
NAG Library Routine Document

E05SBF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification and in the
details of the algorithm. If you wish to use default settings for all of the optional parameters, you need
only read Sections 1 to 10 of this document. If, however, you wish to reset some or all of the settings
please refer to Section 11 for a detailed description of the algorithm and to Section 12 for a detailed
description of the specification of the optional parameters.

1 Purpose

E05SBF is designed to search for the global minimum or maximum of an arbitrary function, subject to
general nonlinear constraints, using Particle Swarm Optimization (PSO). Derivatives are not required,
although these may be used by an accompanying local minimization routine if desired. E05SBF is
essentially identical to E05SAF, with an expert interface and various additional arguments added;
otherwise most arguments are identical. In particular, E05SAF does not handle general constraints.

2 Specification

SUBROUTINE E05SBF (NDIM, NCON, NPAR, XB, FB, CB, BL, BU, XBEST, FBEST,
CBEST, OBJFUN, CONFUN, MONMOD, IOPTS, OPTS, IUSER,
RUSER, ITT, INFORM, IFAIL)

&
&

INTEGER NDIM, NCON, NPAR, IOPTS(*), IUSER(*), ITT(7),
INFORM, IFAIL

&

REAL (KIND=nag_wp) XB(NDIM), FB, CB(NCON), BL(NDIM+NCON),
BU(NDIM+NCON), XBEST(NDIM,NPAR), FBEST(NPAR),
CBEST(NCON,NPAR), OPTS(*), RUSER(*)

&
&

EXTERNAL OBJFUN, CONFUN, MONMOD

Before calling E05SBF, E05ZKF must be called with OPTSTR set to ‘Initialize = e05sbf’.
Optional parameters may also be specified by calling E05ZKF before the call to E05SBF.

3 Description

E05SBF uses a stochastic method based on Particle Swarm Optimization (PSO) to search for the global
optimum of a nonlinear function F , subject to a set of bound constraints on the variables, and
optionally a set of general nonlinear constraints. In the PSO algorithm (see Section 11), a set of
particles is generated in the search space, and advances each iteration to (hopefully) better positions
using a heuristic velocity based upon inertia, cognitive memory and global memory. The inertia is
provided by a decreasingly weighted contribution from a particles current velocity, the cognitive
memory refers to the best candidate found by an individual particle and the global memory refers to the
best candidate found by all the particles. This allows for a global search of the domain in question.

Further, this may be coupled with a selection of local minimization routines, which may be called
during the iterations of the heuristic algorithm, the interior phase, to hasten the discovery of locally
optimal points, and after the heuristic phase has completed to attempt to refine the final solution, the
exterior phase. Different options may be set for the local optimizer in each phase.

Without loss of generality, the problem is assumed to be stated in the following form:

minimize
x2Rndim

F xð Þ subject to l � x
c xð Þ

� �
� u;

where the objective F xð Þ is a scalar function, c xð Þ is a vector of scalar constraint functions, x is a
vector in Rndim and the vectors l � u are lower and upper bounds respectively for the ndim variables
and ncon constraints. Both the objective function and the ncon constraints may be nonlinear.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.1

Continuity of F , and the functions c xð Þ, is not essential. For functions which are smooth and primarily
unimodal, faster solutions will almost certainly be achieved by using Chapter E04 routines directly.

For functions which are smooth and multi-modal, gradient dependent local minimization routines may
be coupled with E05SBF.

For multi-modal functions for which derivatives cannot be provided, particularly functions with a
significant level of noise in their evaluation, E05SBF should be used either alone, or coupled with
E04CBF.

For heavily constrained problems, E05SBF should either be used alone, or coupled with E04UCF/
E04UCA provided the function and the constraints are sufficiently smooth.

The ndim lower and upper box bounds on the variable x are included to initialize the particle swarm
into a finite hypervolume, although their subsequent influence on the algorithm is user determinable
(see the option Boundary in Section 12). It is strongly recommended that sensible bounds are provided
for all variables and constraints.

E05SBF may also be used to maximize the objective function, or to search for a feasible point
satisfying the simple bounds and general constraints (see the option Optimize).

Due to the nature of global optimization, unless a predefined target is provided, there is no definitive
way of knowing when to end a computation. As such several stopping heuristics have been
implemented into the algorithm. If any of these is achieved, E05SBF will exit with IFAIL ¼ 1, and the
parameter INFORM will indicate which criteria was reached. See INFORM for more information.

In addition, you may provide your own stopping criteria through MONMOD, OBJFUN and CONFUN.

E05SAF provides a simpler interface, without the inclusion of general nonlinear constraints.

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

Kennedy J and Eberhart R C (1995) Particle Swarm Optimization Proceedings of the 1995 IEEE
International Conference on Neural Networks 1942–1948

Koh B, George A D, Haftka R T and Fregly B J (2006) Parallel Asynchronous Particle Swarm
Optimization International Journal for Numerical Methods in Engineering 67(4) 578–595

Vaz A I and Vicente L N (2007) A Particle Swarm Pattern Search Method for Bound Constrained
Global Optimization Journal of Global Optimization 39(2) 197–219 Kluwer Academic Publishers

5 Arguments

Note: for descriptions of the symbolic variables, see Section 11.

1: NDIM – INTEGER Input

On entry: ndim, the number of dimensions.

Constraint: NDIM � 1.

2: NCON – INTEGER Input

On entry: ncon, the number of constraints, not including box constraints.

Constraint: NCON � 0.

3: NPAR – INTEGER Input

On entry: npar , the number of particles to be used in the swarm. Assuming all particles remain
within constraints, each complete iteration will perform at least NPAR function evaluations.
Otherwise, significantly fewer objective function evaluations may be performed.

E05SBF NAG Library Manual

E05SBF.2 Mark 26

Suggested value: NPAR ¼ 10� NDIM.

Constraint: NPAR � 5� num threads, where num_threads is the value returned by the
OpenMP environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of
this routine.

4: XBðNDIMÞ – REAL (KIND=nag_wp) array Output

On exit: the location of the best solution found, ~x, in Rndim.

5: FB – REAL (KIND=nag_wp) Output

On exit: the objective value of the best solution, ~f ¼ F ~xð Þ.

6: CBðNCONÞ – REAL (KIND=nag_wp) array Output

On exit: the constraint violations of the best solution found, ~e ¼ e ~xð Þ. These may have been
deemed to be acceptable given the tolerance and scaling of the constraints. See Sections 11 and
12.

7: BLðNDIMþ NCONÞ – REAL (KIND=nag_wp) array Input
8: BUðNDIMþ NCONÞ – REAL (KIND=nag_wp) array Input

On entry: BL is l, the array of lower bounds, BU is u, the array of upper bounds. The first NDIM
entries in BL and BU must contain the lower and upper simple (box) bounds of the variables
respectively. These must be provided to initialize the sample population into a finite
hypervolume, although their subsequent influence on the algorithm is user determinable (see
the option Boundary in Section 12).

The next NCON entries must contain the lower and upper bounds for any general constraints
respectively.

If BLðiÞ ¼ BUðiÞ for any i 2 1; . . . ;NDIMf g, variable i will remain locked to BLðiÞ regardless of
the Boundary option selected.

It is strongly advised that you place sensible lower and upper bounds on all variables and
constraints, even if your model allows for unbounded variables or constraints.

Constraints:

BLðiÞ � BUðiÞ, for i ¼ 1; 2; . . . ;NDIMþ NCON;
BLðiÞ 6¼ BUðiÞ for at least one i 2 1; . . . ;NDIMf g.

9: XBESTðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the ith component of the best position of the jth particle, x̂j ið Þ, is stored in XBESTði; jÞ.
On entry: if using Start ¼ WARM, the initial particle positions, x̂0j .

On exit: the best positions found, x̂j, by the NPAR particles in the swarm.

10: FBESTðNPARÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if using Start ¼ WARM, objective function values, f̂0j ¼ F x̂0j

� �
, corresponding to the

NPAR particle locations stored in XBEST.

On exit: objective function values, f̂j ¼ F x̂j
� �

, corresponding to the locations returned in
XBEST.

11: CBESTðNCON;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the kth constraint violation of the jth particle is stored in CBESTðk; jÞ.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.3

On entry: if using Start ¼ WARM, the initial constraint violations, ê0j ¼ e x̂0j

� �
, corresponding to

the NPAR particle locations.

On exit: the final constraint violations, êj, corresponding to the locations returned in XBEST.

12: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must, depending on the value of MODE, calculate the objective function and/or
calculate the gradient of the objective function for a ndim-variable vector x. Gradients are only
required if a local minimizer has been chosen which requires gradients. See the option Local
Minimizer for more information.

The specification of OBJFUN is:

SUBROUTINE OBJFUN (MODE, NDIM, X, OBJF, VECOUT, NSTATE, IUSER,
RUSER)

&

INTEGER MODE, NDIM, NSTATE, IUSER(*)
REAL (KIND=nag_wp) X(NDIM), OBJF, VECOUT(NDIM), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which functionality is required.

MODE ¼ 0
F xð Þ should be returned in OBJF. The value of OBJF on entry may be used as an
upper bound for the calculation. Any expected value of F xð Þ that is greater than
OBJF may be approximated by this upper bound; that is OBJF can remain
unaltered.

MODE ¼ 1
Local Minimizer ¼ E04UCF only
First derivatives can be evaluated and returned in VECOUT. Any unaltered
elements of VECOUT will be approximated using finite differences.

MODE ¼ 2
Local Minimizer ¼ E04UCF only
F xð Þ must be calculated and returned in OBJF, and available first derivatives can
be evaluated and returned in VECOUT. Any unaltered elements of VECOUT will
be approximated using finite differences.

MODE ¼ 5
F xð Þ must be calculated and returned in OBJF. The value of OBJF on entry may
not be used as an upper bound.

MODE ¼ 6
Local Minimizer ¼ E04DGF or E04KZF only
All first derivatives must be evaluated and returned in VECOUT.

MODE ¼ 7
Local Minimizer ¼ E04DGF or E04KZF only
F xð Þ must be calculated and returned in OBJF, and all first derivatives must be
evaluated and returned in VECOUT.

On exit: if the value of MODE is set to be negative, then E05SBF will exit as soon as
possible with IFAIL ¼ 3 and INFORM ¼ MODE.

2: NDIM – INTEGER Input

On entry: the number of dimensions.

3: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: x, the point at which the objective function and/or its gradient are to be
evaluated.

E05SBF NAG Library Manual

E05SBF.4 Mark 26

4: OBJF – REAL (KIND=nag_wp) Input/Output

On entry: the value of OBJF passed to OBJFUN varies with the argument MODE.

MODE ¼ 0
OBJF is an upper bound for the value of F xð Þ, often equal to the best constraint
penalised value of F xð Þ found so far by a given particle if the objective function
is strictly positive (see Section 11). Only objective function values less than the
value of OBJF on entry will be used further. As such this upper bound may be
used to stop further evaluation when this will only increase the objective function
value above the upper bound.

MODE ¼ 1, 2, 5, 6 or 7
OBJF is meaningless on entry.

On exit: the value of OBJF returned varies with the argument MODE.

MODE ¼ 0
OBJF must be the value of F xð Þ. Only values of F xð Þ strictly less than OBJF on
entry need be accurate.

MODE ¼ 1 or 6
Need not be set.

MODE ¼ 2, 5 or 7
F xð Þ must be calculated and returned in OBJF. The entry value of OBJF may not
be used as an upper bound.

5: VECOUTðNDIMÞ – REAL (KIND=nag_wp) array Input/Output

On entry: if Local Minimizer ¼ E04UCF or E04UCA, the values of VECOUT are used
internally to indicate whether a finite difference approximation is required. See
E04UCF/E04UCA.

On exit: the required values of VECOUT returned to the calling routine depend on the
value of MODE.

MODE ¼ 0 or 5
The value of VECOUT need not be set.

MODE ¼ 1 or 2
VECOUT can contain components of the gradient of the objective function @F

@xi
for

some i ¼ 1; 2; . . .NDIM, or acceptable approximations. Any unaltered elements
of VECOUT will be approximated using finite differences.

MODE ¼ 6 or 7
VECOUT must contain the gradient of the objective function @F

@xi
for all

i ¼ 1; 2; . . .NDIM. Approximation of the gradient is strongly discouraged, and no
finite difference approximations will be performed internally (see E04DGF/
E04DGA and E04KZF).

6: NSTATE – INTEGER Input

On entry: NSTATE indicates various stages of initialization throughout the routine. This
allows for permanent global arguments to be initialized the least number of times. For
example, you may initialize a random number generator seed.

NSTATE ¼ 3
SMP users only. OBJFUN is called for the first time in a parallel region on a new
thread other than the master thread. You may use this opportunity to set up any
thread-dependent information in IUSER and RUSER.

NSTATE ¼ 2
OBJFUN is called for the very first time. You may save computational time if
certain data must be read or calculated only once.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.5

NSTATE ¼ 1
OBJFUN is called for the first time by a NAG local minimization routine. You
may save computational time if certain data required for the local minimizer need
only be calculated at the initial point of the local minimization.

NSTATE ¼ 0
Used in all other cases.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OBJFUN is called with the arguments IUSER and RUSER as supplied to E05SBF. You
should use the arrays IUSER and RUSER to supply information to OBJFUN.

OBJFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which E05SBF is called. Arguments denoted as Input must not be changed by this
procedure.

13: CONFUN – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

CONFUN must calculate any constraints other than the box constraints. If no constraints are
required, CONFUN may be the dummy constraint routine E05SZM. (E05SZM is included in the
NAG Library). For information on how a NAG local minimizer will use CONFUN see the
documentation for E04UCA.

The specification of CONFUN is:

SUBROUTINE CONFUN (MODE, NCON, NDIM, LDCJ, NEEDC, X, C, CJAC,
NSTATE, IUSER, RUSER)

&

INTEGER MODE, NCON, NDIM, LDCJ, NEEDC(NCON), NSTATE,
IUSER(*)

&

REAL (KIND=nag_wp) X(NDIM), C(NCON), CJAC(LDCJ,NDIM), RUSER(*)

1: MODE – INTEGER Input/Output

On entry: indicates which values must be assigned during each call of CONFUN. Only
the following values need be assigned, for each value of k 2 1; . . . ;NCONf g such that
NEEDCðkÞ > 0:

MODE ¼ 0
the constraint values ck xð Þ.

MODE ¼ 1
rows of the constraint Jacobian, @ck

@xi
xð Þ , for i ¼ 1; 2; . . . ;NDIM.

MODE ¼ 2
the constraint values ck xð Þ and the corresponding rows of the constraint Jacobian,
@ck
@xi

xð Þ , for i ¼ 1; 2; . . . ;NDIM.

On exit: may be set to a negative value if you wish to terminate the solution to the
current problem. In this case E05SBF will terminate with IFAIL ¼ 3 and
INFORM ¼ MODE as soon as possible.

2: NCON – INTEGER Input

On entry: the number of constraints, not including box bounds.

3: NDIM – INTEGER Input

On entry: the number of variables.

E05SBF NAG Library Manual

E05SBF.6 Mark 26

4: LDCJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from
which E05SBF is called.

5: NEEDCðNCONÞ – INTEGER array Input

On entry: the indices of the elements of C and/or CJAC that must be evaluated by
CONFUN. If NEEDCðkÞ > 0, the kth element of C, corresponding to the values of the
kth constraint, and/or the available elements of the kth row of CJAC, corresponding to
the derivatives of the kth constraint, must be evaluated at x (see argument MODE).

6: XðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: x, the vector of variables at which the constraint functions and/or the
available elements of the constraint Jacobian are to be evaluated.

7: CðNCONÞ – REAL (KIND=nag_wp) array Output

On exit: if NEEDCðkÞ > 0 and MODE ¼ 0 or 2, CðkÞ must contain the value of ck xð Þ.
The remaining elements of C, corresponding to the non-positive elements of NEEDC,
need not be set.

8: CJACðLDCJ;NDIMÞ – REAL (KIND=nag_wp) array Input/Output

Note: the derivative of the kth constraint with respect to the ith component,
@ck
@xi

, is

stored in CJACðk; iÞ.
On entry: the elements of CJAC are set to special values which enable E05SBF to
detect whether they are changed by CONFUN.

On exit: if NEEDCðkÞ > 0 and MODE ¼ 1 or 2, the elements of CJAC corresponding
to the kth row of the constraint Jacobian should contain the available elements of the
vector rck given by

rck ¼ @ck
@x1

;
@ck
@x2

; . . . ;
@ck
@xn

� �
;

where
@ck
@xi

is the partial derivative of the kth constraint with respect to the ith variable,

evaluated at the point x; elements of CJAC that remain unaltered will be approximated
internally using finite differences. The remaining rows of CJAC, corresponding to non-
positive elements of NEEDC, need not be set.

It must be emphasized that unassigned elements of CJAC are not treated as constant;
they are estimated by finite differences, at nontrivial expense. An interval for each
element of x is computed automatically at the start of the optimization. The automatic
procedure can usually identify constant elements of CJAC, which are then computed
once only by finite differences.

9: NSTATE – INTEGER Input

On entry: NSTATE indicates various stages of initialization throughout the routine. This
allows for permanent global arguments to be initialized a minimum number of times.
For example, you may initialize a random number generator seed. Note that unless the
option Optimize ¼ CONSTRAINTS has been set, OBJFUN will be called before
CONFUN.

NSTATE ¼ 3
SMP users only. OBJFUN is called for the first time in a parallel region on a new
thread other than the master thread. You may use this opportunity to set up any
thread-dependent information in IUSER and RUSER.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.7

NSTATE ¼ 2
CONFUN is called for the very first time. This argument setting allows you to
save computational time if certain data must be read or calculated only once.

NSTATE ¼ 1
CONFUN is called for the first time during a NAG local minimization routine.
This argument setting allows you to save computational time if certain data
required for the local minimizer need only be calculated at the initial point of the
local minimization.

NSTATE ¼ 0
Used in all other cases.

10: IUSERð�Þ – INTEGER array User Workspace
11: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

CONFUN is called with the arguments IUSER and RUSER as supplied to E05SBF. You
should use the arrays IUSER and RUSER to supply information to CONFUN.

CONFUN must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05SBF is called. Arguments denoted as Input must not be changed by
this procedure.

CONFUN should be tested separately before being used in conjunction with E05SBF.

14: MONMOD – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

A user-specified monitoring and modification function. MONMOD is called once every complete
iteration after a finalization check. It may be used to modify the particle locations that will be
evaluated at the next iteration. This permits the incorporation of algorithmic modifications such
as including additional advection heuristics and genetic mutations. MONMOD is only called
during the main loop of the algorithm, and as such will be unaware of any further improvement
from the final local minimization. If no monitoring and/or modification is required, MONMOD
may be the dummy monitoring routine E05SYM. (E05SYM is included in the NAG Library) .

The specification of MONMOD is:

SUBROUTINE MONMOD (NDIM, NCON, NPAR, X, XB, FB, CB, XBEST, FBEST,
CBEST, ITT, IUSER, RUSER, INFORM)

&

INTEGER NDIM, NCON, NPAR, ITT(7), IUSER(*), INFORM
REAL (KIND=nag_wp) X(NDIM,NPAR), XB(NDIM), FB, CB(NCON),

XBEST(NDIM,NPAR), FBEST(NPAR),
CBEST(NCON,NPAR), RUSER(*)

&
&

1: NDIM – INTEGER Input

On entry: the number of dimensions.

2: NCON – INTEGER Input

On entry: the number of constraints.

3: NPAR – INTEGER Input

On entry: the number of particles.

4: XðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input/Output

Note: the ith component of the jth particle, xj ið Þ, is stored in Xði; jÞ.
On entry: the NPAR particle locations, xj, which will currently be used during the next
iteration unless altered in MONMOD.

On exit: the particle locations to be used during the next iteration.

E05SBF NAG Library Manual

E05SBF.8 Mark 26

5: XBðNDIMÞ – REAL (KIND=nag_wp) array Input

On entry: the location, ~x, of the best solution yet found.

6: FB – REAL (KIND=nag_wp) Input

On entry: the objective value, ~f ¼ F ~xð Þ, of the best solution yet found.

7: CBðNCONÞ – REAL (KIND=nag_wp) array Input

On entry: the constraint violations, ~e ¼ e ~xð Þ, of the best solution yet found.

8: XBESTðNDIM;NPARÞ – REAL (KIND=nag_wp) array Input

Note: the ith component of the position of the jth particle's cognitive memory, x̂j ið Þ, is
stored in XBESTði; jÞ.
On entry: the locations currently in the cognitive memory, x̂j , for j ¼ 1; 2; . . . ;NPAR
(see Section 11).

9: FBESTðNPARÞ – REAL (KIND=nag_wp) array Input

On entry: the objective values currently in the cognitive memory, F x̂j
� �

, for
j ¼ 1; 2; . . . ;NPAR.

10: CBESTðNCON;NPARÞ – REAL (KIND=nag_wp) array Input

Note: the kth constraint violation of the jth particle's cognitive memory is stored in
CBESTðk; jÞ.
On entry: the constraint violations currently in the cognitive memory, ê ¼ e x̂j

� �
, for

j ¼ 1; 2; . . . ;NPAR, evaluated at x̂j.

11: ITTð7Þ – INTEGER array Input

On entry: iteration and function evaluation counters (see description of ITT below).

12: IUSERð�Þ – INTEGER array User Workspace
13: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONMOD is called with the arguments IUSER and RUSER as supplied to E05SBF.
You should use the arrays IUSER and RUSER to supply information to MONMOD.

14: INFORM – INTEGER Input/Output

On entry: INFORM ¼ thread num, where thread_num is the value returned by a call
of the OpenMP function OMP_GET_THREAD_NUM(). If running in serial this will always
be zero.

On exit: setting INFORM < 0 will cause near immediate exit from E05SBF. This value
will be returned as INFORM with IFAIL ¼ 3. You need not set INFORM unless you
wish to force an exit.

MONMOD must either be a module subprogram USEd by, or declared as EXTERNAL in, the
(sub)program from which E05SBF is called. Arguments denoted as Input must not be changed by
this procedure.

15: IOPTSð�Þ – INTEGER array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument IOPTS
in the previous call to E05ZKF.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.9

On entry: optional parameter array as generated and possibly modified by calls to E05ZKF. The
contents of IOPTS must not be modified directly between calls to E05SBF, E05ZKF or E05ZLF.

16: OPTSð�Þ – REAL (KIND=nag_wp) array Communication Array

Note: the dimension of this array is dictated by the requirements of associated functions that
must have been previously called. This array must be the same array passed as argument OPTS
in the previous call to E05ZKF.

On entry: optional parameter array as generated and possibly modified by calls to E05ZKF. The
contents of OPTS must not be modified directly between calls to E05SBF, E05ZKF or E05ZLF.

17: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by E05SBF, but is passed directly to OBJFUN, CONFUN and MONMOD and
should be used to pass information to these routines.

With care, you may also write information back into IUSER. This might be useful, for example,
should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05SBF the array IUSER provided are classified as OpenMP
shared memory. Use of IUSER has to take account of this in order to preserve thread safety
whenever information is written back to either of these arrays.

18: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by E05SBF, but is passed directly to OBJFUN, CONFUN and MONMOD
and should be used to pass information to these routines.

With care, you may also write information back into RUSER. This might be useful, for example,
should there be a need to preserve the state of a random number generator.

With SMP-enabled versions of E05SBF the array RUSER provided are classified as OpenMP
shared memory. Use of RUSER has to take account of this in order to preserve thread safety
whenever information is written back to either of these arrays.

19: ITTð7Þ – INTEGER array Output

On exit: integer iteration counters for E05SBF.

ITTð1Þ
Number of complete iterations.

ITTð2Þ
Number of complete iterations without improvement to the current optimum.

ITTð3Þ
Number of particles converged to the current optimum.

ITTð4Þ
Number of improvements to the optimum.

ITTð5Þ
Number of function evaluations performed.

ITTð6Þ
Number of particles reset.

ITTð7Þ
Number of violated constraints at completion. Note this is always calculated using the L1

norm and a nonzero result does not necessarily mean that the algorithm did not find a
suitably constrained point with respect to the single norm used.

20: INFORM – INTEGER Output

On exit: indicates which finalization criterion was reached. The possible values of INFORM are:

E05SBF NAG Library Manual

E05SBF.10 Mark 26

INFORM Meaning

< 0 Exit from a user-supplied subroutine.

0 E05SBF has detected an error and terminated.

1 The provided objective target has been achieved. (Target Objective Value).

2 The standard deviation of the location of all the particles is below the set
threshold (Swarm Standard Deviation). If the solution returned is not
satisfactory, you may try setting a smaller value of Swarm Standard
Deviation, or try adjusting the options governing the repulsive phase
(Repulsion Initialize, Repulsion Finalize).

3 The total number of particles converged (Maximum Particles Converged) to
the current global optimum has reached the set limit. This is the number of
particles which have moved to a distance less than Distance Tolerance from
the optimum with regard to the L2 norm. If the solution is not satisfactory,
you may consider lowering the Distance Tolerance. However, this may
hinder the global search capability of the algorithm.

4 The maximum number of iterations without improvement (Maximum
Iterations Static) has been reached, and the required number of particles
(Maximum Iterations Static Particles) have converged to the current
optimum. Increasing either of these options will allow the algorithm to
continue searching for longer. Alternatively if the solution is not satisfactory,
re-starting the application several times with Repeatability ¼ OFF may lead
to an improved solution.

5 The maximum number of iterations (Maximum Iterations Completed) has
been reached. If the number of iterations since improvement is small, then a
better solution may be found by increasing this limit, or by using the option
Local Minimizer with corresponding exterior options. Otherwise if the
solution is not satisfactory, you may try re-running the application several
times with Repeatability ¼ OFF and a lower iteration limit, or adjusting the
options governing the repulsive phase (Repulsion Initialize, Repulsion
Finalize).

6 The maximum allowed number of function evaluations (Maximum Function
Evaluations) has been reached. As with INFORM ¼ 5, increasing this limit if
the number of iterations without improvement is small, or decreasing this limit
and running the algorithm multiple times with Repeatability ¼ OFF, may
provide a superior result.

7 A feasible point has been found. The objective has not been minimized,
although it has been evaluated at the final solutions given in XB and XBEST
(Optimize ¼ CONSTRAINTS).

If you wish to continue from the final position gained from a previous simulation with adjusted
options, you may set the option Start ¼ WARM, and pass back in the returned arrays XBEST,
FBEST, and CBEST. You should either record the returned values of XB, FB and CB for
comparison, as these will not be re-used by the algorithm, or include them in XBEST, FBEST
and CBEST respectively by overwriting the entries corresponding to one particle with the
relevant information.

21: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

On exit: the most common exit will be IFAIL ¼ 1.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.11

For this reason, the value �1 or 1 is recommended. If the output of error messages is
undesirable, then the value 1 is recommended; otherwise, the recommended value is �1. When
the value �1 or 1 is used it is essential to test the value of IFAIL on exit.

E05SBF returns IFAIL ¼ 0 if and only if a finalization criterion has been reached which can
guarantee success. This may only happen if:

(i) The option Target Objective Value has been set and has been reached at a sufficiently
constrained point within the search domain.

(ii) The option Optimize ¼ CONSTRAINTS has been set, and a sufficiently constrained point
has been found within the search domain.

These finalization criteria are not active using default option settings, and must be explicitly set
using E05ZKF if required.

E05SBF will return IFAIL ¼ 1 if no error has been detected, and a finalization criterion has been
achieved which cannot guarantee success. This does not indicate that the routine has failed,
merely that the returned solution cannot be guaranteed to be the true global optimum.

The value of INFORM should be examined to determine which finalization criterion was reached.

Other positive values of IFAIL indicate that either an error or a warning has been triggered. See
Sections 6, 7 and 11 for more information.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

A finalization criterion was reached that cannot guarantee success.
On exit, INFORM ¼ valueh i.

IFAIL ¼ 2

If the option Target Warning has been activated, this indicates that the Target Objective Value
has been achieved to specified tolerances at a sufficiently constrained point, either during the
initialization phase, or during the first two iterations of the algorithm. While this is not
necessarily an error, it may occur if:

(i) The target was achieved at the first point sampled by the routine. This will be the mean of
the lower and upper bounds.

(ii) The target may have been achieved at a randomly generated sample point. This will always
be a possibility provided that the domain under investigation contains a point with a target
objective value.

(iii) If the Local Minimizer has been set, then a sample point may have been inside the basin of
attraction of a satisfactory point. If this occurs repeatedly when the routine is called, it may
imply that the objective is largely unimodal, and that it may be more efficient to use the
routine selected as the Local Minimizer directly.

Assuming that OBJFUN is correct, you may wish to set a better Target Objective Value, or a
stricter Target Objective Tolerance.

IFAIL ¼ 3

User requested exit valueh i during call to CONFUN.

User requested exit valueh i during call to MONMOD.

User requested exit valueh i during call to OBJFUN.

E05SBF NAG Library Manual

E05SBF.12 Mark 26

IFAIL ¼ 4

Unable to locate strictly feasible point. valueh i constraints remain violated. This exit may be
suppressed using the option Constraint Warning.

IFAIL ¼ 11

On entry, NDIM ¼ valueh i.
Constraint: NDIM � 1.

IFAIL ¼ 12

On entry, NPAR ¼ valueh i.
Constraint: NPAR � 5� num threads, where num_threads is the value returned by the
OpenMP environment variable OMP_NUM_THREADS, or num_threads is 1 for a serial version of
this routine.

IFAIL ¼ 13

On entry, NCON ¼ valueh i.
Constraint: NCON � 0.

IFAIL ¼ 14

On entry, BLð valueh iÞ ¼ valueh i and BUð valueh iÞ ¼ valueh i.
Constraint: BUðiÞ � BLðiÞ for all i.

On entry, BLðiÞ ¼ BUðiÞ for all box bounds i.
Constraint: BUðiÞ > BLðiÞ for at least one box bound i.

IFAIL ¼ 17

E05SBF has been called with NCON > 0 and the dummy constraint function E05SZM. Only use
E05SZM with NCON ¼ 0.

IFAIL ¼ 18

The option Optimize ¼ CONSTRAINTS is active, however NCON ¼ 0.

IFAIL ¼ 19

Error valueh i occurred whilst adjusting to exterior local minimizer options.

Error valueh i occurred whilst adjusting to interior local minimizer options.

IFAIL ¼ 21

Either the option arrays have not been initialized for E05SBF, or they have become corrupted.

IFAIL ¼ 32

Derivative checks indicate possible errors in the supplied derivatives. Gradient checks may be
disabled by setting Verify Gradients ¼ OFF.

IFAIL ¼ 51

Multiple SMP threads have been detected; however, the option SMP Callback Thread Safe has
not been set.
Set SMP Callback Thread Safe ¼ YES if the provided callbacks are thread safe.
Set SMP Callback Thread Safe ¼ NO if the provided callbacks are not thread safe, to force
serial execution.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.13

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.

7 Accuracy

If IFAIL ¼ 0 (or IFAIL ¼ 2) or IFAIL ¼ 1 on exit, a criterion will have been reached depending on
user selected options. As with all global optimization software, the solution achieved may not be the
true global optimum. Various options allow for either greater search diversity or faster convergence to a
(local) optimum (See Sections 11 and 12).

Provided the objective function and constraints are sufficiently well behaved, if a local minimizer is
used in conjunction with E05SBF, then it is more likely that the final result will at least be in the near
vicinity of a local optimum, and due to the global search characteristics of the particle swarm, this
solution should be superior to many other local optima.

Caution should be used in accelerating the rate of convergence, as with faster convergence, less of the
domain will remain searchable by the swarm, making it increasingly difficult for the algorithm to detect
the basins of attraction of superior local optima. Using the options Repulsion Initialize and Repulsion
Finalize described in Section 12 will help to overcome this, by causing the swarm to diverge away
from the current optimum once no more local improvement is likely.

On successful exit with guaranteed success, IFAIL ¼ 0 (or IFAIL ¼ 2). This may happen if a Target
Objective Value is assigned and is reached by the algorithm at a satisfactorily constrained point. It will
also occur if a constrained point is found when Optimize ¼ CONSTRAINTS is set.

On successful exit without guaranteed success, IFAIL ¼ 1 is returned. This will happen if another
finalization criterion is achieved without the detection of an error.

In both cases, the value of INFORM provides further information as to the cause of the exit.

8 Parallelism and Performance

E05SBF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

E05SBF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

The algorithm has been parallelized to allow for a high degree of asynchronicity between threads. Each
thread is assigned a static number of the NPAR particles requested, and performs a sub-iteration using
these particles and a private copy of ~x. The thread only updates this private copy if a superior solution
is found. In these implementations, this routine may make calls to the user-supplied functions from
within an OpenMP parallel region. Thus OpenMP directives within the user functions can only be used
if you are compiling the user-supplied function and linking the executable in accordance with the
instructions in the Users' Note for your implementation.

E05SBF NAG Library Manual

E05SBF.14 Mark 26

Once a thread has completed a sub-iteration, it enters a brief critical section where it compares this
private ~x to a globally accessible version. If either is superior, the inferior version is updated and the
thread continues into a new sub-iteration.

Parallelizing the algorithm in this way allows for individual threads to continue searching even if other
threads are completing sub-iterations in inferior times. The optional argument SMP Thread Overrun
allows you to force a synchronization across the team of threads once one thread completes sufficiently
more sub-iterations than the slowest thread. In particular, this may be used to force synchronization
after every sub-iteration if so desired.

When using an SMP parallel version of this routine, you must indicate that the callback routines are
thread safe by setting the optional argument SMP Callback Thread Safe before calling E05SBF in a
multi-threaded environment. See Section 12.2 for more information on this and other SMP options.

Note: the stochastic method used in E05SBF will not produce repeatable answers when run on multiple
threads.

9 Further Comments

The memory used by E05SBF is relatively static throughout. Indeed, most of the memory required is
used to store the current particle locations, the cognitive particle memories, the particle velocities and
the particle weights. As such, E05SBF may be used in problems with high dimension number
(NDIM > 100) without the concern of computational resource exhaustion, although the probability of
successfully locating the global optimum will decrease dramatically with the increase in dimensionality.

Due to the stochastic nature of the algorithm, the result will vary over multiple runs. This is particularly
true if arguments and options are chosen to accelerate convergence at the expense of the global search.
However, the option Repeatability ¼ ON may be set to initialize the internal random number generator
using a preset seed, which will result in identical solutions being obtained.

(For SMP users only) The option Repeatability ¼ ON will use preset seeds to initialize the random
number generator on each thread, however due to the unpredictable nature of parallel communication,
this cannot ensure repeatable results when running on multiple threads, even with SMP Thread
Overrun set to force synchronization every iteration.

10 Example

This example uses a particle swarm to find the global minimum of the two-dimensional Schwefel
function:

minimize
x2R2

f ¼
X2
j¼1

xjsin
ffiffiffiffiffiffiffiffi
xj

		 		q� �

subject to the constraints:

3:0x1 � 2:0x2 < 10:0;
�1:0 < x2

1 � x22 þ 3:0x1x2 < 50000:0;

�0:9 < cos x1=200ð Þ2 þ x2=100ð Þ
� �

< 0:9;

�500 � x1 � 500;
�500 � x2 � 500:

The global optimum has an objective value of fmin ¼ �731:707, located at x ¼ �394:15;�433:48ð Þ.
Only the third constraint is active at this point.

The example demonstrates how to initialize and set the options arrays using E05ZKF, how to query
options using E05ZLF, and finally how to search for the global optimum using E05SBF. The problem is
solved twice, first using E05SBF alone, and secondly by coupling E05SBF with E04UCF/E04UCA as a
dedicated local minimizer. In both cases the default option Repeatability ¼ ON is used to produce
repeatable solutions.

Note: for users of multi-threaded implementations of the NAG Library the following example program
does not include the setting of the optional parameter SMP Callback Thread Safe, and as such if run

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.15

on multiple threads it will issue an error message. See the additional example program provided for
E05SAF for more information on how to safely access independent subsections of the provided IUSER
and RUSER arrays from multiple threads and how to use E05ZKF to set additional SMP threading
related options.

10.1 Program Text

! E05SBF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module e05sbfe_mod

! E05SBF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: confun_non_linear, display_option, &

display_result, monmod, &
objfun_schwefel

! .. Parameters ..
Real (Kind=nag_wp), Parameter, Public :: f_target_c = &

-731.70709230672696_nag_wp
Real (Kind=nag_wp), Parameter, Public :: zero = 0.0_nag_wp
Real (Kind=nag_wp), Parameter :: f_target_u = &

-837.9657745448674_nag_wp
Real (Kind=nag_wp), Parameter :: x_target = -420.9687463599820_nag_wp
Integer, Parameter :: detail_level = 0, report_freq = 100
Integer, Parameter, Public :: liopts = 100, liuser = 1, &

lopts = 100, lruser = 1, ncon = 3, &
ndim = 2, nout = 6, npar = 20

Real (Kind=nag_wp), Parameter :: c_scale(ncon) = (/2490.0_nag_wp, &
750000.0_nag_wp,0.1_nag_wp/)

Real (Kind=nag_wp), Parameter :: c_target_c(ncon) = 0._nag_wp
Real (Kind=nag_wp), Parameter :: c_target_u(ncon) = (/zero, &

31644.05623568455_nag_wp, &
0.07574889943398055_nag_wp/)

Real (Kind=nag_wp), Parameter :: x_target_c(ndim) = (/ &
-394.1470221120988_nag_wp, &
-433.48214189947606_nag_wp/)

Real (Kind=nag_wp), Parameter :: x_target_u(ndim) = (/x_target, &
x_target/)

Contains
Subroutine objfun_schwefel(mode,ndim,x,objf,vecout,nstate,iuser,ruser)

! Objfun routine for the Schwefel function for E05SBF.

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: objf
Integer, Intent (Inout) :: mode
Integer, Intent (In) :: ndim, nstate

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: ruser(*), vecout(ndim)
Real (Kind=nag_wp), Intent (In) :: x(ndim)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Logical :: evalobjf, evalobjg

! .. Intrinsic Procedures ..
Intrinsic :: abs, cos, sin, sqrt, sum

! .. Executable Statements ..
! Test NSTATE to indicate what stage of computation has been reached.

Select Case (nstate)
Case (2)

! OBJFUN is called for the very first time.
Case (1)

! OBJFUN is called on entry to a NAG local minimizer.

E05SBF NAG Library Manual

E05SBF.16 Mark 26

Case (0)
! This will be the normal value of NSTATE.

End Select

! Test MODE to determine whether to calculate OBJF and/or OBJGRD.
evalobjf = .False.
evalobjg = .False.
Select Case (mode)
Case (0,5)

! Only the value of the objective function is needed.
evalobjf = .True.

Case (1,6)
! Only the values of the NDIM gradients are required.

evalobjg = .True.
Case (2,7)

! Both the objective function and the NDIM gradients are required.
evalobjf = .True.
evalobjg = .True.

End Select

If (evalobjf) Then
! Evaluate the objective function.

objf = sum(x(1:ndim)*sin(sqrt(abs(x(1:ndim)))))
End If

If (evalobjg) Then
! Calculate the gradient of the objective function.

vecout = sqrt(abs(x))
vecout = sin(vecout) + 0.5E0_nag_wp*vecout*cos(vecout)

End If

Return

End Subroutine objfun_schwefel
Subroutine confun_non_linear(mode,ncon,ndim,ldcj,needc,x,c,cjac,nstate, &

iuser,ruser)
! Subroutine used to supply constraints

! .. Scalar Arguments ..
Integer, Intent (In) :: ldcj, ncon, ndim, nstate
Integer, Intent (Inout) :: mode

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Out) :: c(ncon)
Real (Kind=nag_wp), Intent (Inout) :: cjac(ldcj,ndim), ruser(*)
Real (Kind=nag_wp), Intent (In) :: x(ndim)
Integer, Intent (Inout) :: iuser(*)
Integer, Intent (In) :: needc(ncon)

! .. Local Scalars ..
Integer :: k
Logical :: evalc, evalcjac

! .. Intrinsic Procedures ..
Intrinsic :: cos

! .. Executable Statements ..
! Test NSTATE to determine whether the local minimizer is being called
! for the first time from a new start point

If (nstate==1) Then
! Set any constant elements of the Jacobian matrix.

cjac(1,1) = 3.0_nag_wp
cjac(1,2) = -2.0_nag_wp

End If

! MODE: are constraints, derivatives, or both are required?
evalc = mode == 0 .Or. mode == 2
evalcjac = mode == 1 .Or. mode == 2

loop_constraints: Do k = 1, ncon
! Only those for which needc is nonzero need be set.

If (needc(k)<=0) Then
Cycle loop_constraints

End If

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.17

If (evalc) Then
! Constraint values are required.

Select Case (k)
Case (1)

c(k) = 3.0_nag_wp*x(1) - 2.0_nag_wp*x(2)
Case (2)

c(k) = x(1)**2 - x(2)**2 + 3.0_nag_wp*x(1)*x(2)
Case (3)

c(k) = cos((x(1)/200.0_nag_wp)**2+(x(2)/100.0_nag_wp))
Case Default

! This constraint is not coded (there are only three).
! Terminate.

mode = -1
Exit loop_constraints

End Select
End If

If (evalcjac) Then
! Constraint derivatives (CJAC) are required.

Select Case (k)
Case (1)

! Constant derivatives set when NSTATE=1 remain throughout
! the local minimization.

Continue
Case (2)

! If the constraint derivatives are known and are readily
! calculated, populate CJAC when required.

cjac(k,1) = 2.0_nag_wp*x(1) + 3.0_nag_wp*x(2)
cjac(k,2) = -2.0_nag_wp*x(2) + 3.0_nag_wp*x(1)

Case Default
! Any elements of CJAC left unaltered will be approximated
! using finite differences when required.

Continue
End Select

End If

End Do loop_constraints

Return

End Subroutine confun_non_linear
Subroutine monmod(ndim,ncon,npar,x,xb,fb,cb,xbest,fbest,cbest,itt,iuser, &

ruser,inform)

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: fb
Integer, Intent (Inout) :: inform
Integer, Intent (In) :: ncon, ndim, npar

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: cb(ncon), cbest(ncon,npar), &

fbest(npar), xb(ndim), &
xbest(ndim,npar)

Real (Kind=nag_wp), Intent (Inout) :: ruser(*), x(ndim,npar)
Integer, Intent (In) :: itt(7)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: indent, j

! .. Intrinsic Procedures ..
Intrinsic :: modulo, repeat

! .. Executable Statements ..
If (detail_level>=2) Then

! Report on the first iteration, and every report_freq iterations.
If (itt(1)==1 .Or. modulo(itt(1),report_freq)==0) Then

Write (nout,*) ’* Locations of particles’
indent = 2
Do j = 1, npar

Write (nout,99999) repeat(’ ’,indent), j
Write (nout,99998) repeat(’ ’,indent), x(1:ndim,j)

End Do
Write (nout,*) ’* Cognitive memory’
Do j = 1, npar

E05SBF NAG Library Manual

E05SBF.18 Mark 26

Write (nout,99999) repeat(’ ’,indent), j
Write (nout,*) repeat(’ ’,indent*2), ’* Best position’
Write (nout,99998) repeat(’ ’,indent*2), xbest(1:ndim,j)
Write (nout,*) repeat(’ ’,indent*2), &

’* Function value at best position’
Write (nout,99997) repeat(’ ’,indent*2), fbest(j)
Write (nout,*) repeat(’ ’,indent*2), &

’* Best constraint violations’
Write (nout,99998) repeat(’ ’,indent*2), cbest(1:ncon,j)

End Do
Write (nout,*) ’* Current global optimum candidate’
Write (nout,99998) repeat(’ ’,indent), xb(1:ndim)
Write (nout,*) ’* Current global optimum value’
Write (nout,99997) repeat(’ ’,indent), fb
Write (nout,*) ’* Constraint violations of candidate’
Write (nout,99998) repeat(’ ’,indent), cb(1:ncon)

End If
End If

! If required set INFORM<0 to force exit
inform = 0

Return
99999 Format (1X,A,’* Particle ’,I3)
99998 Format (1X,A,(6F13.5))
99997 Format (1X,A,F13.5)

End Subroutine monmod
Subroutine display_option(optstr,optype,ivalue,rvalue,cvalue)

! Subroutine to query optype and print the appropriate option values

! .. Scalar Arguments ..
Real (Kind=nag_wp), Intent (In) :: rvalue
Integer, Intent (In) :: ivalue, optype
Character (*), Intent (In) :: cvalue, optstr

! .. Executable Statements ..
Select Case (optype)
Case (1)

Write (nout,99999) optstr, ivalue
Case (2)

Write (nout,99998) optstr, rvalue
Case (3)

Write (nout,99997) optstr, cvalue
Case (4)

Write (nout,99996) optstr, ivalue, cvalue
Case (5)

Write (nout,99995) optstr, rvalue, cvalue
End Select

Flush (nout)

Return
99999 Format (3X,A39,’ : ’,I13)
99998 Format (3X,A39,’ : ’,F13.4)
99997 Format (3X,A39,’ : ’,16X,A16)
99996 Format (3X,A39,’ : ’,I13,3X,A16)
99995 Format (3X,A39,’ : ’,F13.4,3X,A16)

End Subroutine display_option

Subroutine display_result(ndim,ncon,xb,fb,cb,itt,inform)
! Display final results in comparison to known global optimum.

! .. Use Statements ..
Use nag_library, Only: x04cbf

! .. Parameters ..
Integer, Parameter :: indent = 1, ncols = 79
Character (11), Parameter :: clabs(1:6) = (/’x_target_u ’, &

’x_target_c ’,’xb ’, &
’c_target_u ’,’c_target_c ’, &
’cb ’/)

Character (1), Parameter :: diag = ’D’, labcol = ’C’, &
labrow = ’I’, matrix = ’G’

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.19

Character (5), Parameter :: fmtc = ’f12.5’, fmtx = ’f12.2’
! .. Scalar Arguments ..

Real (Kind=nag_wp), Intent (In) :: fb
Integer, Intent (In) :: inform, ncon, ndim

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (In) :: cb(ncon), xb(ndim)
Integer, Intent (In) :: itt(7)

! .. Local Scalars ..
Integer :: ifail, ldcom
Character (ncols) :: titlec, titlex

! .. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: ccom(:,:), xcom(:,:)

! .. Executable Statements ..
! Display final counters.

Write (nout,*) ’ Algorithm Statistics’
Write (nout,*) ’ --------------------’
Write (nout,99994) ’Total complete iterations ’, itt(1)
Write (nout,99994) ’Complete iterations since improvement ’, itt(2)
Write (nout,99994) ’Total particles converged to xb ’, itt(3)
Write (nout,99994) ’Total improvements to global optimum ’, itt(4)
Write (nout,99994) ’Total function evaluations ’, itt(5)
Write (nout,99994) ’Total particles re-initialized ’, itt(6)
Write (nout,99994) ’Total constraints violated ’, itt(7)

! Display why finalization occurred.
Write (nout,*)
Select Case (inform)
Case (1)

Write (nout,99999) ’Target value achieved’
Case (2)

Write (nout,99999) ’Minimum swarm standard deviation obtained’
Case (3)

Write (nout,99999) ’Sufficient particles converged’
Case (4)

Write (nout,99999) ’No improvement in preset iteration limit’
Case (5)

Write (nout,99999) ’Maximum complete iterations attained’
Case (6)

Write (nout,99999) ’Maximum function evaluations exceeded’
Case (7)

Write (nout,99999) ’Constrained point located’
Case (:-1)

Write (nout,99998) inform
Go To 100

End Select

! Display final objective value and location.
Write (nout,*)
Write (nout,99997) f_target_u
Write (nout,99996) f_target_c
Write (nout,99995) fb
Flush (nout)

ldcom = ndim
Allocate (xcom(ldcom,3))
xcom(1:ndim,1) = x_target_u(1:ndim)
xcom(1:ndim,2) = x_target_c(1:ndim)
xcom(1:ndim,3) = xb(1:ndim)

Write (nout,*)
titlex = ’Comparison between known and achieved optima.’
ifail = 0
Call x04cbf(matrix,diag,ndim,3,xcom,ldcom,fmtx,titlex,labrow,clabs, &

labcol,clabs,ncols,indent,ifail)

Deallocate (xcom)

If (ncon>0) Then
ldcom = ncon
Allocate (ccom(ldcom,3))
ccom(1:ncon,1) = c_target_u(1:ncon)/c_scale(1:ncon)

E05SBF NAG Library Manual

E05SBF.20 Mark 26

ccom(1:ncon,2) = c_target_c(1:ncon)/c_scale(1:ncon)
ccom(1:ncon,3) = cb(1:ncon)/c_scale(1:ncon)

Write (nout,*)
Flush (nout)
titlec = ’Comparison between scaled constraint violations.’
ifail = 0
Call x04cbf(matrix,diag,ncon,3,ccom,ldcom,fmtc,titlec,labrow,clabs, &

labcol,clabs(4:6),ncols,indent,ifail)

Deallocate (ccom)
End If

100 Continue

Write (nout,*)

Return
99999 Format (2X,’Solution Status : ’,A38)
99998 Format (’ User termination case : ’,I13)
99997 Format (’ Known unconstrained objective minimum : ’,F13.3)
99996 Format (’ Best Known constrained objective minimum : ’,F13.3)
99995 Format (’ Achieved objective value : ’,F13.3)
99994 Format (2X,A40,’ :’,I13)

End Subroutine display_result
End Module e05sbfe_mod
Program e05sbfe

! E05SBF Example Main Program

! This example program demonstrates how to use E05SBF in standard
! execution, and with E04UCF as a coupled local minimizer.
! The non-default option ’REPEATABILITY ON’ is used here, giving
! repeatable results.

! .. Use Statements ..
Use nag_library, Only: e05sbf, e05zkf, e05zlf, nag_wp
Use e05sbfe_mod, Only: confun_non_linear, display_option, &

display_result, f_target_c, liopts, liuser, &
lopts, lruser, monmod, ncon, ndim, nout, npar, &
objfun_schwefel, zero

! .. Implicit None Statement ..
Implicit None

! .. Local Scalars ..
Real (Kind=nag_wp) :: fb, rvalue
Integer :: ifail, inform, ivalue, optype
Character (16) :: cvalue
Character (80) :: optstr

! .. Local Arrays ..
Real (Kind=nag_wp) :: bl(ndim+ncon), bu(ndim+ncon), &

cb(ncon), cbest(ncon,npar), &
fbest(ndim,npar), opts(lopts), &
ruser(lruser), xb(ndim), &
xbest(ndim,npar)

Integer :: iopts(liopts), itt(7), iuser(liuser)
! .. Executable Statements ..
! Print advisory information.

Write (nout,*) ’E05SBF Example Program Results’
Write (nout,*)
Write (nout,*) ’Minimization of the Schwefel function.’
Write (nout,*) ’Subject to one linear and two nonlinear constraints.’
Write (nout,*)

xbest = zero
fbest = zero
cbest = zero

! Set problem specific values.
! Set box bounds.

bl(1:ndim) = -500.0_nag_wp
bu(1:ndim) = 500.0_nag_wp

! Set constraint bounds.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.21

bl((ndim+1):(ndim+ncon)) = (/-1.0E6_nag_wp,-1.0_nag_wp,-0.9_nag_wp/)
bu((ndim+1):(ndim+ncon)) = (/10.0_nag_wp,5.0E5_nag_wp,0.9_nag_wp/)

! Initialize the option arrays for E05SBF.
ifail = 0
Call e05zkf(’Initialize = E05SBF’,iopts,liopts,opts,lopts,ifail)

! Query some default option values.
Write (nout,*) ’ Default Option Queries:’
Write (nout,*)
ivalue = 0
rvalue = 0.0_nag_wp
ifail = 0
optstr = ’Constraint Norm’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

ifail = 0
optstr = ’Maximum Iterations Completed’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

ifail = 0
optstr = ’Distance Tolerance’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)
Call display_option(optstr,optype,ivalue,rvalue,cvalue)

! --
Write (nout,*)
Write (nout,*) ’1. Solution without using coupled local minimizer’
Write (nout,*)

! Set various options to non-default values if required.
ifail = 0
Write (optstr,99999) ’Distance Tolerance’, rvalue*0.1_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Constraint Tolerance’, 1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Constraint Norm = Euclidean’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Repeatability = On’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Target Objective Value’, f_target_c
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Target Objective Tolerance’, 1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)

! Call E05SBF to search for the global optimum.
! Non-zero IFAIL expected on exit here, so use IFAIL=1 (quiet) on entry.

ifail = 1
Call e05sbf(ndim,ncon,npar,xb,fb,cb,bl,bu,xbest,fbest,cbest, &

objfun_schwefel,confun_non_linear,monmod,iopts,opts,iuser,ruser,itt, &
inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! No errors, best found optimum at xb returned in fb.
Call display_result(ndim,ncon,xb,fb,cb,itt,inform)

Case (3)
! Exit flag set in OBJFUN, CONFUN or MONMOD and returned in INFORM.

Call display_result(ndim,ncon,xb,fb,cb,itt,inform)
Case Default

! An error was detected. Print message since IFAIL=1 on entry.
Write (nout,99998) ’** E05SBF returned with an error, IFAIL = ’, ifail
Continue

End Select

! --

E05SBF NAG Library Manual

E05SBF.22 Mark 26

Write (nout,*) ’2. Solution using coupled local minimizer E04UCF’
Write (nout,*)

! Set the local minimizer to be E04UCF and set corresponding options.
ifail = 0
Call e05zkf(’Local Minimizer = E04UCF’,iopts,liopts,opts,lopts,ifail)
ifail = 0
Call e05zkf(’Local Interior Major Iterations = 15’,iopts,liopts,opts, &

lopts,ifail)
ifail = 0
Call e05zkf(’Local Interior Minor Iterations = 5’,iopts,liopts,opts, &

lopts,ifail)
ifail = 0
Call e05zkf(’Local Exterior Major Iterations = 50’,iopts,liopts,opts, &

lopts,ifail)
ifail = 0
Call e05zkf(’Local Exterior Minor Iterations = 15’,iopts,liopts,opts, &

lopts,ifail)

! Query the option Distance Tolerance
ifail = 0
optstr = ’Distance Tolerance’
Call e05zlf(optstr,ivalue,rvalue,cvalue,optype,iopts,opts,ifail)

! Adjust Distance Tolerance dependent upon its current value
Write (optstr,99999) ’Distance Tolerance’, rvalue*10.0_nag_wp
ifail = 0
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Local Interior Tolerance’, rvalue
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)
ifail = 0
Write (optstr,99999) ’Local Exterior Tolerance’, rvalue*1.0E-4_nag_wp
Call e05zkf(optstr,iopts,liopts,opts,lopts,ifail)

! Call E05SBF to search for the global optimum.
ifail = 1
Call e05sbf(ndim,ncon,npar,xb,fb,cb,bl,bu,xbest,fbest,cbest, &

objfun_schwefel,confun_non_linear,monmod,iopts,opts,iuser,ruser,itt, &
inform,ifail)

! It is essential to test IFAIL on exit.
Select Case (ifail)
Case (0,1)

! E05SBF encountered no errors during operation,
! and will have returned the best found optimum.

Call display_result(ndim,ncon,xb,fb,cb,itt,inform)
Case (3)

! Exit flag set in OBJFUN, CONFUN or MONMOD and returned in INFORM.
Call display_result(ndim,ncon,xb,fb,cb,itt,inform)

Case Default
! An error was detected. Print message since IFAIL=1 on entry.

Write (nout,99998) ’** E05SBF returned with an error, IFAIL = ’, ifail
Continue

End Select

99999 Format (A,’ = ’,E32.16)
99998 Format (1X,A,I6)

End Program e05sbfe

10.2 Program Data

None.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.23

10.3 Program Results

E05SBF Example Program Results

Minimization of the Schwefel function.
Subject to one linear and two nonlinear constraints.

Default Option Queries:

Constraint Norm : L1
Maximum Iterations Completed : 1000 DEFAULT
Distance Tolerance : 0.0001

1. Solution without using coupled local minimizer

Algorithm Statistics

Total complete iterations : 277
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 117
Total function evaluations : 4222
Total particles re-initialized : 0
Total constraints violated : 0

Solution Status : Target value achieved

Known unconstrained objective minimum : -837.966
Best Known constrained objective minimum : -731.707
Achieved objective value : -731.708

Comparison between known and achieved optima.
x_target_u x_target_c xb

1 -420.97 -394.15 -394.17
2 -420.97 -433.48 -433.53

Comparison between scaled constraint violations.
c_target_u c_target_c cb

1 0.00000 0.00000 0.00000
2 0.04219 0.00000 0.00000
3 0.75749 0.00000 0.00002

2. Solution using coupled local minimizer E04UCF

Algorithm Statistics

Total complete iterations : 4
Complete iterations since improvement : 1
Total particles converged to xb : 0
Total improvements to global optimum : 7
Total function evaluations : 155
Total particles re-initialized : 0
Total constraints violated : 0

Solution Status : Target value achieved

Known unconstrained objective minimum : -837.966
Best Known constrained objective minimum : -731.707
Achieved objective value : -731.706

Comparison between known and achieved optima.
x_target_u x_target_c xb

1 -420.97 -394.15 -394.15
2 -420.97 -433.48 -433.49

Comparison between scaled constraint violations.
c_target_u c_target_c cb

1 0.00000 0.00000 0.00000
2 0.04219 0.00000 0.00000
3 0.75749 0.00000 0.00000

E05SBF NAG Library Manual

E05SBF.24 Mark 26

11 Algorithmic Details

The following pseudo-code describes the algorithm used with the repulsion mechanism.

INITIALIZE for j ¼ 1; np

xj ¼ R 2 U lbox; uboxð Þ
x̂j ¼ R 2 U lbox; uboxð Þ Start ¼ COLD

x̂0j Start ¼ WARM

vj ¼ R 2 U �Vmax ;Vmaxð Þ
f̂j ¼ F x̂j

� �
Start ¼ COLD

f̂0
j Start ¼ WARM

êj ¼ e x̂j
� �

Start ¼ COLD
ê0j Start ¼ WARM

wj ¼
Wmax Weight Initialize ¼ MAXIMUM
Wini Weight Initialize ¼ INITIAL
R 2 U Wmin ;Wmaxð Þ Weight Initialize ¼ RANDOMIZED

8<
:

end for
~x ¼ 1

2 lbox þ uboxð Þ
~f ¼ F ~xð Þ
~e ¼ e ~xð Þ
Ic ¼ Is ¼ 0

SWARM while ðnot finalizedÞ;
Ic ¼ Ic þ 1
for j ¼ 1; np

xj ¼ BOUNDARY xj; lbox; ubox
� �

fj ¼ F xj
� �

ej ¼ e xj
� �

if fj=fscale þ � wj

� �
ej
�� �� < f̂j=fscale þ � wj

� �
êj
�� ��� �

f̂j ¼ fj; x̂j ¼ xj
if ej

�� �� < ~ek k� �
or ej

�� �� � ~ek k and fj < ~f
� �� �

~f ¼ fj; ~x ¼ xj
end for
if new ~f

� �� �
LOCMIN ~x; ~f;~e; Oi

� �
; Is ¼ 0

½see note on repulsion below for code insertion�
else

Is ¼ Is þ 1
for j ¼ 1; np

vj ¼ wjvj þ CsD1 x̂j � xj
� �þ CgD2 ~x� xj

� �
xj ¼ xj þ vj
if xj � ~x
�� �� < dtol
� �
reset xj; vj; wj; x̂j ¼ xj

else
update wj

� �
end for
if ðtarget achieved or termination criterion satisfiedÞ

finalized ¼ true
MONMOD xj

� �
end
LOCMIN ~x; ~f;~e; Oe

� �
The definition of terms used in the above pseudo-code are as follows.

np the number of particles, NPAR

lbox array of NDIM lower box bounds

ubox array of NDIM upper box bounds

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.25

xj position of particle j

x̂j best position found by particle j

~x best position found by any particle

fj F xj
� �

f̂j F x̂j
� �

, best value found by particle j

~f F ~xð Þ, best value found by any particle

ek xð Þ kth (scaled) constraint violation at x, evaluated as
min ck xð Þ � lNDIMþk; 0:0ð Þ þmax ck xð Þ � uNDIMþk; 0:0ð Þ; this may be scaled by the maximum
kth constraint found thus far

e xð Þ the array of NCON constraint violations, ek xð Þ, for k ¼ 1; 2; . . . ;NCON, at a point x

ej e xj
� �

, the array of constraint violations evaluated at xj

êj e x̂j
� �

, the array of constraint violations evaluated at x̂j

~e e ~xð Þ, the array of constraint violations evaluated at ~x

vj velocity of particle j

wj weight on vj for velocity update, decreasing according to Weight Decrease

Vmax maximum absolute velocity, dependent upon Maximum Variable Velocity

Ic swarm iteration counter

Is iterations since ~x was updated

fscale objective function scaling defined by the options Constraint Scaling, Objective Scaling
and Objective Scale.

D1,D2 diagonal matrices with random elements in range 0; 1ð Þ
Cs the cognitive advance coefficient which weights velocity towards x̂j, adjusted using

Advance Cognitive

Cg the global advance coefficient which weights velocity towards ~x, adjusted using Advance
Global

dtol the Distance Tolerance for resetting a converged particle

R 2 U lbox; uboxð Þ
an array of random numbers whose ith element is drawn from a uniform distribution in the
range lboxi; uboxið Þ, for i ¼ 1; 2; . . . ;NDIM

Oi local optimizer interior options

Oe local optimizer exterior options

� wj

� �
a function of wj designed to increasingly weight towards minimizing constraint violations as
wj decreases

LOCMIN x; f; e; Oð Þ
apply local optimizer using the set of options O using the solution x; f; eð Þ as the starting
point, if used (not default)

MONMODmonitor progress and possibly modify xj

BOUNDARY
apply required behaviour for xj outside bounding box, (see Boundary)

new (~f) true if ~x, ~c, ~f were updated at this iteration

Additionally a repulsion phase can be introduced by changing from the default values of options
Repulsion Finalize (rf), Repulsion Initialize (ri) and Repulsion Particles (rp). If the number of static

E05SBF NAG Library Manual

E05SBF.26 Mark 26

particles is denoted ns then the following can be inserted after the new(~f) check in the pseudo-code
above.

else if ðns � rp and ri � Is � ri þ rfÞ
LOCMIN ~x; ~f;~e; Oi

� �
use �Cg instead of Cg in velocity updates

if Is ¼ ri þ rf
� �
Is ¼ 0

12 Optional Parameters

This section can be skipped if you wish to use the default values for all optional parameters, otherwise,
the following is a list of the optional parameters available and a full description of each optional
parameter is provided in Section 12.1.

Advance Cognitive

Advance Global

Boundary

Constraint Norm

Constraint Scale Maximum

Constraint Scaling

Constraint Superiority

Constraint Tolerance

Constraint Warning

Distance Scaling

Distance Tolerance

Function Precision

Local Boundary Restriction

Local Exterior Iterations

Local Exterior Major Iterations

Local Exterior Minor Iterations

Local Exterior Tolerance

Local Interior Iterations

Local Interior Major Iterations

Local Interior Minor Iterations

Local Interior Tolerance

Local Minimizer

Maximum Function Evaluations

Maximum Iterations Completed

Maximum Iterations Static

Maximum Iterations Static Particles

Maximum Particles Converged

Maximum Particles Reset

Maximum Variable Velocity

Objective Scale

Objective Scaling

Optimize

Repeatability

Repulsion Finalize

Repulsion Initialize

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.27

Repulsion Particles

SMP Callback Thread Safe

SMP Local Minimizer External

SMP Monitor

SMP Monmod

SMP Subswarm

SMP Thread Overrun

Start

Swarm Standard Deviation

Target Objective

Target Objective Safeguard

Target Objective Tolerance

Target Objective Value

Target Warning

Verify Gradients

Weight Decrease

Weight Initial

Weight Initialize

Weight Maximum

Weight Minimum

Weight Reset

Weight Value

12.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF),
and Imax represents the largest representable integer value (see X02BBF).

All options accept the value ‘DEFAULT’ in order to return single options to their default states.

Keywords and character values are case insensitive, however they must be separated by at least one
space.

For E05SBF the maximum length of the argument CVALUE used by E05ZLF is 15.

Advance Cognitive r Default ¼ 2:0

The cognitive advance coefficient, Cs. When larger than the global advance coefficient, this will cause
particles to be attracted toward their previous best positions. Setting r ¼ 0:0 will cause E05SBF to act
predominantly as a local optimizer. Setting r > 2:0 may cause the swarm to diverge, and is generally
inadvisable. At least one of the global and cognitive coefficients must be nonzero.

Advance Global r Default ¼ 2:0

The global advance coefficient, Cg. When larger than the cognitive coefficient this will encourage
convergence toward the best solution yet found. Values r 2 0; 1ð Þ will inhibit particles overshooting the
optimum. Values r 2 1; 2½ Þ cause particles to fly over the optimum some of the time. Larger values can
prohibit convergence. Setting r ¼ 0:0 will remove any attraction to the current optimum, effectively

E05SBF NAG Library Manual

E05SBF.28 Mark 26

generating a Monte–Carlo multi-start optimization algorithm. At least one of the global and cognitive
coefficients must be nonzero.

Boundary a Default ¼ FLOATING

Determines the behaviour if particles leave the domain described by the box bounds. This only affects
the general PSO algorithm, and will not pass down to any NAG local minimizers chosen.

This option is only effective in those dimensions for which BLðiÞ 6¼ BUðiÞ, i ¼ 1; 2; . . . ;NDIM.

IGNORE
The box bounds are ignored. The objective function is still evaluated at the new particle position.

RESET
The particle is re-initialized inside the domain. x̂j, f̂j and êj are not affected.

FLOATING
The particle position remains the same, however the objective function will not be evaluated at
the next iteration. The particle will probably be advected back into the domain at the next
advance due to attraction by the cognitive and global memory.

HYPERSPHERICAL
The box bounds are wrapped around an ndim-dimensional hypersphere. As such a particle
leaving through a lower bound will immediately re-enter through the corresponding upper bound
and vice versa. The standard distance between particles is also modified accordingly.

FIXED
The particle rests on the boundary, with the corresponding dimensional velocity set to 0:0.

Constraint Norm a Default ¼ L1

Determines with respect to which norm the constraint residuals should be constructed. These are
automatically scaled with respect to NCON as stated. For the set of (scaled) violations e, these may be,

L1

The L1 norm will be used, ek k1 ¼ 1
NCON

XNCON
1

ekj j

L2

The L2 norm will be used, ek k2 ¼ 1
NCON

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNCON
1

e2k

vuut
L2SQ

The square of the L2 norm will be used, ek k22 ¼ 1
NCON

XNCON
1

e2k

LMAX
The L1 norm will be used, ek k1 ¼ max

0<k�NCON
ekj jð Þ

Constraint Scale Maximum r Default ¼ 1:0E6

Internally, each constraint violation is scaled with respect to the maximum violation yet achieved for
that constraint. This option acts as a ceiling for this scale.

Constraint: r > 1:0.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.29

Constraint Scaling a Default ¼ INITIAL

Determines whether to scale the constraints and objective function when constructing the penalty
function.

OFF
Neither the constraint violations nor the objective will be scaled automatically. This should only
be used if the constraints and objective are similarly scaled everywhere throughout the domain.

INITIAL
The maximum of the initial cognitive memories, f̂j and êj, will be used to scale the objective
function and constraint violations respectively.

ADAPTIVE
Initially, the maximum of the initial cognitive memories, f̂j and êj, will be used to scale the
objective function and constraint violations respectively. If a significant change is detected in the
behaviour of the constraints or the objective, these will be rescaled with respect to the current
state of the cognitive memory.

Constraint Superiority r Default ¼ 0:01

The minimum scaled improvement in the constraint violation for a location to be immediately superior
to that in memory, regardless of the objective value.

Constraint: r > 0:0.

Constraint Tolerance r Default ¼ 10�4

The maximum scaled violation of the constraints for which a sample particle is considered comparable
to the current global optimum. Should this not be exceeded, then the current global optimum will be
updated if the value of the objective function of the sample particle is superior.

Constraint Warning a Default ¼ ON

Activates or deactivates the error exit associated with the inability to completely satisfy all constraints,
IFAIL ¼ 4. It is advisable to deactivate this option if IFAIL ¼ 0 on entry and the satisfaction of all
constraints is not program critical.

OFF
No error will be returned.

ON
An error will be returned if any constraints are sufficiently violated at the end of the simulation.

Distance Scaling a Default ¼ ON

Determines whether distances should be scaled by box widths.

ON
When a distance is calculated between x and y, a scaled L2 norm is used.

L2 x; yð Þ ¼
X

ijui 6¼li;i�ndimf g

xi � yi
ui � li

� �2
0
@

1
A

1
2

:

OFF
Distances are calculated as the standard L2 norm without any rescaling.

L2 x; yð Þ ¼
Xndim
i¼1

xi � yið Þ2
 !1

2

:

E05SBF NAG Library Manual

E05SBF.30 Mark 26

Distance Tolerance r Default ¼ 10�4

This is the distance, dtol between particles and the global optimum which must be reached for the
particle to be considered converged, i.e., that any subsequent movement of such a particle cannot
significantly alter the global optimum. Once achieved the particle is reset into the box bounds to
continue searching.

Constraint: r > 0:0.

Function Precision r Default ¼ �0:9

The parameter defines �r, which is intended to be a measure of the accuracy with which the problem
function F xð Þ can be computed. If r < � or r � 1, the default value is used.

The value of �r should reflect the relative precision of 1þ F xð Þj j; i.e., �r acts as a relative precision
when Fj j is large, and as an absolute precision when Fj j is small. For example, if F xð Þ is typically of
order 1000 and the first six significant digits are known to be correct, an appropriate value for �r would
be 10�6. In contrast, if F xð Þ is typically of order 10�4 and the first six significant digits are known to be
correct, an appropriate value for �r would be 10�10. The choice of �r can be quite complicated for badly
scaled problems; see Chapter 8 of Gill et al. (1981) for a discussion of scaling techniques. The default
value is appropriate for most simple functions that are computed with full accuracy. However when the
accuracy of the computed function values is known to be significantly worse than full precision, the
value of �r should be large enough so that no attempt will be made to distinguish between function
values that differ by less than the error inherent in the calculation.

Local Boundary Restriction r Default ¼ 0:5

Contracts the box boundaries used by a box constrained local minimizer to, �l; �u½ �, containing the start
point x, where

@i ¼ r� ui � lið Þ
�i
l ¼ max li; xi � @i

2

� �
�i
u ¼ min ui; xi þ @i

2

� �
; i ¼ 1; . . . ;NDIM:

Smaller values of r thereby restrict the size of the domain exposed to the local minimizer, possibly
reducing the amount of work done by the local minimizer.

Constraint: 0:0 � r � 1:0.

Local Interior Iterations i1
Local Interior Major Iterations i1
Local Exterior Iterations i2
Local Exterior Major Iterations i2

The maximum number of iterations or function evaluations the chosen local minimizer will perform
inside (outside) the main loop if applicable. For the NAG minimizers these correspond to:

Minimizer Parameter/option Default Interior Default Exterior
E04CBF MAXCAL NDIMþ 10 2� NDIMþ 15
E04DGF/E04DGA Iteration Limit max 30; 3� NDIMð Þ max 50; 5� NDIMð Þ
E04UCF/E04UCA Major Iteration Limit max 10; 2� NDIMð Þ max 30; 3� NDIMð Þ

Unless set, these are functions of the parameters passed to E05SBF.

Setting i ¼ 0 will disable the local minimizer in the corresponding algorithmic region. For example,
setting Local Interior Iterations ¼ 0 and Local Exterior Iterations ¼ 30 will cause the algorithm to
perform no local minimizations inside the main loop of the algorithm, and a local minimization with
upto 30 iterations after the main loop has been exited.

Note: currently E04JYF or E04KZF are restricted to using 400� NDIM and 50� NDIM as function
evaluation limits respectively. This applies to both local minimizations inside and outside the main

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.31

loop. They may still be deactivated in either phase by setting i ¼ 0, and may subsequently be
reactivated in either phase by setting i > 0.

Constraint: i1 � 0, i2 � 0.

Local Interior Tolerance r1 Default ¼ 10�4

Local Exterior Tolerance r2 Default ¼ 10�4

This is the tolerance provided to a local minimizer in the interior (exterior) of the main loop of the
algorithm.

Constraint: r1 > 0:0, r2 > 0:0.

Local Interior Minor Iterations i1
Local Exterior Minor Iterations i2

Where applicable, the secondary number of iterations the chosen local minimizer will use inside
(outside) the main loop. Currently the relevant default values are:

Minimizer Parameter/option Default Interior Default Exterior
E04UCF/E04UCA Minor Iteration Limit max 10; 2� NDIMð Þ max 30; 3� NDIMð Þ

Constraint: i1 � 0, i2 � 0.

Local Minimizer a Default ¼ OFF

Allows for a choice of Chapter E04 routines to be used as a coupled, dedicated local minimizer.

OFF
No local minimization will be performed in either the INTERIOR or EXTERIOR sections of the
algorithm.

E04CBF
Use E04CBF as the local minimizer. This does not require the calculation of derivatives.

On a call to OBJFUN during a local minimization, MODE ¼ 5.

E04KZF
Use E04KZF as the local minimizer. This requires the calculation of derivatives in OBJFUN, as
indicated by MODE.

The box bounds forwarded to this routine from E05SBF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SBF.

Accurate derivatives must be provided to this routine, and will not be approximated internally. Each
iteration of this local minimizer also requires the calculation of both the objective function and its
derivative. Hence on a call to OBJFUN during a local minimization, MODE ¼ 7.

E04JYF
Use E04JYF as the local minimizer. This does not require the calculation of derivatives.

On a call to OBJFUN during a local minimization, MODE ¼ 5.

The box bounds forwarded to this routine from E05SBF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SBF.

E04DGF
E04DGA

Use E04DGA as the local minimizer.

Accurate derivatives must be provided, and will not be approximated internally. Additionally, each call
to OBJFUN during a local minimization will require either the objective to be evaluated alone, or both
the objective and its gradient to be evaluated. Hence on a call to OBJFUN, MODE ¼ 5 or 7.

E05SBF NAG Library Manual

E05SBF.32 Mark 26

E04UCF
E04UCA

Use E04UCA as the local minimizer. This operates such that any derivatives of either the
objective function or the constraint Jacobian, which you cannot supply, will be approximated
internally using finite differences.

Either, the objective, objective gradient, or both may be requested during a local minimization, and as
such on a call to OBJFUN, MODE ¼ 1, 2 or 5.

The box bounds forwarded to this routine from E05SBF will have been acted upon by Local Boundary
Restriction. As such, the domain exposed may be greatly smaller than that provided to E05SBF.

Maximum Function Evaluations i Default ¼ Imax

The maximum number of evaluations of the objective function. When reached this will return
IFAIL ¼ 1 and INFORM ¼ 6.

Constraint: i > 0.

Maximum Iterations Completed i Default ¼ 1000� NDIM

The maximum number of complete iterations that may be performed. Once exceeded E05SBF will exit
with IFAIL ¼ 1 and INFORM ¼ 5.

Unless set, this adapts to the parameters passed to E05SBF.

Constraint: i � 1.

Maximum Iterations Static i Default ¼ 100

The maximum number of iterations without any improvement to the current global optimum. If
exceeded E05SBF will exit with IFAIL ¼ 1 and INFORM ¼ 4. This exit will be hindered by setting
Maximum Iterations Static Particles to larger values.

Constraint: i � 1.

Maximum Iterations Static Particles i Default ¼ 0

The minimum number of particles that must have converged to the current optimum before the routine
may exit due to Maximum Iterations Static with IFAIL ¼ 1 and INFORM ¼ 4.

Constraint: i � 0.

Maximum Particles Converged i Default ¼ Imax

The maximum number of particles that may converge to the current optimum. When achieved, E05SBF
will exit with IFAIL ¼ 1 and INFORM ¼ 3. This exit will be hindered by setting ‘Repulsion’ options,
as these cause the swarm to re-expand.

Constraint: i > 0.

Maximum Particles Reset i Default ¼ Imax

The maximum number of particles that may be reset after converging to the current optimum. Once
achieved no further particles will be reset, and any particles within Distance Tolerance of the global
optimum will continue to evolve as normal.

Constraint: i > 0.

Maximum Variable Velocity r Default ¼ 0:25

Along any dimension j, the absolute velocity is bounded above by vj
		 		 � r� uj � lj

� � ¼ Vmax . Very
low values will greatly increase convergence time. There is no upper limit, although larger values will
allow more particles to be advected out of the box bounds, and values greater than 4:0 may cause
significant and potentially unrecoverable swarm divergence.

Constraint: r > 0:0.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.33

Objective Scale r Default ¼ 1:0

The initial scale for the objective function. This will remain fixed if Objective Scaling ¼ USER is
selected.

Objective Scaling a Default ¼ MAXIMUM

The method of (re)scaling applied to the objective function when the routine detects a significant
difference between the scale and the global and cognitive memory (~f and f̂j). This only has an effect
when NCON > 0 and Constraint Scaling is active.

MAXIMUM
The objective is rescaled with respect to the maximum absolute value of the objective in the
cognitive and global memory.

MEAN
The objective is rescaled with respect to the mean absolute value of the objective in the cognitive
and global memory.

USER
The scale remains fixed at the value set using Objective Scale.

Optimize a Default ¼ MINIMIZE

Determines whether to maximize or minimize the objective function, or ignore the objective and search
for a constrained point.

MINIMIZE
The objective function will be minimized.

MAXIMIZE
The objective function will be maximized. This is accomplished by minimizing the negative of
the objective.

CONSTRAINTS
The objective function will be ignored, and the algorithm will attempt to find a feasible point
given the provided constraints. The objective function will be evaluated at the best point found
with regards to constraint violations, and the final positions returned in XBEST. The objective
will be calculated at the best point found in terms of constraints only. Should a constrained point
be found, E05SBF will exit with IFAIL ¼ 0 and INFORM ¼ 6.

Constraint: if Optimize ¼ CONSTRAINTS, NCON > 0 is required.

Repeatability a Default ¼ OFF

Allows for the same random number generator seed to be used for every call to E05SBF.
Repeatability ¼ OFF is recommended in general.

OFF
The internal generation of random numbers will be nonrepeatable.

ON
The same seed will be used.

Repulsion Finalize i Default ¼ Imax

The number of iterations performed in a repulsive phase before re-contraction. This allows a re-
diversified swarm to contract back toward the current optimum, allowing for a finer search of the near
optimum space.

Constraint: i � 2.

Repulsion Initialize i Default ¼ Imax

The number of iterations without any improvement to the global optimum before the algorithm begins a
repulsive phase. This phase allows the particle swarm to re-expand away from the current optimum,

E05SBF NAG Library Manual

E05SBF.34 Mark 26

allowing more of the domain to be investigated. The repulsive phase is automatically ended if a
superior optimum is found.

Constraint: i � 2.

Repulsion Particles i Default ¼ 0

The number of particles required to have converged to the current optimum before any repulsive phase
may be initialized. This will prevent repulsion before a satisfactory search of the near optimum area has
been performed, which may happen for large dimensional problems.

Constraint: i � 0.

Start a Default ¼ COLD

Used to affect the initialization of the routine.

COLD
The random number generators and all initialization data will be generated internally. The
variables XBEST, FBEST and CBEST need not be set.

WARM
You must supply the initial best location, function and constraint violation values XBEST,
FBEST and CBEST. This option is recommended if you already have a data set you wish to
improve upon.

Swarm Standard Deviation r Default ¼ 0:1

The target standard deviation of the particle distances from the current optimum. Once the standard
deviation is below this level, E05SBF will exit with IFAIL ¼ 1 and INFORM ¼ 2. This criterion will
be penalized by the use of ‘Repulsion’ options, as these cause the swarm to re-expand, increasing the
standard deviation of the particle distances from the best point.

In SMP parallel implementations of E05SBF, the standard deviation will be calculated based only on
the particles local to the particular thread that checks for finalization. Considerably fewer particles may
be used in this calculation than when the algorithm is run in serial. It is therefore recommended that
you provide a smaller value of Swarm Standard Deviation when running in parallel than when
running in serial.

Constraint: r � 0:0.

Target Objective a Default ¼ OFF
Target Objective Value r Default ¼ 0:0

Activate or deactivate the use of a target value as a finalization criterion. If active, then once the
supplied target value for the objective function is found (beyond the first iteration if Target Warning is
active) E05SBF will exit with IFAIL ¼ 0 and INFORM ¼ 1. Other than checking for feasibility only
(Optimize ¼ CONSTRAINTS), this is the only finalization criterion that guarantees that the algorithm
has been successful. If the target value was achieved at the initialization phase or first iteration and
Target Warning is active, E05SBF will exit with IFAIL ¼ 2. This option may take any real value r, or
the character ON/OFF as well as DEFAULT. If this option is queried using E05ZLF, the current value
of r will be returned in RVALUE, and CVALUE will indicate whether this option is ON or OFF. The
behaviour of the option is as follows:

r
Once a point is found with an objective value within the Target Objective Tolerance of r,
E05SBF will exit successfully with IFAIL ¼ 0 and INFORM ¼ 1.

OFF
The current value of r will remain stored, however it will not be used as a finalization criterion.

ON
The current value of r stored will be used as a finalization criterion.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.35

DEFAULT
The stored value of r will be reset to its default value (0:0), and this finalization criterion will be
deactivated.

Target Objective Safeguard r Default ¼ 10:0�

If you have given a target objective value to reach in objval (the value of the optional parameter Target
Objective Value), objsfg sets your desired safeguarded termination tolerance, for when objval is close
to zero.

Constraint: objsfg � 2�.

Target Objective Tolerance r Default ¼ 0:0

The optional tolerance to a user-specified target value.

Constraint: r � 0:0.

Target Warning a Default ¼ OFF

Activates or deactivates the error exit associated with the target value being achieved before entry into
the main loop of the algorithm, IFAIL ¼ 2.

OFF
No error will be returned, and the routine will exit normally.

ON
An error will be returned if the target objective is reached prematurely, and the routine will exit
with IFAIL ¼ 2.

Verify Gradients a Default ¼ ON

Adjusts the level of gradient checking performed when gradients are required. Gradient checks are only
performed on the first call to the chosen local minimizer if it requires gradients. There is no guarantee
that the gradient check will be correct, as the finite differences used in the gradient check are
themselves subject to inaccuracies.

OFF
No gradient checking will be performed.

ON
A cheap gradient check will be performed on both the gradients corresponding to the objective
through OBJFUN and those provided via the constraint Jacobian through CONFUN.

OBJECTIVE
A more expensive gradient check will be performed on the gradients corresponding to the
objective OBJFUN. The gradients of the constraints will not be checked.

CONSTRAINTS
A more expensive check will be performed on the elements of CJAC provided via CONFUN.
The objective gradient will not be checked.

FULL
A more expensive check will be performed on both the gradient of the objective and the
constraint Jacobian.

Weight Decrease a Default ¼ INTEREST

Determines how particle weights decrease.

OFF
Weights do not decrease.

INTEREST
Weights decrease through compound interest as wITþ1 ¼ wIT 1�Wvalð Þ, where Wval is the
Weight Value and IT is the current number of iterations.

E05SBF NAG Library Manual

E05SBF.36 Mark 26

LINEAR
Weights decrease linearly following wITþ1 ¼ wIT � IT � Wmax �Wminð Þ=ITmax , where IT is
the iteration number and ITmax is the maximum number of iterations as set by Maximum
Iterations Completed.

Weight Initial r Default ¼ Wmax

The initial value of any particle's inertial weight, Wini, or the minimum possible initial value if initial
weights are randomized. When set, this will override Weight Initialize ¼ RANDOMIZED or
MAXIMUM, and as such these must be set afterwards if so desired.

Constraint: Wmin � r � Wmax .

Weight Initialize a Default ¼ MAXIMUM

Determines how the initial weights are distributed.

INITIAL
All weights are initialized at the initial weight, Wini, if set. If Weight Initial has not been set,
this will be the maximum weight, Wmax .

MAXIMUM
All weights are initialized at the maximum weight, Wmax .

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Maximum r Default ¼ 1:0

The maximum particle weight, Wmax .

Constraint: 1:0 � r � Wmin (If Wini has been set then 1:0 � r � Wini.)

Weight Minimum r Default ¼ 0:1

The minimum achievable weight of any particle, Wmin . Once achieved, no further weight reduction is
possible.

Constraint: 0:0 � r � Wmax (If Wini has been set then 0:0 � r � Wini.)

Weight Reset a Default ¼ MAXIMUM

Determines how particle weights are re-initialized.

INITIAL
Weights are re-initialized at the initial weight if set. If Weight Initial has not been set, this will
be the maximum weight.

MAXIMUM
Weights are re-initialized at the maximum weight.

RANDOMIZED
Weights are uniformly distributed in Wmin ;Wmaxð Þ or Wini;Wmaxð Þ if Weight Initial has been
set.

Weight Value r Default ¼ 0:01

The constant Wval used with Weight Decrease ¼ INTEREST.

Constraint: 0:0 � r � 1
3 .

12.2 Description of the SMP optional parameters

This section details additional options available to users of multi-threaded implementations of the NAG
Library. In particular it includes the option SMP Callback Thread Safe, which must be set before
calling E05SBF with multiple threads.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.37

SMP Callback Thread Safe a Default ¼ WARNING

Declare that the callback routines you provide are or are not thread safe. In particular, this indicates that
access to the shared memory arrays IUSER and RUSER from within your provided callbacks is done in
a thread safe manner. If these arrays are just used to pass constant data, then you may assume they are
thread safe. If these are also used for workspace, or passing variable data such as random number
generator seeds, then you must ensure these are accessed and updated safely. Whilst this can be done
using OpenMP critical sections, we suggest their use is minimized to prevent unnecessary bottlenecks,
and that instead individual threads have access to independent subsections of the provided arrays where
possible.

YES
The callback routines have been programmed in a thread safe way. The algorithm will use
OMP_NUM_THREADS threads.

NO
The callback routines are not thread safe. Setting this option will force the algorithm to run on a
single thread only, and is advisable only for debugging purposes, or if you wish to parallelize
your callback functions.

WARNING
This will cause an immediate exit from E05SBF with IFAIL ¼ 51 if multiple threads are
detected. This is to inform you that you have not declared the callback functions either to be
thread safe, or that they are thread unsafe and you wish the algorithm to run in serial.

SMP Local Minimizer External a Default ¼ ALL

Determines how many threads will attempt to locally minimize the best found solution after the routine
has exited the main loop.

MASTER
Only the master thread will attempt to find any improvement. The local minimization will be
launched from the best known solution. All other threads will remain effectively idle.

ALL
The master thread will perform a local minimization from the best known solution, while all
other threads will perform a local minimization from randomly generated perturbations of the
best known solution, increasing the chance of an improvement. Assuming all local minimizations
will take approximately the same amount of computation, this will be effectively free in terms of
real time. It will however increase the number of function evaluations performed.

SMP Monitor a Default ¼ SINGLE
SMP Monmod a

Determines whether the user-supplied function MONMOD is invoked once every sub-iteration each
thread performs, or only once by a single thread after all threads have completed at least one sub-
iteration.

SINGLE
Only one thread will invoke MONMOD, after all threads have performed at least one sub-
iteration.

ALL
Each thread will invoke MONMOD each time it completes a sub-iteration. If you wish to alter X
using MONMOD you should use this option, as MONMOD will only receive the arrays X,
XBEST, FBEST and CBEST private to the calling thread.

SMP Subswarm i Default ¼ 1

Determines how many threads support a particle subswarm. This is an extra collection of particles
constrained to search only within a hypercube of edge length 10:0� Distance Tolerance of the best
point known to an individual thread. This may improve the number of iterations required to find a
provided target, particularly if no local minimizer is in use.

E05SBF NAG Library Manual

E05SBF.38 Mark 26

If i � 0, then this will be disabled on all the threads.

If i � OMP NUM THREADS, then all the threads will support a particle subswarm.

SMP Thread Overrun i Default ¼ Imax

This option provides control over the level of asynchronicity present in a simulation. In particular, a
barrier synchronization between all threads is performed if any thread completes i sub-iterations more
than the slowest thread, causing all threads to be exposed to the current best solution. Allowing
asynchronous behaviour does however allow individual threads to focus on different global optimum
candidates some of the time, which can inhibit convergence to unwanted sub-optima. It also allows for
threads to continue searching when other threads are completing sub-iterations at a slower rate.

If i < 1, then the algorithm will force a synchronization between threads at the end of each iteration.

E05 – Global Optimization of a Function E05SBF

Mark 26 E05SBF.39 (last)

	E05SBF
	1 Purpose
	2 Specification
	3 Description
	4 References
	Gill et al. (1981)
	Kennedy and Eberhart (1995)
	Koh et al. (2006)
	Vaz and Vicente (2007)

	5 Arguments
	NDIM
	NCON
	NPAR
	XB
	FB
	CB
	BL
	BU
	XBEST
	FBEST
	CBEST
	OBJFUN
	MODE
	NDIM
	X
	OBJF
	VECOUT
	NSTATE
	IUSER
	RUSER

	CONFUN
	MODE
	NCON
	NDIM
	LDCJ
	NEEDC
	X
	C
	CJAC
	NSTATE
	IUSER
	RUSER

	MONMOD
	NDIM
	NCON
	NPAR
	X
	XB
	FB
	CB
	XBEST
	FBEST
	CBEST
	ITT
	IUSER
	RUSER
	INFORM

	IOPTS
	OPTS
	IUSER
	RUSER
	ITT
	INFORM
	IFAIL

	6 Error Indicators and Warnings
	IFAIL=1
	IFAIL=2
	IFAIL=3
	IFAIL=4
	IFAIL=11
	IFAIL=12
	IFAIL=13
	IFAIL=14
	IFAIL=17
	IFAIL=18
	IFAIL=19
	IFAIL=21
	IFAIL=32
	IFAIL=51
	IFAIL=-99
	IFAIL=-399
	IFAIL=-999

	7 Accuracy
	8 Parallelism and Performance
	9 Further Comments
	10 Example
	10.1 Program Text
	10.2 Program Data
	10.3 Program Results

	11 Algorithmic Details
	12 Optional Parameters
	12.1 Description of the Optional Parameters
	Advance Cognitive
	Advance Global
	Boundary
	Constraint Norm
	Constraint Scale Maximum
	Constraint Scaling
	Constraint Superiority
	Constraint Tolerance
	Constraint Warning
	Distance Scaling
	Distance Tolerance
	Function Precision
	Local Boundary Restriction
	Local Interior Iterations
	Local Interior Major Iterations
	Local Exterior Iterations
	Local Exterior Major Iterations
	Local Interior Tolerance
	Local Exterior Tolerance
	Local Interior Minor Iterations
	Local Exterior Minor Iterations
	Local Minimizer
	Maximum Function Evaluations
	Maximum Iterations Completed
	Maximum Iterations Static
	Maximum Iterations Static Particles
	Maximum Particles Converged
	Maximum Particles Reset
	Maximum Variable Velocity
	Objective Scale
	Objective Scaling
	Optimize
	Repeatability
	Repulsion Finalize
	Repulsion Initialize
	Repulsion Particles
	Start
	Swarm Standard Deviation
	Target Objective
	Target Objective Value
	Target Objective Safeguard
	Target Objective Tolerance
	Target Warning
	Verify Gradients
	Weight Decrease
	Weight Initial
	Weight Initialize
	Weight Maximum
	Weight Minimum
	Weight Reset
	Weight Value

	12.2 Description of the SMP optional parameters
	SMP Callback Thread Safe
	SMP Local Minimizer External
	SMP Monitor
	SMP Monmod
	SMP Subswarm
	SMP Thread Overrun

	NAG Fortran Library Manual, Mark 26.1
	Copyright Statement
	Foreword
	Introduction
	How to Use the NAG Library and its Documentation
	Mark 26.1 NAG Fortran Library News
	Implementation-specific Details for Users
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Code Contributors
	Support from NAG
	Index

	Chapters of the Library
	A00 - Library Identification
	A00 Chapter Contents
	A00 Chapter Introduction

	A02 - Complex Arithmetic
	A02 Chapter Contents
	A02 Chapter Introduction

	C02 - Zeros of Polynomials
	C02 Chapter Contents
	C02 Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	C05 Chapter Contents
	C05 Chapter Introduction

	C06 - Summation of Series
	C06 Chapter Contents
	C06 Chapter Introduction

	C09 - Wavelet Transforms
	C09 Chapter Contents
	C09 Chapter Introduction

	D01 - Quadrature
	D01 Chapter Contents
	D01 Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 Chapter Contents
	D02 Chapter Introduction
	D02M-N Sub-chapter Introduction

	D03 - Partial Differential Equations
	D03 Chapter Contents
	D03 Chapter Introduction

	D04 - Numerical Differentiation
	D04 Chapter Contents
	D04 Chapter Introduction

	D05 - Integral Equations
	D05 Chapter Contents
	D05 Chapter Introduction

	D06 - Mesh Generation
	D06 Chapter Contents
	D06 Chapter Introduction

	E01 - Interpolation
	E01 Chapter Contents
	E01 Chapter Introduction

	E02 - Curve and Surface Fitting
	E02 Chapter Contents
	E02 Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	E04 Chapter Contents
	E04 Chapter Introduction

	E05 - Global Optimization of a Function
	E05 Chapter Contents
	E05 Chapter Introduction

	F - Linear Algebra
	F Chapter Contents
	F Chapter Introduction

	F01 - Matrix Operations, Including Inversion
	F01 Chapter Contents
	F01 Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	F02 Chapter Contents
	F02 Chapter Introduction

	F03 - Determinants
	F03 Chapter Contents
	F03 Chapter Introduction

	F04 - Simultaneous Linear Equations
	F04 Chapter Contents
	F04 Chapter Introduction

	F05 - Orthogonalization
	F05 Chapter Contents
	F05 Chapter Introduction

	F06 - Linear Algebra Support Routines
	F06 Chapter Contents
	F06 Chapter Introduction

	F07 - Linear Equations (LAPACK)
	F07 Chapter Contents
	F07 Chapter Introduction

	F08 - Least Squares and Eigenvalue Problems (LAPACK)
	F08 Chapter Contents
	F08 Chapter Introduction

	F11 - Large Scale Linear Systems
	F11 Chapter Contents
	F11 Chapter Introduction

	F12 - Large Scale Eigenproblems
	F12 Chapter Contents
	F12 Chapter Introduction

	F16 - Further Linear Algebra Support Routines
	F16 Chapter Contents
	F16 Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	G01 Chapter Contents
	G01 Chapter Introduction

	G02 - Correlation and Regression Analysis
	G02 Chapter Contents
	G02 Chapter Introduction

	G03 - Multivariate Methods
	G03 Chapter Contents
	G03 Chapter Introduction

	G04 - Analysis of Variance
	G04 Chapter Contents
	G04 Chapter Introduction

	G05 - Random Number Generators
	G05 Chapter Contents
	G05 Chapter Introduction

	G07 - Univariate Estimation
	G07 Chapter Contents
	G07 Chapter Introduction

	G08 - Nonparametric Statistics
	G08 Chapter Contents
	G08 Chapter Introduction

	G10 - Smoothing in Statistics
	G10 Chapter Contents
	G10 Chapter Introduction

	G11 - Contingency Table Analysis
	G11 Chapter Contents
	G11 Chapter Introduction

	G12 - Survival Analysis
	G12 Chapter Contents
	G12 Chapter Introduction

	G13 - Time Series Analysis
	G13 Chapter Contents
	G13 Chapter Introduction

	G22 - Linear Model Specification
	G22 Chapter Contents
	G22 Chapter Introduction

	H - Operations Research
	H Chapter Contents
	H Chapter Introduction

	M01 - Sorting and Searching
	M01 Chapter Contents
	M01 Chapter Introduction

	S - Approximations of Special Functions
	S Chapter Contents
	S Chapter Introduction

	X01 - Mathematical Constants
	X01 Chapter Contents
	X01 Chapter Introduction

	X02 - Machine Constants
	X02 Chapter Contents
	X02 Chapter Introduction

	X03 - Inner Products
	X03 Chapter Contents
	X03 Chapter Introduction

	X04 - Input/Output Utilities
	X04 Chapter Contents
	X04 Chapter Introduction

	X05 - Date and Time Utilities
	X05 Chapter Contents
	X05 Chapter Introduction

	X06 - OpenMP Utilities
	X06 Chapter Contents
	X06 Chapter Introduction

	X07 - IEEE Arithmetic
	X07 Chapter Contents
	X07 Chapter Introduction

