NAG Library Routine Document

 E01BEF

 E01BEF}

Abstract

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E01BEF computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points.

2 Specification

```
SUBROUTINE EO1BEF (N, X, F, D, IFAIL)
INTEGER N, IFAIL
REAL (KIND=nag_wp) X(N), F(N), D(N)
```


3 Description

E01BEF estimates first derivatives at the set of data points $\left(x_{r}, f_{r}\right)$, for $r=1,2, \ldots, n$, which determine a piecewise cubic Hermite interpolant to the data, that preserves monotonicity over ranges where the data points are monotonic. If the data points are only piecewise monotonic, the interpolant will have an extremum at each point where monotonicity switches direction. The estimates of the derivatives are computed by a formula due to Brodlie, which is described in Fritsch and Butland (1984), with suitable changes at the boundary points.
The routine is derived from routine PCHIM in Fritsch (1982).
Values of the computed interpolant, and of its first derivative and definite integral, can subsequently be computed by calling E01BFF, E01BGF and E01BHF, as described in Section 9.

4 References

Fritsch F N (1982) PCHIP final specifications Report UCID-30194 Lawrence Livermore National Laboratory
Fritsch F N and Butland J (1984) A method for constructing local monotone piecewise cubic interpolants SIAM J. Sci. Statist. Comput. 5 300-304

5 Arguments

1: N - INTEGER Input
On entry: n, the number of data points.
Constraint: $\mathrm{N} \geq 2$.
2: $\mathrm{X}(\mathrm{N})$ - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{X}(r)$ must be set to x_{r}, the r th value of the independent variable (abscissa), for $r=1,2, \ldots, n$.
Constraint: $\mathrm{X}(r)<\mathrm{X}(r+1)$.
3: $\mathrm{F}(\mathrm{N})$ - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{F}(r)$ must be set to f_{r}, the r th value of the dependent variable (ordinate), for $r=1,2, \ldots, n$.

4: $\quad \mathrm{D}(\mathrm{N})-$ REAL (KIND=nag_wp) array
Output
On exit: estimates of derivatives at the data points. $\mathrm{D}(r)$ contains the derivative at $\mathrm{X}(r)$.
5: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.

On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{N}<2$.
IFAIL $=2$
The values of $\mathrm{X}(r)$, for $r=1,2, \ldots, \mathrm{~N}$, are not in strictly increasing order.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

The computational errors in the array D should be negligible in most practical situations.

8 Parallelism and Performance

E01BEF is not threaded in any implementation.

9 Further Comments

The time taken by E01BEF is approximately proportional to n.
The values of the computed interpolant at the points $\operatorname{PX}(i)$, for $i=1,2, \ldots, \mathrm{M}$, may be obtained in the real array PF , of length at least M , by the call:

```
CALL EO1BFF(N,X,F,D,M,PX,PF,IFAIL)
```

where N, X and F are the input arguments to E01BEF and D is the output argument from E01BEF.
The values of the computed interpolant at the points $\mathrm{PX}(i)$, for $i=1,2, \ldots, \mathrm{M}$, together with its first derivatives, may be obtained in the real arrays $P F$ and $P D$, both of length at least M, by the call:

```
CALL EO1BGF(N,X,F,D,M,PX,PF,PD,IFAIL)
```

where $\mathrm{N}, \mathrm{X}, \mathrm{F}$ and D are as described above.
The value of the definite integral of the interpolant over the interval A to B can be obtained in the real variable PINT by the call:

```
CALL E01BHF(N,X,F,D,A,B,PINT,IFAIL)
```

where $\mathrm{N}, \mathrm{X}, \mathrm{F}$ and D are as described above.

10 Example

This example reads in a set of data points, calls E01BEF to compute a piecewise monotonic interpolant, and then calls E01BFF to evaluate the interpolant at equally spaced points.

10.1 Program Text

```
Program e01befe
    EO1BEF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: e01bef, e01bff, nag_wp
! .. Implicit None Statement ..
    Implicit None
! .. Parameters ..
    Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
    Real (Kind=nag_wp) :: step
    Integer :: i, ifail, m, n, r
    .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: d(:), f(:), pf(:), px(:), x(:)
    .. Intrinsic Procedures ..
    Intrinsic :: min, real
    .. Executable Statements ..
    Write (nout,*) 'EO1BEF Example Program Results'
    Skip heading in data file
    Read (nin,*)
    Read (nin,*) n
    Allocate (d(n),f(n),x(n))
    Do r = 1, n
        Read (nin,*) x(r), f(r)
    End Do
    ifail = O
    Call e0lbef(n,x,f,d,ifail)
    Read (nin,*) m
    Allocate (pf(m),px(m))
    Compute M equally spaced points from X(I) to X(N).
    step = (x(n)-x(1))/real(m-1,kind=nag_wp)
    Do i = 1, m
        px(i) = min(x(1)+real(i-1,kind=nag_wp)*step,x(n))
    End Do
```

```
ifail = 0
Call eOlbff(n,x,f,d,m,px,pf,ifail)
Write (nout,*)
Write (nout,*) , Interpolated'
Write (nout,*) , Abscissa Value'
Do i = 1, m
    Write (nout,99999) px(i), pf(i)
End Do
99999 Format (1X,F13.4,2X,F13.4)
    End Program eOlbefe
```


10.2 Program Data

EO1BEF Example Program Data		
9		N, the number of data points
7.99	$0.00000 \mathrm{E}+0$	$\mathrm{X}(\mathrm{R}), \mathrm{F}(\mathrm{R})$, independent and dependent variable
8.09	$0.27643 \mathrm{E}-4$	
8.19	$0.43750 \mathrm{E}-1$	
8.70	$0.16918 \mathrm{E}+0$	
9.20	$0.46943 \mathrm{E}+0$	
10.00	$0.94374 \mathrm{E}+0$	
12.00	$0.99864 \mathrm{E}+0$	
15.00	$0.99992 \mathrm{E}+0$	
20.00	$0.99999 \mathrm{E}+0$	End of data points
11		M, the number of evaluation points

10.3 Program Results

```
EO1BEF Example Program Results
```

Abscissa	Interpolated
7.9900	0.0000
9.1910	0.4640
10.3920	0.9645
11.5930	0.9965
12.7940	0.9992
13.9950	0.9998
15.1960	0.9999
16.3970	1.0000
17.5980	1.0000
18.7990	1.0000
20.0000	1.0000

