NAG Library Routine Document
 D05BWF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details. and other implementation-dependent details.

1 Purpose

D05BWF computes the quadrature weights associated with the Adams' methods of orders three to six and the Backward Differentiation Formulae (BDF) methods of orders two to five. These rules, which are referred to as reducible quadrature rules, can then be used in the solution of Volterra integral and integro-differential equations.

2 Specification

```
SUBROUTINE D05BWF (METHOD, IORDER, OMEGA, NOMG, LENSW, SW, LDSW, NWT,
                        IFAIL)
INTEGER IORDER, NOMG, LENSW, LDSW, NWT, IFAIL
REAL (KIND=nag_wp) OMEGA(NOMG), SW(LDSW,NWT)
CHARACTER(1) METHOD
```


3 Description

D05BWF computes the weights $W_{i, j}$ and ω_{i} for a family of quadrature rules related to the Adams' methods of orders three to six and the BDF methods of orders two to five, for approximating the integral:

$$
\begin{equation*}
\int_{0}^{t} \phi(s) d s \simeq h \sum_{j=0}^{p-1} W_{i, j} \phi(j \times h)+h \sum_{j=p}^{i} \omega_{i-j} \phi(j \times h), \quad 0 \leq t \leq T \tag{1}
\end{equation*}
$$

with $t=i \times h$, for $i=0,1, \ldots, n$, for some given constant h.
In (1), h is a uniform mesh, p is related to the order of the method being used and $W_{i, j}, \omega_{i}$ are the starting and the convolution weights respectively. The mesh size h is determined as $h=\frac{T}{n}$, where $n=n_{w}+p-1$ and n_{w} is the chosen number of convolution weights w_{j}, for $j=1,2, \ldots, n_{w}-1$. A description of how these weights can be used in the solution of a Volterra integral equation of the second kind is given in Section 9. For a general discussion of these methods, see Wolkenfelt (1982) for more details.

4 References

Lambert J D (1973) Computational Methods in Ordinary Differential Equations John Wiley
Wolkenfelt P H M (1982) The construction of reducible quadrature rules for Volterra integral and integro-differential equations IMA J. Numer. Anal. 2 131-152

5 Arguments

1: METHOD - CHARACTER(1)
Input
On entry: the type of method to be used.
METHOD = 'A'
For Adams' type formulae.

METHOD = 'B'
For Backward Differentiation Formulae.
Constraint: METHOD = 'A' or 'B'.
2: IORDER - INTEGER
Input
On entry: the order of the method to be used. The number of starting weights, p is determined by METHOD and IORDER.

If METHOD $=$ 'A', $p=\operatorname{IORDER}-1$.
If METHOD $=$ ' B ', $p=$ IORDER.
Constraints:
if METHOD $=$ ' A ', $3 \leq$ IORDER ≤ 6;
if METHOD $=$ 'B', $2 \leq$ IORDER ≤ 5.

Output
On exit: contains the first NOMG convolution weights.
4: NOMG - INTEGER
Input
On entry: the number of convolution weights, n_{w}.
Constraint: NOMG ≥ 1.
5: LENSW - INTEGER
Output
On exit: the number of rows in the weights $W_{i, j}$.
6: \quad SW(LDSW, NWT) - REAL (KIND=nag_wp) array
Output
On exit: $\operatorname{SW}(i, j+1)$ contains the weights $W_{i, j}$, for $i=1,2, \ldots$, LENSW and $j=0,1, \ldots$, NWT -1 , where n is as defined in Section 3 .

7: LDSW - INTEGER
Input
On entry: the first dimension of the array SW as declared in the (sub)program from which D05BWF is called.
Constraints:

> if METHOD $=$ 'A', LDSW \geq NOMG + IORDER -2 ;
> if METHOD $=$ 'B', LDSW \geq NOMG + IORDER -1 .

8: NWT - INTEGER
Input
On entry: p, the number of columns in the starting weights.
Constraints:
if METHOD $=$ ' A ', NWT $=\operatorname{IORDER}-1$;
if METHOD $=$ 'B', NWT $=$ IORDER.
9: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).
Errors or warnings detected by the routine:
IFAIL $=1$
On entry, METHOD \neq ' A^{\prime} or ' B '.
IFAIL $=2$
On entry, IORDER <2 or IORDER >6,
or \quad NOMG <1.
IFAIL $=3$
On entry, METHOD $=$ ' A ' and IORDER $=2$,
or $\quad \mathrm{METHOD}=\mathrm{B}$ ' and $\operatorname{IORDER}=6$.
IFAIL $=4$
On entry, METHOD $=$ 'A' and NWT \neq IORDER -1 ,
or \quad METHOD $=$ 'B' and NWT \neq IORDER.
IFAIL $=5$
On entry, METHOD $=$ 'A' and LDSW $<$ NOMG + IORDER -2 ,
or \quad METHOD $=$ 'B' and LDSW $<$ NOMG + IORDER -1 .
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

Not applicable.

8 Parallelism and Performance

D05BWF is not threaded in any implementation.

9 Further Comments

Reducible quadrature rules are most appropriate for solving Volterra integral equations (and integrodifferential equations). In this section, we propose the following algorithm which you may find useful in solving a linear Volterra integral equation of the form

$$
\begin{equation*}
y(t)=f(t)+\int_{0}^{t} K(t, s) y(s) d s, \quad 0 \leq t \leq T \tag{2}
\end{equation*}
$$

using D05BWF. In (2), $K(t, s)$ and $f(t)$ are given and the solution $y(t)$ is sought on a uniform mesh of size h such that $T=n h$. Discretization of (2) yields

$$
\begin{equation*}
y_{i}=f(i \times h)+h \sum_{j=0}^{p-1} W_{i, j} K(i, h, j, h) y_{j}+h \sum_{j=p}^{i} \omega_{i-j} K(i, h, j, h) y_{j}, \tag{3}
\end{equation*}
$$

where $y_{i} \simeq y(i \times h)$. We propose the following algorithm for computing y_{i} from (3) after a call to D05BWF:
(a) Equation (3) requires starting values, y_{j}, for $j=1,2, \ldots$, NWT -1 , with $y_{0}=f(0)$. These starting values can be computed by solving the linear system

$$
y_{i}=f(i \times h)+h \sum_{j=0}^{\mathrm{NWT}-1} \mathrm{SW}(i, j+1) K(i, h, j, h) y_{j}, \quad i=1,2, \ldots, \mathrm{NWT}-1 .
$$

(b) Compute the inhomogeneous terms

$$
\sigma_{i}=f(i \times h)+h \sum_{j=0}^{\mathrm{NWT}-1} \mathrm{SW}(i, j+1) K(i, h, j, h) y_{j}, \quad i=\mathrm{NWT}, \mathrm{NWT}+1, \ldots, n .
$$

(c) Start the iteration for $i=$ NWT, NWT $+1, \ldots, n$ to compute y_{i} from:

$$
(1-h \times \operatorname{OMEGA}(1) K(i, h, i, h)) y_{i}=\sigma_{i}+h \sum_{j=\mathrm{NWT}}^{i-1} \operatorname{OMEGA}(i-j+1) K(i, h, j, h) y_{j} .
$$

Note that for a nonlinear integral equation, the solution of a nonlinear algebraic system is required at step (a) and a single nonlinear equation at step (c).

10 Example

The following example generates the first ten convolution and thirteen starting weights generated by the fourth-order BDF method.

10.1 Program Text

```
Program d05bwfe
    D05BWF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: d05bwf, nag_wp
    .. Implicit None Statement ..
    Implicit None
    .. Parameters ..
    Integer, Parameter :: iorder = 4, nomg = 10, nout = 6
    Integer, Parameter :: nwt = iorder
    Integer, Parameter :: ldsw = nomg + iorder - 1
    .. Local Scalars ..
    Integer :: ifail, lensw, n
    .. Local Arrays ..
    Real (Kind=nag_wp) :: omega(nomg), sw(ldsw,nwt)
! .. Executable Statements ..
    Write (nout,*) 'DO5BWF Example Program Results'
```

```
    ifail = 0
    Call d05bwf('BDF',iorder,omega,nomg,lensw,sw,ldsw,nwt,ifail)
    Write (nout,*)
    Write (nout,*) 'The convolution weights'
    Write (nout,*)
    Do n = 1, nomg
        Write (nout,99999) n - 1, omega(n)
    End Do
    Write (nout,*)
    Write (nout,*) 'The weights W'
    Write (nout,*)
    Do n = 1, lensw
        Write (nout,99999) n, sw(n,1:nwt)
    End Do
99999 Format (1X,I3,4X,6F10.4)
    End Program dO5bwfe
```


10.2 Program Data

None.

10.3 Program Results

D05BWF Example Program Results
The convolution weights
0.4800
0.9216
1.0783
1.0504
0.9962
0.9797
0.9894
1.0003
1.0034
1.0017

The weights W

0.3750	0.7917	-0.2083	0.0417
0.3333	1.3333	0.3333	0.0000
0.3750	1.1250	1.1250	0.3750
0.4800	0.7467	1.5467	0.7467
0.5499	0.5719	1.5879	0.8886
0.5647	0.5829	1.5016	0.8709
0.5545	0.6385	1.4514	0.8254
0.5458	0.6629	1.4550	0.8098
0.5449	0.6578	1.4741	0.8170
0.5474	0.6471	1.4837	0.8262
0.5491	0.6428	1.4831	0.8292
0.5492	0.6438	1.4798	0.8279
0.5488	0.6457	1.4783	0.8263

