
NAG Library Routine Document

H02BBF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

1 Purpose

H02BBF solves ‘zero-one’, ‘general’, ‘mixed’ or ‘all’ integer programming problems using a branch and
bound method. The routine may also be used to find either the first integer solution or the optimum
integer solution. It is not intended for large sparse problems.

2 Specification

SUBROUTINE H02BBF (ITMAX, MSGLVL, N, M, A, LDA, BL, BU, INTVAR, CVEC,
MAXNOD, INTFST, MAXDPT, TOLIV, TOLFES, BIGBND, X,
OBJMIP, IWORK, LIWORK, RWORK, LRWORK, IFAIL)

&
&

INTEGER ITMAX, MSGLVL, N, M, LDA, INTVAR(N), MAXNOD, INTFST,
MAXDPT, IWORK(LIWORK), LIWORK, LRWORK, IFAIL

&

REAL (KIND=nag_wp) A(LDA,*), BL(N+M), BU(N+M), CVEC(N), TOLIV, TOLFES,
BIGBND, X(N), OBJMIP, RWORK(LRWORK)

&

3 Description

H02BBF is capable of solving certain types of integer programming (IP) problems using a branch and
bound (B&B) method, see Taha (1987). In order to describe these types of integer programs and to
briefly state the B&B method, we define the following linear programming (LP) problem:

Minimize

F xð Þ ¼ c1x1 þ c2x2 þ � � � þ cnxn
subject to

Xn
j¼1

aijxj
¼
�
�

8<
:

9=
;bi; i ¼ 1; 2; . . . ;m

lj � xj � uj; j ¼ 1; 2; . . . ; n ð1Þ
If, in (1), it is required that (some or) all the variables take integer values, then the integer program is of
type (mixed or) all general IP problem. If additionally, the integer variables are restricted to take only
0–1 values (i.e., lj ¼ 0 and uj ¼ 1) then the integer program is of type (mixed or all) zero-one IP
problem.

The B&B method applies directly to these integer programs. The general idea of B&B (for a full
description see Dakin (1965) or Mitra (1973)) is to solve the problem without the integral restrictions as
an LP problem (first node). If in the optimal solution an integer variable xk takes a noninteger value x�k,
two LP sub-problems are created by branching, imposing xk � x�k

� �
and xk � x�k

� �
þ 1 respectively,

where x�k
� �

denotes the integer part of x�k. This method of branching continues until the first integer
solution (bound) is obtained. The hanging nodes are then solved and investigated in order to prove the
optimality of the solution. At each node, an LP problem is solved using E04MFF/E04MFA.

H – Operations Research H02BBF

Mark 25 H02BBF.1

4 References

Dakin R J (1965) A tree search algorithm for mixed integer programming problems Comput. J. 8 250–
255

Mitra G (1973) Investigation of some branch and bound strategies for the solution of mixed integer
linear programs Math. Programming 4 155–170

Taha H A (1987) Operations Research: An Introduction Macmillan, New York

5 Parameters

1: ITMAX – INTEGER Input/Output

On entry: an upper bound on the number of iterations for each LP problem.

On exit: unchanged if on entry ITMAX > 0, else ITMAX ¼ max 50; 5� NþMð Þð Þ.

2: MSGLVL – INTEGER Input

On entry: the amount of printout produced by H02BBF, as indicated below (see Section 5.1 for a
description of the printed output). All output is written to the current advisory message unit (as
defined by X04ABF).

Value Definition

0 No output.

1 The final IP solution only.

5 One line of output for each node investigated and the final IP solution.

10 The original LP solution (first node), one line of output for each node investigated and
the final IP solution.

3: N – INTEGER Input

On entry: n, the number of variables.

Constraint: N > 0.

4: M – INTEGER Input

On entry: m, the number of general linear constraints.

Constraint: M � 0.

5: AðLDA; �Þ – REAL (KIND=nag_wp) array Input

Note: the second dimension of the array A must be at least N if M > 0 and at least 1 if M ¼ 0.

On entry: the ith row of A must contain the coefficients of the ith general constraint, for
i ¼ 1; 2; . . . ;m.

If M ¼ 0 then the array A is not referenced.

6: LDA – INTEGER Input

On entry: the first dimension of the array A as declared in the (sub)program from which H02BBF
is called.

Constraint: LDA � max 1;Mð Þ.

7: BLðNþMÞ – REAL (KIND=nag_wp) array Input
8: BUðNþMÞ – REAL (KIND=nag_wp) array Input

On entry: BL must contain the lower bounds and BU the upper bounds, for all the constraints in
the following order. The first n elements of each array must contain the bounds on the variables,

H02BBF NAG Library Manual

H02BBF.2 Mark 25

and the next m elements the bounds for the general linear constraints (if any). To specify a
nonexistent lower bound (i.e., lj ¼ �1), set BLðjÞ � �BIGBND and to specify a nonexistent
upper bound (i.e., uj ¼ þ1), set BUðjÞ � BIGBND. To specify the jth constraint as an equality,
set BLðjÞ ¼ BUðjÞ ¼ �, say, where �j j < BIGBND.

Constraints:

BLðjÞ � BUðjÞ, for j ¼ 1; 2; . . . ;NþM;
if BLðjÞ ¼ BUðjÞ ¼ �, �j j < BIGBND.

9: INTVARðNÞ – INTEGER array Input

On entry: indicates which are the integer variables in the problem. For example, if xj is an integer
variable then INTVARðjÞ must be set to 1, and 0 otherwise.

Constraints:

INTVARðjÞ ¼ 0 or 1, for j ¼ 1; 2; . . . ;N;
INTVARðjÞ ¼ 1 for at least one value of j.

10: CVECðNÞ – REAL (KIND=nag_wp) array Input

On entry: the coefficients cj of the objective function F xð Þ ¼ c1x1 þ c2x2 þ . . .þ cnxn. The
routine attempts to find a minimum of F xð Þ. If a maximum of F xð Þ is desired, CVECðjÞ should
be set to �cj , for j ¼ 1; 2; . . . ; n, so that the routine will find a minimum of �F xð Þ.

11: MAXNOD – INTEGER Input

On entry: the maximum number of nodes that are to be searched in order to find a solution
(optimum integer solution). If MAXNOD � 0 and INTFST � 0, then the B&B tree search is
continued until all the nodes have been investigated.

12: INTFST – INTEGER Input

On entry: specifies whether to terminate the B&B tree search after the first integer solution (if any)
is obtained. If INTFST > 0 then the B&B tree search is terminated at node k say, which contains
the first integer solution. For MAXNOD > 0 this applies only if k � MAXNOD.

13: MAXDPT – INTEGER Input

On entry: the maximum depth of the B&B tree used for branch and bound.

Suggested value: MAXDPT ¼ 3� N=2.

Constraint: MAXDPT � 2.

14: TOLIV – REAL (KIND=nag_wp) Input/Output

On entry: the integer feasibility tolerance; i.e., an integer variable is considered to take an integer
value if its violation does not exceed TOLIV. For example, if the integer variable xj is near unity
then xj is considered to be integer only if 1� TOLIVð Þ � xj � 1þ TOLIVð Þ.

On exit: unchanged if on entry TOLIV > 0:0, else TOLIV ¼ 10�5.

15: TOLFES – REAL (KIND=nag_wp) Input/Output

On entry: the maximum acceptable absolute violation in each constraint at a ‘feasible’ point
(feasibility tolerance); i.e., a constraint is considered satisfied if its violation does not exceed
TOLFES.

On exit: unchanged if on entry TOLFES > 0:0, else TOLFES ¼
ffiffi
�
p

(where � is the machine
precision).

H – Operations Research H02BBF

Mark 25 H02BBF.3

16: BIGBND – REAL (KIND=nag_wp) Input/Output

On entry: the ‘infinite’ bound size in the definition of the problem constraints. More precisely, any
upper bound greater than or equal to BIGBND will be regarded as þ1 and any lower bound less
than or equal to �BIGBND will be regarded as �1.

On exit: unchanged if on entry BIGBND > 0:0, else BIGBND ¼ 1020.

17: XðNÞ – REAL (KIND=nag_wp) array Input/Output

On entry: an initial estimate of the original LP solution.

On exit: with IFAIL ¼ 0, X contains a solution which will be an estimate of either the optimum
integer solution or the first integer solution, depending on the value of INTFST. If IFAIL ¼ 9,
then X contains a solution which will be an estimate of the best integer solution that was obtained
by searching MAXNOD nodes.

18: OBJMIP – REAL (KIND=nag_wp) Output

On exit: with IFAIL ¼ 0 or 9, OBJMIP contains the value of the objective function for the IP
solution.

19: IWORKðLIWORKÞ – INTEGER array Communication Array
20: LIWORK – INTEGER Input

On entry: the dimension of the array IWORK as declared in the (sub)program from which
H02BBF is called.

Constraint: LIWORK � 25þ NþMð Þ �MAXDPTþ 5� NþMþ 4.

21: RWORKðLRWORKÞ – REAL (KIND=nag_wp) array Communication Array
22: LRWORK – INTEGER Input

On entry: the dimension of the array RWORK as declared in the (sub)program from which
H02BBF is called.

Constraint: LRWORK � MAXDPT� Nþ 1ð Þ þ 2�min N;Mþ 1ð Þ2 þ 14� Nþ 12�M.

If MSGLVL > 0, the amounts of workspace provided and required (with MAXDPT ¼ 3� N=2)
are printed. As an alternative to computing MAXDPT, LIWORK and LRWORK from the
formulas given above, you may prefer to obtain appropriate values from the output of a
preliminary run with the values of MAXDPT, LIWORK and LRWORK set to 1. If however only
LIWORK and LRWORK are set to 1, then the appropriate values of these parameters for the
given value of MAXDPT will be computed and printed unless MAXDPT < 2. In both cases
H02BBF will then terminate with IFAIL ¼ 6.

23: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this parameter you should
refer to Section 3.3 in the Essential Introduction for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, because for this routine the values of the output
parameters may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the
value �1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

5.1 Description of Printed Output

The level of printed output from H02BBF is controlled by you (see the description of MSGLVL in
Section 5).

H02BBF NAG Library Manual

H02BBF.4 Mark 25

When MSGLVL > 0, the summary printout at the end of execution of H02BBF includes a listing of the
status of every variable and constraint. Note that default names are assigned to all variables and
constraints. The following describes the printout for each variable.

Varbl gives the name (V) and index j, for j ¼ 1; 2; . . . ; n, of the variable.

State gives the state of the variable (FR if neither bound is in the working set, EQ if a
fixed variable, LL if on its lower bound, UL if on its upper bound, TF if
temporarily fixed at its current value). If Value lies outside the upper or lower
bounds by more than the Feasibility Tolerance, State will be ++ or --
respectively.

Value is the value of the variable at the final iterate.

Lower Bound is the lower bound specified for the variable. (None indicates that
BLðjÞ � �BIGBND.) Note that if INTVARðjÞ ¼ 1, then the printed value of
Lower Bound for the jth variable may not be the same as that originally supplied
in BLðjÞ.

Upper Bound is the upper bound specified for the variable. (None indicates that
BUðjÞ � BIGBND.) Note that if INTVARðjÞ ¼ 1, then the printed value of
Upper Bound for the jth variable may not be the same as that originally supplied
in BUðjÞ.

Lagr Mult is the value of the Lagrange-multiplier for the associated bound constraint. This
will be zero if State is FR or TF. If x is optimal, the multiplier should be non-
negative if State is LL, and non-positive if State is UL.

Residual is the difference between the variable Value and the nearer of its bounds BLðjÞ
and BUðjÞ.

The meaning of the printout for general constraints is the same as that given above for variables, with
‘variable’ replaced by ‘constraint’, BLðjÞ and BUðjÞ are replaced by BLðnþ jÞ and BUðnþ jÞ
respectively, and with the following change in the heading.

L Con gives the name (L) and index j, for j ¼ 1; 2; . . . ;m, of the constraint.

When MSGLVL > 1, the summary printout at the end of every node during the execution of H02BBF is
a listing of the outcome of forcing an integer variable with a noninteger value to take a value within its
specified lower and upper bounds.

Node No is the current node number of the B&B tree being investigated.

Parent Node is the parent node number of the current node.

Obj Value is the final objective function value. If a node does not have a feasible solution
then No Feas Soln is printed instead of the objective function value. If a node
whose optimum solution exceeds the best integer solution so far is encountered
(i.e., it does not pay to explore the sub-problem any further), then its objective
function value is printed together with a CO (Cut Off).

Varbl Chosen is the index of the integer variable chosen for branching.

Value Before is the noninteger value of the integer variable chosen.

Lower Bound is the lower bound value that the integer variable is allowed to take.

Upper Bound is the upper bound value that the integer variable is allowed to take.

Value After is the value of the integer variable after the current optimization.

Depth is the depth of the B&B tree at the current node.

H – Operations Research H02BBF

Mark 25 H02BBF.5

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Note: H02BBF may return useful information for one or more of the following detected errors or
warnings.

Errors or warnings detected by the routine:

IFAIL ¼ 1

No feasible integer point was found, i.e., it was not possible to satisfy all the integer variables to
within the integer feasibility tolerance (determined by TOLIV). Increase TOLIV and rerun
H02BBF.

IFAIL ¼ 2

The original LP solution appears to be unbounded. This value of IFAIL implies that a step as large
as BIGBND would have to be taken in order to continue the algorithm (see Section 9).

IFAIL ¼ 3

No feasible point was found for the original LP problem, i.e., it was not possible to satisfy all the
constraints to within the feasibility tolerance (determined by TOLFES). If the data for the
constraints are accurate only to the absolute precision �, you should ensure that the value of the
feasibility tolerance is greater than �. For example, if all elements of A are of order unity and are
accurate only to three decimal places, the feasibility tolerance should be at least 10�3 (see
Section 9).

IFAIL ¼ 4

The maximum number of iterations (determined by ITMAX) was reached before normal
termination occurred for the original LP problem (see Section 9).

IFAIL ¼ 5

Not used by this routine.

IFAIL ¼ 6

An input parameter is invalid.

IFAIL ¼ 7

The IP solution reported is not the optimum IP solution. In other words, the B&B tree search for
at least one of the branches had to be terminated since an LP sub-problem in the branch did not
have a solution (see Section 9).

IFAIL ¼ 8

The maximum depth of the B&B tree used for branch and bound (determined by MAXDPT) is
too small. Increase MAXDPT (along with LIWORK and/or LRWORK if appropriate) and rerun
H02BBF.

IFAIL ¼ 9

The IP solution reported is the best IP solution for the number of nodes (determined by
MAXNOD) investigated in the B&B tree.

IFAIL ¼ 10

No feasible integer point was found for the number of nodes (determined by MAXNOD)
investigated in the B&B tree.

H02BBF NAG Library Manual

H02BBF.6 Mark 25

IFAIL ¼ 11

Although the workspace sizes are sufficient to meet the documented restriction, they are not
sufficiently large to accommodate an internal partition of the workspace that meets the
requirements of the problem. Increase the workspace sizes.

Overflow

It may be possible to avoid the difficulty by increasing the magnitude of the feasibility tolerance
(TOLFES) and rerunning the program. If the message recurs even after this change, see Section 9.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.8 in the Essential Introduction for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.7 in the Essential Introduction for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.6 in the Essential Introduction for further information.

7 Accuracy

H02BBF implements a numerically stable active set strategy and returns solutions that are as accurate as
the condition of the problem warrants on the machine.

8 Parallelism and Performance

H02BBF is not threaded by NAG in any implementation.

H02BBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users’ Note for your
implementation for any additional implementation-specific information.

9 Further Comments

The original LP problem may not have an optimum solution, i.e., H02BBF terminates with IFAIL ¼ 2, 3
or 4 or overflow may occur. In this case, you are recommended to relax the integer restrictions of the
problem and try to find the optimum LP solution by using E04MFF/E04MFA instead.

In the B&B method, it is possible for an LP sub-problem to terminate without finding a solution. This
may occur due to the number of iterations exceeding the maximum allowed. Therefore the B&B tree
search for that particular branch cannot be continued. Thus the returned solution may not be optimal.
(IFAIL ¼ 7). For the second and unlikely case, a solution could not be found despite a second attempt at
an LP solution.

10 Example

This example solves the integer programming problem:

H – Operations Research H02BBF

Mark 25 H02BBF.7

maximize

F xð Þ ¼ 3x1 þ 4x2

subject to the bounds

x1 � 0
x2 � 0

and to the general constraints

2x1 þ 5x2 � 15
2x1 � 2x2 � 5
3x1 þ 2x2 � 5

where x1 and x2 are integer variables.

The initial point, which is feasible, is

x0 ¼ 1; 1ð ÞT;

and F x0ð Þ ¼ 7.

The optimal solution is

x� ¼ 2; 2ð ÞT;

and F x�ð Þ ¼ 14.

Note that maximizing F xð Þ is equivalent to minimizing �F xð Þ.

10.1 Program Text

Program h02bbfe

! H02BBF Example Program Text

! Mark 25 Release. NAG Copyright 2014.

! .. Use Statements ..
Use nag_library, Only: h02bbf, nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Integer, Parameter :: nin = 5, nout = 6

! .. Local Scalars ..
Real (Kind=nag_wp) :: bigbnd, objmip, tolfes, toliv
Integer :: i, ifail, intfst, itmax, j, lda, &

liwork, lrwork, m, maxdpt, maxnod, &
msglvl, n

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: a(:,:), bl(:), bu(:), cvec(:), &

rwork(:), x(:)
Integer, Allocatable :: intvar(:), iwork(:)

! .. Intrinsic Procedures ..
Intrinsic :: min

! .. Executable Statements ..
Write (nout,*) ’H02BBF Example Program Results’
Flush (nout)

! Skip heading in data file
Read (nin,*)

Read (nin,*) n, m
lda = m
Allocate (a(lda,n),bl(m+n),bu(m+n),cvec(n),x(n),intvar(n))

Read (nin,*) itmax, msglvl
Read (nin,*) maxnod
Read (nin,*) intfst, maxdpt

H02BBF NAG Library Manual

H02BBF.8 Mark 25

Read (nin,*) tolfes, toliv
Read (nin,*)(cvec(i),i=1,n)
Read (nin,*)((a(i,j),j=1,n),i=1,m)
Read (nin,*) bigbnd
Read (nin,*)(bl(i),i=1,n+m)
Read (nin,*)(bu(i),i=1,n+m)
Read (nin,*)(intvar(i),i=1,n)
Read (nin,*)(x(i),i=1,n)

liwork = (25+n+m)*maxdpt + 5*n + m + 4
lrwork = maxdpt*(n+1) + 2*min(n,m+1)**2 + 14*n + 12*m
Allocate (iwork(liwork),rwork(lrwork))

! Solve the IP problem

ifail = 0
Call h02bbf(itmax,msglvl,n,m,a,lda,bl,bu,intvar,cvec,maxnod,intfst, &

maxdpt,toliv,tolfes,bigbnd,x,objmip,iwork,liwork,rwork,lrwork,ifail)

End Program h02bbfe

10.2 Program Data

H02BBF Example Program Data
2 3 :Values of N and M
0 10 :Values of ITMAX and MSGLVL
0 :Value of MAXNOD
0 4 :Values of INTFST and MAXDPT
0.0 0.0 :Values of TOLFES and TOLIV

-3.0 -4.0 :End of CVEC
2.0 5.0
2.0 -2.0
3.0 2.0 :End of matrix A
1.0E+20 :Value of BIGBND
0.0 0.0 -1.0E+20 -1.0E+20 5.0 :End of BL
1.0E+20 1.0E+20 15.0 5.0 1.0E+20 :End of BU
1 1 :End of INTVAR
1.0 1.0 :End of X

10.3 Program Results

H02BBF Example Program Results

*** IP solver

Parameters

Linear constraints...... 3 First integer solution.. OFF
Variables............... 2 Max depth of the tree... 4

Feasibility tolerance... 1.05E-08 Print level............. 10
Infinite bound size..... 1.00E+20 EPS (machine precision). 1.11E-16

Integer feasibility tol. 1.00E-05 Iteration limit......... 50
Max number of nodes..... NONE

** Workspace provided with MAXDPT = 4: LRWORK = 84 LIWORK = 137
** Workspace required with MAXDPT = 4: LRWORK = 84 LIWORK = 137

*** Optimum LP solution *** -17.50000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 FR 3.92857 0.00000 None 0.000 3.929
V 2 FR 1.42857 0.00000 None 0.000 1.429

H – Operations Research H02BBF

Mark 25 H02BBF.9

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 UL 15.0000 None 15.0000 -1.000 0.000
L 2 UL 5.00000 None 5.00000 -0.5000 -8.8818E-16
L 3 FR 14.6429 5.00000 None 0.000 9.643

*** Start of tree search ***

Node Parent Obj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
2 1 No Feas Soln 1 3.93 4.00 None 4.00 1
3 1 -16.2 1 3.93 0.00 3.00 3.00 1
4 3 -15.5 2 1.80 2.00 None 2.00 2
5 3 -13.0 2 1.80 0.00 1.00 1.00 2

*** Integer solution ***

Node Parent Obj Varbl Value Lower Upper Value Depth
No Node Value Chosen Before Bound Bound After
6 4 No Feas Soln 1 2.50 3.00 3.00 3.00 3
7 4 -14.8 1 2.50 0.00 2.00 2.00 3
8 7 -12.0 CO 2 2.20 3.00 None 3.00 4
9 7 -14.0 2 2.20 2.00 2.00 2.00 4

*** Integer solution ***

*** End of tree search ***

Total of 9 nodes investigated.

Exit IP solver - Optimum IP solution found.

Final IP objective value = -14.00000

Varbl State Value Lower Bound Upper Bound Lagr Mult Residual

V 1 UL 2.00000 0.00000 2.00000 -3.000 0.000
V 2 EQ 2.00000 2.00000 2.00000 -4.000 0.000

L Con State Value Lower Bound Upper Bound Lagr Mult Residual

L 1 FR 14.0000 None 15.0000 0.000 1.000
L 2 FR 0.00000 None 5.00000 0.000 5.000
L 3 FR 10.0000 5.00000 None 0.000 5.000

H02BBF NAG Library Manual

H02BBF.10 (last) Mark 25

	H02BBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Dakin (1965)
	Mitra (1973)
	Taha (1987)

	5 Parameters
	ITMAX
	MSGLVL
	N
	M
	A
	LDA
	BL
	BU
	INTVAR
	CVEC
	MAXNOD
	INTFST
	MAXDPT
	TOLIV
	TOLFES
	BIGBND
	X
	OBJMIP
	IWORK
	LIWORK
	RWORK
	LRWORK
	IFAIL
	5.1 Description of Printed Output

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=5
	IFAIL=6
	IFAIL=7
	IFAIL=8
	IFAIL=9
	IFAIL=10
	IFAIL=11
	Overflow
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	NAG Fortran Library Manual, Mark 25
	Copyright Statement
	Foreword
	Introduction
	Essential Introduction
	Mark 25 NAG Fortran Library News
	Multithreaded Routines
	Thread Safety
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements
	Online Documentation
	Index
	Implementation-specific Details for Users

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Introduction

	H - Operations Research
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Introduction

