NAG Library Routine Document
 E01SGF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

E01SGF generates a two-dimensional interpolant to a set of scattered data points, using a modified Shepard method.

2 Specification

```
SUBROUTINE EOISGF (M, X, Y, F, NW, NQ, IQ, LIQ, RQ, LRQ, IFAIL)
INTEGER M, NW, NQ, IQ(LIQ), LIQ, LRQ, IFAIL
REAL (KIND=nag_wp) X(M),Y(M), F(M), RQ(LRQ)
```


3 Description

E01SGF constructs a smooth function $Q(x, y)$ which interpolates a set of m scattered data points $\left(x_{r}, y_{r}, f_{r}\right)$, for $r=1,2, \ldots, m$, using a modification of Shepard's method. The surface is continuous and has continuous first partial derivatives.

The basic Shepard (1968) method interpolates the input data with the weighted mean

$$
Q(x, y)=\frac{\sum_{r=1}^{m} w_{r}(x, y) q_{r}}{\sum_{r=1}^{m} w_{r}(x, y)}
$$

where $q_{r}=f_{r}, w_{r}(x, y)=\frac{1}{d_{r}^{2}}$ and $d_{r}^{2}=\left(x-x_{r}\right)^{2}+\left(y-y_{r}\right)^{2}$.
The basic method is global in that the interpolated value at any point depends on all the data, but this routine uses a modification (see Franke and Nielson (1980) and Renka (1988a)), whereby the method becomes local by adjusting each $w_{r}(x, y)$ to be zero outside a circle with centre $\left(x_{r}, y_{r}\right)$ and some radius R_{w}. Also, to improve the performance of the basic method, each q_{r} above is replaced by a function $q_{r}(x, y)$, which is a quadratic fitted by weighted least squares to data local to (x_{r}, y_{r}) and forced to interpolate $\left(x_{r}, y_{r}, f_{r}\right)$. In this context, a point (x, y) is defined to be local to another point if it lies within some distance R_{q} of it. Computation of these quadratics constitutes the main work done by this routine.

The efficiency of the routine is further enhanced by using a cell method for nearest neighbour searching due to Bentley and Friedman (1979).
The radii R_{w} and R_{q} are chosen to be just large enough to include N_{w} and N_{q} data points, respectively, for user-supplied constants N_{w} and N_{q}. Default values of these arguments are provided by the routine, and advice on alternatives is given in Section 9.2.

This routine is derived from the routine QSHEP2 described by Renka (1988b).
Values of the interpolant $Q(x, y)$ generated by this routine, and its first partial derivatives, can subsequently be evaluated for points in the domain of the data by a call to E01SHF.

4 References

Bentley J L and Friedman J H (1979) Data structures for range searching ACM Comput. Surv. $11397-$ 409

Franke R and Nielson G (1980) Smooth interpolation of large sets of scattered data Internat. J. Num. Methods Engrg. 15 1691-1704
Renka R J (1988a) Multivariate interpolation of large sets of scattered data ACM Trans. Math. Software 14 139-148

Renka R J (1988b) Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation of scattered data ACM Trans. Math. Software 14 149-150
Shepard D (1968) A two-dimensional interpolation function for irregularly spaced data Proc. 23 rd Nat. Conf. ACM 517-523 Brandon/Systems Press Inc., Princeton

5 Arguments

1: $\quad \mathrm{M}$ - INTEGER
Input
On entry: m, the number of data points.
Constraint: $\mathrm{M} \geq 6$.
2: $\mathrm{X}(\mathrm{M})$ - REAL (KIND=nag_wp) array Input
3: $\mathrm{Y}(\mathrm{M})$ - REAL (KIND=nag_wp) array Input
On entry: the Cartesian coordinates of the data points $\left(x_{r}, y_{r}\right)$, for $r=1,2, \ldots, m$.
Constraint: these coordinates must be distinct, and must not all be collinear.
4: $\mathrm{F}(\mathrm{M})$ - REAL (KIND=nag_wp) array Input
On entry: $\mathrm{F}(r)$ must be set to the data value f_{r}, for $r=1,2, \ldots, m$.
5: NW - INTEGER
Input
On entry: the number N_{w} of data points that determines each radius of influence R_{w}, appearing in the definition of each of the weights w_{r}, for $r=1,2, \ldots, m$ (see Section 3). Note that R_{w} is different for each weight. If $\mathrm{NW} \leq 0$ the default value $\mathrm{NW}=\min (19, \mathrm{M}-1)$ is used instead.
Constraint: $\mathrm{NW} \leq \min (40, \mathrm{M}-1)$.
6: NQ - INTEGER
Input
On entry: the number N_{q} of data points to be used in the least squares fit for coefficients defining the nodal functions $q_{r}(x, y)$ (see Section 3). If $\mathrm{NQ} \leq 0$ the default value $\mathrm{NQ}=\min (13, \mathrm{M}-1)$ is used instead.
Constraint: $\mathrm{NQ} \leq 0$ or $5 \leq \mathrm{NQ} \leq \min (40, \mathrm{M}-1)$.
7: \quad IQ (LIQ) - INTEGER array
Output
On exit: integer data defining the interpolant $Q(x, y)$.
8: LIQ - INTEGER
Input
On entry: the dimension of the array IQ as declared in the (sub)program from which E01SGF is called.

Constraint: LIQ $\geq 2 \times \mathrm{M}+1$.

9: $\quad \mathrm{RQ}(\mathrm{LRQ})-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: real data defining the interpolant $Q(x, y)$.

10: LRQ - INTEGER
Input
On entry: the dimension of the array RQ as declared in the (sub)program from which E01SGF is called.
Constraint: $\mathrm{LRQ} \geq 6 \times \mathrm{M}+5$.
11: IFAIL - INTEGER
Input/Output
On entry: IFAIL must be set to $0,-1$ or 1 . If you are unfamiliar with this argument you should refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.
For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, if you are not familiar with this argument, the recommended value is 0 . When the value -1 or 1 is used it is essential to test the value of IFAIL on exit.
On exit: IFAIL $=0$ unless the routine detects an error or a warning has been flagged (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL $=0$ or -1 , explanatory error messages are output on the current error message unit (as defined by X04AAF).

Errors or warnings detected by the routine:
IFAIL $=1$
On entry, $\mathrm{M}<6$,
or $\quad 0<\mathrm{NQ}<5$,
or $\quad \mathrm{NQ}>\min (40, \mathrm{M}-1)$,
or $\quad \mathrm{NW}>\min (40, \mathrm{M}-1)$,
or $\quad \mathrm{LIQ}<2 \times \mathrm{M}+1$,
or \quad LRQ $<6 \times M+5$.
IFAIL $=2$
On entry, $(\mathrm{X}(i), \mathrm{Y}(i))=(\mathrm{X}(j), \mathrm{Y}(j))$ for some $i \neq j$.
IFAIL $=3$
On entry, all the data points are collinear. No unique solution exists.
IFAIL $=-99$
An unexpected error has been triggered by this routine. Please contact NAG.
See Section 3.9 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-399$
Your licence key may have expired or may not have been installed correctly.
See Section 3.8 in How to Use the NAG Library and its Documentation for further information.
IFAIL $=-999$
Dynamic memory allocation failed.
See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

On successful exit, the function generated interpolates the input data exactly and has quadratic accuracy.

8 Parallelism and Performance

E01SGF is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
E01SGF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

9.1 Timing

The time taken for a call to E01SGF will depend in general on the distribution of the data points. If X and Y are uniformly randomly distributed, then the time taken should be $O(\mathrm{M})$. At worst $O\left(\mathrm{M}^{2}\right)$ time will be required.

9.2 Choice of N_{w} and N_{q}

Default values of the arguments N_{w} and N_{q} may be selected by calling E01SGF with NW ≤ 0 and NQ ≤ 0. These default values may well be satisfactory for many applications.

If non-default values are required they must be supplied to E01SGF through positive values of NW and NQ. Increasing these arguments makes the method less local. This may increase the accuracy of the resulting interpolant at the expense of increased computational cost. The default values $\mathrm{NW}=\min (19, \mathrm{M}-1)$ and $\mathrm{NQ}=\min (13, \mathrm{M}-1)$ have been chosen on the basis of experimental results reported in Renka (1988a). In these experiments the error norm was found to vary smoothly with N_{w} and N_{q}, generally increasing monotonically and slowly with distance from the optimal pair. The method is not therefore thought to be particularly sensitive to the argument values. For further advice on the choice of these arguments see Renka (1988a).

10 Example

This program reads in a set of 30 data points and calls E01SGF to construct an interpolating function $Q(x, y)$. It then calls E01SHF to evaluate the interpolant at a set of points.

Note that this example is not typical of a realistic problem: the number of data points would normally be larger.

10.1 Program Text

```
Program e01sgfe
    E01SGF Example Program Text
    Mark 26 Release. NAG Copyright 2016.
    .. Use Statements ..
    Use nag_library, Only: e01sgf, e01shf, nag_wp
        .. Implicit None Statement ..
        Implicit None
! .. Parameters ..
        Integer, Parameter :: nin = 5, nout = 6
! .. Local Scalars ..
```

```
    Integer :: i, ifail, liq, lrq, m, n, nq, nw
! .. Local Arrays ..
    Real (Kind=nag_wp), Allocatable :: f(:), q(:), qx(:), qy(:), rq(:),
                        u(:), v(:), x(:), y(:)
    Integer, Allocatable :: iq(:)
! .. Executable Statements ..
    Write (nout,*) 'EO1SGF Example Program Results'
! Skip heading in data file
    Read (nin,*)
    Input the number of data points
    Read (nin,*) m
    liq = 2*m + 1
    lrq = 6*m + 5
    Allocate (x(m),y(m),f(m),iq(liq),rq(lrq))
    Do i = 1, m
        Read (nin,*) x(i), y(i), f(i)
    End Do
! Generate the interpolant.
    nq}=
    nw = 0
    ifail = 0
    Call e0lsgf(m,x,y,f,nw,nq,iq,liq,rq,lrq,ifail)
! Input the number of evaluation points.
    Read (nin,*) n
    Allocate (u(n),v(n),q(n),qx(n),qy(n))
    Do i = 1, n
        Read (nin,*) u(i), v(i)
    End Do
    Evaluate the interpolant using EO1SHF.
    ifail = 0
    Call e01shf(m,x,y,f,iq,liq,rq,lrq,n,u,v,q,qx,qy,ifail)
    Write (nout,*)
    Write (nout,*) ' I U(I) V(I) Q(I)'
    Do i = 1, n
    Write (nout,99999) i, u(i), v(i), q(i)
    End Do
99999 Format (1X,I6,3F10.2)
    End Program eO1sgfe
```


10.2 Program Data

E01SGF	Example ProgramData 30			M, the number of data points
11.16	1.24	22.15	X, Y, F data point definition	
12.85	3.06	22.11		
19.85	10.72	7.97		
19.72	1.39	16.83		
15.91	7.74	15.30		
0.00	20.00	34.60		
20.87	20.00	5.74		
3.45	12.78	41.24		
14.26	17.87	10.74		
17.43	3.46	18.60		
22.80	12.39	5.47		
7.58	1.98	29.87		

25.00	11.87	4.40	
0.00	0.00	58.20	
9.66	20.00	4.73	
5.22	14.66	40.36	
17.25	19.57	6.43	
25.00	3.87	8.74	
12.13	10.79	13.71	
22.23	6.21	10.25	
11.52	8.53	15.74	
15.20	0.00	21.60	
7.54	10.69	19.31	
17.32	13.78	12.11	
2.14	15.03	53.10	
0.51	8.37	49.43	
22.69	19.63	3.25	
5.47	17.13	28.63	
21.67	14.36	5.52	
3.31	0.33	44.08	End of data points
5			N, the number of evaluation points
20.00	3.14		U, V evaluation point definition
6.41	15.44		
7.54	10.69		
9.91	18.27		
12.30	9.22		End of evaluation points

10.3 Program Results

E01SGF Example Program Results

I	$U(I)$	$V(I)$	$Q(I)$
1	20.00	3.14	15.95
2	6.41	15.44	38.71
3	7.54	10.69	19.31
4	9.91	18.27	16.39
5	12.30	9.22	14.66

