IFAIL)
New: GENID = 3
 CALL G05YLF(GENID,IDIM,IREF,LIREF,ISKIP,IFAIL)

G05YHF

Withdrawn at Mark 24.
Replaced by G05YMF.

Old: CALL G05YHF(N,QUASI,IREF,IFAIL)
New: CALL G05YMF(N,RCORD,QUAS,LDQUAS,IREF,IFAIL)

G05ZAF

Withdrawn at Mark 22.
There is no replacement for this routine.

G05ZAF was used to select the underlying generator for the old style random number generation routines. These routines are no longer available and hence no direct replacement routine for G05ZAF is required. See G05KFF and G05KGF for details on how to select the underlying generator for the newer style routines.

G10 – Smoothing in Statistics

G10BAF

Scheduled for withdrawal at Mark 27.
Replaced by G10BBF.

Old: CALL G10BAF(N,X,WINDOW,SLO,SHI,NS,SMOOTH,T,USEFFT,FFT,IFAIL)
New: ALLOCATE(RCOMM,NS+20)
 CALL G10BBF(N,X,1,WINDOW,SLO,SHI,NS,SMOOTH,T,USEFFT,RCOMM,IFAIL)
 ! the next step is only required if the information in FFT
 ! was being used outside another call to G10BAF
 FFT(1:NS) = RCOMM(21:NS+20)

G13 – Time Series Analysis

G13DCF

Withdrawn at Mark 24.
Replaced by G13DDF.

Old: CALL G13DCF(K,N,IP,IQ,MEAN,PAR,NPAR,QQ,KMAX,W,PARHL,EXACT,IPRINT, &
 CGETOL,MAXCAL,ISHOW,NITER,RLOGL,V,G,CM,LDCM,WORK,LWORK, &
 IW,LIW,IFAIL)
New: CALL G13DDF(K,N,IP,IQ,MEAN,PAR,NPAR,QQ,KMAX,W,PARHL,EXACT,IPRINT, &
 CGETOL,MAXCAL,ISHOW,NITER,RLOGL,V,G,CM,LDCM,IFAIL)

The workspace arguments WORK, LWORK, IW and LIW are no longer required in the call to G13DDF.
Replacement Calls

P01 – Error Trapping

P01ABF
Withdrawn at Mark 24.
There is no replacement for this routine.

X02 – Machine Constants

X02DAF
Withdrawn at Mark 24.
There is no replacement for this routine.

X02DJF
Withdrawn at Mark 24.
There is no replacement for this routine.