
NAG Library Routine Document

F02EKF

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms
and other implementation-dependent details.

Note: this routine uses optional parameters to define choices in the problem specification. If you wish
to use default settings for all of the optional parameters, you need only read Sections 1 to 10 of this
document. If, however, you wish to reset some or all of the settings this must be done by calling the
option setting routine F12ADF from the user-supplied subroutine OPTION. Please refer to Section 11
for a detailed description of the specification of the optional parameters.

1 Purpose

F02EKF computes selected eigenvalues and eigenvectors of a real sparse general matrix.

2 Specification

SUBROUTINE F02EKF (N, NNZ, A, ICOLZP, IROWIX, NEV, NCV, SIGMA, MONIT,
OPTION, NCONV, W, V, LDV, RESID, IUSER, RUSER, IFAIL)

&

INTEGER N, NNZ, ICOLZP(N+1), IROWIX(NNZ), NEV, NCV,
NCONV, LDV, IUSER(*), IFAIL

&

REAL (KIND=nag_wp) A(NNZ), SIGMA, V(LDV,*), RESID(NEV+1), RUSER(*)
COMPLEX (KIND=nag_wp) W(NCV)
EXTERNAL MONIT, OPTION

3 Description

F02EKF computes selected eigenvalues and the corresponding right eigenvectors of a real sparse
general matrix A:

Awi ¼ �iwi:

A specified number, nev, of eigenvalues �i, or the shifted inverses �i ¼ 1= �i � �ð Þ, may be selected
either by largest or smallest modulus, largest or smallest real part, or, largest or smallest imaginary part.
Convergence is generally faster when selecting larger eigenvalues, smaller eigenvalues can always be
selected by choosing a zero inverse shift (� ¼ 0:0). When eigenvalues closest to a given real value are
required then the shifted inverses of largest magnitude should be selected with shift equal to the
required real value.

Note that even though A is real, �i and wi may be complex. If wi is an eigenvector corresponding to a
complex eigenvalue �i, then the complex conjugate vector �wi is the eigenvector corresponding to the
complex conjugate eigenvalue ��i. The eigenvalues in a complex conjugate pair �i and ��i are either both
selected or both not selected.

The sparse matrix A is stored in compressed column storage (CCS) format. See Section 2.1.3 in the F11
Chapter Introduction.

F02EKF uses an implicitly restarted Arnoldi iterative method to converge approximations to a set of
required eigenvalues and corresponding eigenvectors. Further algorithmic information is given in
Section 9 while a fuller discussion is provided in the F12 Chapter Introduction. If shifts are to be
performed then operations using shifted inverse matrices are performed using a direct sparse solver;
further information on the solver used is provided in the F11 Chapter Introduction.
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4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University
Press, Baltimore

Lehoucq R B, Sorensen D C and Yang C (1998) ARPACK Users' Guide: Solution of Large-scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods SIAM, Philidelphia

5 Arguments

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N � 0.

2: NNZ – INTEGER Input

On entry: the dimension of the array A and The number of nonzero elements of the matrix A
and, if a nonzero shifted inverse is to be applied, all diagonal elements. Each nonzero is counted
once in the latter case.

Constraint: 0 � NNZ � N2.

3: AðNNZÞ – REAL (KIND=nag_wp) array Input/Output

On entry: the array of nonzero elements (and diagonal elements if a nonzero inverse shift is to be
applied) of the n by n general matrix A.

On exit: if a nonzero shifted inverse is to be applied then the diagonal elements of A have the
shift value, as supplied in SIGMA, subtracted.

4: ICOLZPðNþ 1Þ – INTEGER array Input

On entry: ICOLZPðiÞ contains the index in A of the start of column i, for i ¼ 1; 2; . . . ; n;
ICOLZPðNþ 1Þ must contain the value NNZþ 1. Thus the number of nonzero elements in
column i of A is ICOLZPðiþ 1Þ � ICOLZPðiÞ; when shifts are applied this includes diagonal
elements irrespective of value. See Section 2.1.3 in the F11 Chapter Introduction.

5: IROWIXðNNZÞ – INTEGER array Input

On entry: IROWIXðiÞ contains the row index for each entry in A. See Section 2.1.3 in the F11
Chapter Introduction.

6: NEV – INTEGER Input

On entry: the number of eigenvalues to be computed.

Constraint: 0 < NEV < N� 1.

7: NCV – INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which F02EKF is
called. The number of Arnoldi basis vectors to use during the computation.

At present there is no a priori analysis to guide the selection of NCV relative to NEV. However,
it is recommended that NCV � 2� NEVþ 1. If many problems of the same type are to be
solved, you should experiment with increasing NCV while keeping NEV fixed for a given test
problem. This will usually decrease the required number of matrix-vector operations but it also
increases the work and storage required to maintain the orthogonal basis vectors. The optimal
‘cross-over’ with respect to CPU time is problem dependent and must be determined empirically.

Constraint: NEVþ 1 < NCV � N.
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8: SIGMA – REAL (KIND=nag_wp) Input

On entry: if the Shifted Inverse Real mode has been selected then SIGMA contains the real shift
used; otherwise SIGMA is not referenced. This mode can be selected by setting the appropriate
options in the user-supplied subroutine OPTION.

9: MONIT – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

MONIT is used to monitor the progress of F02EKF. MONIT may be the dummy subroutine
F02EKZ if no monitoring is actually required. (F02EKZ is included in the NAG Library.)
MONIT is called after the solution of each eigenvalue sub-problem and also just prior to return
from F02EKF.

The specification of MONIT is:

SUBROUTINE MONIT (NCV, NITER, NCONV, W, RZEST, ISTAT, IUSER,
RUSER)

&

INTEGER NCV, NITER, NCONV, ISTAT, IUSER(*)
REAL (KIND=nag_wp) RZEST(NCV), RUSER(*)
COMPLEX (KIND=nag_wp) W(NCV)

1: NCV – INTEGER Input

On entry: the dimension of the arrays W and RZEST. The number of Arnoldi basis
vectors used during the computation.

2: NITER – INTEGER Input

On entry: the number of the current Arnoldi iteration.

3: NCONV – INTEGER Input

On entry: the number of converged eigenvalues so far.

4: WðNCVÞ – COMPLEX (KIND=nag_wp) array Input

On entry: the first NCONV elements of W contain the converged approximate
eigenvalues.

5: RZESTðNCVÞ – REAL (KIND=nag_wp) array Input

On entry: the first NCONV elements of RZEST contain the Ritz estimates (error
bounds) on the converged approximate eigenvalues.

6: ISTAT – INTEGER Input/Output

On entry: set to zero.

On exit: if set to a nonzero value F02EKF returns immediately with IFAIL ¼ 9.

7: IUSERð�Þ – INTEGER array User Workspace
8: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

MONIT is called with the arguments IUSER and RUSER as supplied to F02EKF. You
should use the arrays IUSER and RUSER to supply information to MONIT.

MONIT must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02EKF is called. Arguments denoted as Input must not be changed by this
procedure.

10: OPTION – SUBROUTINE, supplied by the NAG Library or the user. External Procedure

You can supply non-default options to the Arnoldi eigensolver by repeated calls to F12ADF from
within OPTION. (Please note that it is only necessary to call F12ADF; no call to F12AAF is
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required from within OPTION.) For example, you can set the mode to Shifted Inverse Real, you
can increase the Iteration Limit beyond its default and you can print varying levels of detail on
the iterative process using Print Level.

If only the default options (including that the eigenvalues of largest magnitude are sought) are to
be used then OPTION may be the dummy subroutine F02EKY (F02EKY is included in the NAG
Library). See Section 10 for an example of using OPTION to set some non-default options.

The specification of OPTION is:

SUBROUTINE OPTION (ICOMM, COMM, ISTAT, IUSER, RUSER)

INTEGER ICOMM(*), ISTAT, IUSER(*)
REAL (KIND=nag_wp) COMM(*), RUSER(*)

1: ICOMMð�Þ – INTEGER array Communication Array

On entry: contains details of the default option set. This array must be passed as
argument ICOMM in any call to F12ADF.

On exit: contains data on the current options set which may be altered from the default
set via calls to F12ADF.

2: COMMð�Þ – REAL (KIND=nag_wp) array Communication Array

On entry: contains details of the default option set. This array must be passed as
argument COMM in any call to F12ADF.

On exit: contains data on the current options set which may be altered from the default
set via calls to F12ADF.

3: ISTAT – INTEGER Input/Output

On entry: set to zero.

On exit: if set to a nonzero value F02EKF returns immediately with IFAIL ¼ 10.

4: IUSERð�Þ – INTEGER array User Workspace
5: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

OPTION is called with the arguments IUSER and RUSER as supplied to F02EKF. You
should use the arrays IUSER and RUSER to supply information to OPTION.

OPTION must either be a module subprogram USEd by, or declared as EXTERNAL in, the (sub)
program from which F02EKF is called.

11: NCONV – INTEGER Output

On exit: the number of converged approximations to the selected eigenvalues. On successful exit,
this will normally be either NEV or NEVþ 1 depending on the number of complex conjugate
pairs of eigenvalues returned.

12: WðNCVÞ – COMPLEX (KIND=nag_wp) array Output

On exit: the first NCONV elements contain the converged approximations to the selected
eigenvalues. Since complex conjugate pairs of eigenvalues appear together, it is possible (given
an odd number of converged real eigenvalues) for F02EKF to return one more eigenvalue than
requested.

13: VðLDV; �Þ – REAL (KIND=nag_wp) array Output

Note: the second dimension of the array V must be at least NCV.

On exit: contains the eigenvectors associated with the eigenvalue �i, for i ¼ 1; 2; . . . ;NCONV
(stored in W). For a real eigenvalue, �j, the corresponding eigenvector is real and is stored in
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Vði; jÞ, for i ¼ 1; 2; . . . ; n. For complex conjugate pairs of eigenvalues, wjþ1 ¼ �wj, the real and
imaginary parts of the corresponding eigenvectors are stored, respectively, in Vði; jÞ and Vði; jÞ,
for i ¼ 1; 2; . . . ; n. The imaginary parts stored are for the first of the conjugate pair of
eigenvectors; the other eigenvector in the pair is obtained by negating these imaginary parts.

14: LDV – INTEGER Input

On entry: the first dimension of the array V as declared in the (sub)program from which F02EKF
is called.

Constraint: LDV � N.

15: RESIDðNEVþ 1Þ – REAL (KIND=nag_wp) array Output

On exit: the residual Awi � �iwik k2 for the estimates to the eigenpair �i and wi is returned in
RESIDðiÞ, for i ¼ 1; 2; . . . ;NCONV.

16: IUSERð�Þ – INTEGER array User Workspace

IUSER is not used by F02EKF, but is passed directly to MONIT and OPTION and should be
used to pass information to these routines.

17: RUSERð�Þ – REAL (KIND=nag_wp) array User Workspace

RUSER is not used by F02EKF, but is passed directly to MONIT and OPTION and should be
used to pass information to these routines.

18: IFAIL – INTEGER Input/Output

On entry: IFAIL must be set to 0, �1 or 1. If you are unfamiliar with this argument you should
refer to Section 3.4 in How to Use the NAG Library and its Documentation for details.

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then
the value 1 is recommended. Otherwise, if you are not familiar with this argument, the
recommended value is 0. When the value �1 or 1 is used it is essential to test the value of
IFAIL on exit.

On exit: IFAIL ¼ 0 unless the routine detects an error or a warning has been flagged (see
Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ 1

On entry, N ¼ valueh i.
Constraint: N > 0.

IFAIL ¼ 2

On entry, NNZ ¼ valueh i.
Constraint: NNZ > 0.

On entry, NNZ ¼ valueh i and N ¼ valueh i.
Constraint: NNZ � N� N.

IFAIL ¼ 3

On entry, in shifted inverse mode, the jth diagonal element of A is not defined, for j ¼ valueh i.
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IFAIL ¼ 4

On entry, for i ¼ valueh i, ICOLZPðiÞ ¼ valueh i and ICOLZPðiþ 1Þ ¼ valueh i.
Constraint: ICOLZPðiÞ < ICOLZPðiþ 1Þ.
On entry, ICOLZPð1Þ ¼ valueh i.
Constraint: ICOLZPð1Þ ¼ 1.

On entry, ICOLZPðNþ 1Þ ¼ valueh i and NNZ ¼ valueh i.
Constraint: ICOLZPðNþ 1Þ ¼ NNZþ 1.

IFAIL ¼ 5

On entry, in specification of column valueh i, and for j ¼ valueh i, IROWIXðjÞ ¼ valueh i and
IROWIXðjþ 1Þ ¼ valueh i.
Constraint: IROWIXðjÞ < IROWIXðjþ 1Þ.

IFAIL ¼ 6

On entry, NEV ¼ valueh i.
Constraint: NEV > 0.

IFAIL ¼ 7

On entry, NCV ¼ valueh i and N ¼ valueh i.
Constraint: NCV � N.

On entry, NCV ¼ valueh i and NEV ¼ valueh i.
Constraint: NCV > NEVþ 1.

IFAIL ¼ 8

On entry, the matrix A� �� I is nearly numerically singular and could not be inverted. Try
perturbing the value of �. Norm of matrix ¼ valueh i, Reciprocal condition number ¼ valueh i.
On entry, the matrix A� �� I is numerically singular and could not be inverted. Try perturbing
the value of �.

IFAIL ¼ 9

User requested termination in MONIT, ISTAT ¼ valueh i.

IFAIL ¼ 10

User requested termination in OPTION, ISTAT ¼ valueh i.

IFAIL ¼ 14

On entry, LDV ¼ valueh i and N ¼ valueh i.
Constraint: LDV � N.

IFAIL ¼ 21

The maximum number of iterations � 0, the optional parameter Iteration Limit has been set to
valueh i.

IFAIL ¼ 22

An internal call to F12ABF returned with IFAIL ¼ 2.
This error should not occur. Please contact NAG.

IFAIL ¼ 23

An internal call to F12ABF returned with IFAIL ¼ 3.
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IFAIL ¼ 24

The maximum number of iterations has been reached.
The maximum number of iterations ¼ valueh i.
The number of converged eigenvalues ¼ valueh i.
See the routine document for further details.

IFAIL ¼ 25

No shifts could be applied during a cycle of the implicitly restarted Arnoldi iteration.

IFAIL ¼ 26

Could not build an Arnoldi factorization. The size of the current Arnoldi factorization ¼ valueh i.

IFAIL ¼ 27

Error in internal call to compute eigenvalues and corresponding error bounds of the current upper
Hessenberg matrix.
Please contact NAG.

IFAIL ¼ 32

An internal call to F12ACF returned with IFAIL ¼ 2.

IFAIL ¼ 33

The number of eigenvalues found to sufficient accuracy is zero.

IFAIL ¼ 34

Internal inconsistency in the number of converged Ritz values. Number counted ¼ valueh i,
number expected ¼ valueh i.

IFAIL ¼ 35

During calculation of a real Schur form, there was a failure to compute valueh i eigenvalues in a
total of valueh i iterations.

IFAIL ¼ 36

The computed Schur form could not be reordered by an internal call.
This routine returned with IFAIL ¼ valueh i.
Please contact NAG.

IFAIL ¼ 37

In calculating eigenvectors, an internal call returned with an error.
Please contact NAG.

IFAIL ¼ �99

An unexpected error has been triggered by this routine. Please contact NAG.

See Section 3.9 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �399

Your licence key may have expired or may not have been installed correctly.

See Section 3.8 in How to Use the NAG Library and its Documentation for further information.

IFAIL ¼ �999

Dynamic memory allocation failed.

See Section 3.7 in How to Use the NAG Library and its Documentation for further information.
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7 Accuracy

The relative accuracy of a Ritz value (eigenvalue approximation), �, is considered acceptable if its Ritz
estimate � Tolerance� �. The default value for Tolerance is the machine precision given by X02AJF.
The Ritz estimates are available via the MONIT subroutine at each iteration in the Arnoldi process, or
can be printed by setting option Print Level to a positive value.

8 Parallelism and Performance

F02EKF is threaded by NAG for parallel execution in multithreaded implementations of the NAG
Library.

F02EKF makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor
library used by this implementation. Consult the documentation for the vendor library for further
information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the
OpenMP environment used within this routine. Please also consult the Users' Note for your
implementation for any additional implementation-specific information.

9 Further Comments

F02EKF calls routines based on the ARPACK suite in Chapter F12. These routines use an implicitly
restarted Arnoldi iterative method to converge to approximations to a set of required eigenvalues (see
the F12 Chapter Introduction).

In the default Regular mode, only matrix-vector multiplications are performed using the sparse matrix
A during the Arnoldi process. Each iteration is therefore cheap computationally, relative to the
alternative, Shifted Inverse Real, mode described below. It is most efficient (i.e., the total number of
iterations required is small) when the eigenvalues of largest magnitude are sought and these are distinct.

Although there is an option for returning the smallest eigenvalues using this mode (see Smallest
Magnitude option), the number of iterations required for convergence will be far greater or the method
may not converge at all. However, where convergence is achieved, Regular mode may still prove to be
the most efficient since no inversions are required. Where smallest eigenvalues are sought and Regular
mode is not suitable, or eigenvalues close to a given real value are sought, the Shifted Inverse Real
mode should be used.

If the Shifted Inverse Real mode is used (via a call to F12ADF in OPTION) then the matrix A� �I is
used in linear system solves by the Arnoldi process. This is first factorized internally using the direct
LU factorization routine F11MEF. The condition number of A� �I is then calculated by a call to
F11MGF. If the condition number is too big then the matrix is considered to be nearly singular, i.e., � is
an approximate eigenvalue of A, and the routine exits with an error. In this situation it is normally
sufficient to perturb � by a small amount and call F02EKF again. After successful factorization,
subsequent solves are performed by calls to F11MFF.

Finally, F02EKF transforms the eigenvectors. Each eigenvector w (real or complex) is normalized so
that wk k2 ¼ 1, and the element of largest absolute value is real.

The monitoring routine MONIT provides some basic information on the convergence of the Arnoldi
iterations. Much greater levels of detail on the Arnoldi process are available via option Print Level. If
this is set to a positive value then information will be printed, by default, to standard output. The
Monitoring option may be used to select a monitoring file by setting the option to a file identification
(unit) number associated with Monitoring (see X04ACF).
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10 Example

This example computes the four eigenvalues of the matrix A which lie closest to the value � ¼ 5:5 on
the real line, and their corresponding eigenvectors, where A is the tridiagonal matrix with elements

aij ¼
2þ i; j ¼ i

3; j ¼ i� 1
�1þ �= 2nþ 2ð Þ; j ¼ iþ 1 with � ¼ 10:0:

8<
:

10.1 Program Text

! F02EKF Example Program Text
! Mark 26 Release. NAG Copyright 2016.

Module f02ekfe_mod

! F02EKF Example Program Module:
! Parameters and User-defined Routines

! .. Use Statements ..
Use nag_library, Only: nag_wp

! .. Implicit None Statement ..
Implicit None

! .. Accessibility Statements ..
Private
Public :: mymonit, myoption

! .. Parameters ..
Integer, Parameter, Public :: nin = 5, nout = 6

Contains
Subroutine myoption(icomm,comm,istat,iuser,ruser)

! .. Use Statements ..
Use nag_library, Only: f12adf

! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: istat

! .. Array Arguments ..
Real (Kind=nag_wp), Intent (Inout) :: comm(*), ruser(*)
Integer, Intent (Inout) :: icomm(*), iuser(*)

! .. Local Scalars ..
Integer :: ifail1
Character (25) :: rec

! .. Intrinsic Procedures ..
Intrinsic :: max

! .. Executable Statements ..
Continue

istat = 0

If (iuser(1)>0) Then
Write (rec,99999) ’Print Level=’, iuser(1)
ifail1 = 1
Call f12adf(rec,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
If (iuser(2)>100) Then

Write (rec,99999) ’Iteration Limit=’, iuser(2)
ifail1 = 1
Call f12adf(rec,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
If (iuser(3)>0) Then

ifail1 = 1
Call f12adf(’Shifted Inverse Real’,icomm,comm,ifail1)
istat = max(istat,ifail1)

End If
99999 Format (A,I5)

End Subroutine myoption
Subroutine mymonit(ncv,niter,nconv,w,rzest,istat,iuser,ruser)
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! .. Implicit None Statement ..
Implicit None

! .. Scalar Arguments ..
Integer, Intent (Inout) :: istat
Integer, Intent (In) :: nconv, ncv, niter

! .. Array Arguments ..
Complex (Kind=nag_wp), Intent (In) :: w(ncv)
Real (Kind=nag_wp), Intent (Inout) :: ruser(*)
Real (Kind=nag_wp), Intent (In) :: rzest(ncv)
Integer, Intent (Inout) :: iuser(*)

! .. Local Scalars ..
Integer :: i

! .. Executable Statements ..
Continue

If (iuser(4)>0) Then
If (niter==1 .And. iuser(3)>0) Then

Write (nout,99999) ’ Arnoldi basis vectors used:’, ncv
Write (nout,*) &

’ The following Ritz values (mu) are related to the’
Write (nout,*) &

’ true eigenvalues (lambda) by lambda = sigma + 1/mu’
End If
Write (nout,*)
Write (nout,99999) ’ Iteration number ’, niter
Write (nout,99998) ’ Ritz values converged so far (’, nconv, &

’) and their Ritz estimates:’
Do i = 1, nconv

Write (nout,99997) i, w(i), rzest(i)
End Do
Write (nout,*) ’ Next (unconverged) Ritz value:’
Write (nout,99996) nconv + 1, w(nconv+1)

End If
istat = 0

99999 Format (1X,A,I4)
99998 Format (1X,A,I4,A)
99997 Format (1X,1X,I4,1X,’(’,E13.5,’,’,E13.5,’)’,1X,E13.5)
99996 Format (1X,1X,I4,1X,’(’,E13.5,’,’,E13.5,’)’)

End Subroutine mymonit
End Module f02ekfe_mod
Program f02ekfe

! Example problem for F02EKF.

! .. Use Statements ..
Use nag_library, Only: f02ekf, nag_wp, x02ajf
Use f02ekfe_mod, Only: mymonit, myoption, nin, nout

! .. Implicit None Statement ..
Implicit None

! .. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: three = 3.0_nag_wp
Real (Kind=nag_wp), Parameter :: two = 2.0_nag_wp

! .. Local Scalars ..
Real (Kind=nag_wp) :: h, rho, s, sigma
Integer :: i, ifail, imon, k, ldv, maxit, mode, &

n, nconv, ncv, nev, nnz, nx, prtlvl
! .. Local Arrays ..

Complex (Kind=nag_wp), Allocatable :: w(:)
Real (Kind=nag_wp), Allocatable :: a(:), resid(:), v(:,:)
Real (Kind=nag_wp) :: ruser(1)
Integer, Allocatable :: icolzp(:), irowix(:)
Integer :: iuser(4)

! .. Intrinsic Procedures ..
Intrinsic :: real

! .. Executable Statements ..
Write (nout,*) ’F02EKF Example Program Results’
Write (nout,*)

! Skip heading in data file
Read (nin,*)
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Read (nin,*) nx
Read (nin,*) nev
Read (nin,*) ncv
Read (nin,*) rho
Read (nin,*) sigma

n = nx*nx
nnz = 3*n - 2
ldv = n

Allocate (resid(ncv),a(nnz),icolzp(n+1),irowix(nnz),w(ncv),v(ldv,ncv))

! Construct A in compressed column storage (CCS) format where:
! A_{i,i} = 2 + i
! A_{i+1,i) = 3
! A_{i,i+1} = rho/(2n+2) - 1

h = one/real(n+1,kind=nag_wp)
s = rho*h/two - one

a(1) = two + one
a(2) = three
icolzp(1) = 1
irowix(1) = 1
irowix(2) = 2
k = 3
Do i = 2, n - 1

icolzp(i) = k
irowix(k) = i - 1
irowix(k+1) = i
irowix(k+2) = i + 1
a(k) = s
a(k+1) = two + real(i,kind=nag_wp)
a(k+2) = three
k = k + 3

End Do
icolzp(n) = k
icolzp(n+1) = k + 2
irowix(k) = n - 1
irowix(k+1) = n
a(k) = s
a(k+1) = two + real(n,kind=nag_wp)

! Set some options via iuser array and routine argument OPTION.
! iuser(1) = print level, iuser(2) = iteration limit,
! iuser(3)>0 means shifted-invert mode
! iuser(4)>0 means print monitoring info

Read (nin,*) prtlvl
Read (nin,*) maxit
Read (nin,*) mode
Read (nin,*) imon

If (prtlvl>0) Then
imon = 0

End If

iuser(1) = prtlvl
iuser(2) = maxit
iuser(3) = mode
iuser(4) = imon

! ifail: behaviour on error exit
! =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft

ifail = 0
Call f02ekf(n,nnz,a,icolzp,irowix,nev,ncv,sigma,mymonit,myoption,nconv, &

w,v,ldv,resid,iuser,ruser,ifail)

Write (nout,99999) nconv, sigma
Do i = 1, nconv

If (resid(i)>real(100*n,kind=nag_wp)*x02ajf()) Then
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Write (nout,99998) i, w(i), resid(i)
Else

Write (nout,99998) i, w(i)
End If

End Do

99999 Format (1X,/,’ The ’,I4,’ Ritz values of closest to ’,E13.5,’ are:’,/)
99998 Format (1X,I8,5X,’( ’,E13.5,’ , ’,E13.5,’ )’,5X,E13.5)

End Program f02ekfe

10.2 Program Data

F02EKF Example Program Data
10 : nx, matrix order n = nx*nx
4 : nev, number of eigenvalues requested
20 : ncv, size of subspace
10.0 : rho, parameter for determining A
5.5 : sigma, shift (want eigenvalues close to sigma)
0 : print level
500 : maximum number of itrerations
1 : mode (0 = regular, 1 = shifted inverse)
1 : imon (0 = no monitoring, 1 = monitoring on)

10.3 Program Results

F02EKF Example Program Results

Arnoldi basis vectors used: 20
The following Ritz values (mu) are related to the
true eigenvalues (lambda) by lambda = sigma + 1/mu

Iteration number 1
Ritz values converged so far ( 2) and their Ritz estimates:

1 ( 0.56992E+00, 0.88081E+00) 0.13008E-19
2 ( 0.56992E+00, -0.88081E+00) 0.13008E-19

Next (unconverged) Ritz value:
3 ( 0.60777E+00, 0.00000E+00)

The 5 Ritz values of closest to 0.55000E+01 are:

1 ( 0.60178E+01 , -0.80028E+00 )
2 ( 0.60178E+01 , 0.80028E+00 )
3 ( 0.43431E+01 , -0.19456E+01 )
4 ( 0.43431E+01 , 0.19456E+01 )
5 ( 0.71453E+01 , 0.00000E+00 )

11 Optional Parameters

Internally F02EKF calls routines from the suite F12AAF, F12ABF, F12ACF, F12ADF and F12AEF.
Several optional parameters for these computational routines define choices in the problem specification
or the algorithm logic. In order to reduce the number of formal arguments of F02EKF these optional
parameters are also used here and have associated default values that are usually appropriate. Therefore,
you need only specify those optional parameters whose values are to be different from their default
values.

Optional parameters may be specified via the user-supplied subroutine OPTION in the call to F02EKF.
OPTION must be coded such that one call to F12ADF is necessary to set each optional parameter. All
optional parameters you do not specify are set to their default values.

The remainder of this section can be skipped if you wish to use the default values for all optional
parameters.

The following is a list of the optional parameters available. A full description of each optional
parameter is provided in Section 11.1.

Advisory

Defaults
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Iteration Limit

Largest Imaginary

Largest Magnitude

Largest Real

List

Monitoring

Nolist

Print Level

Regular

Shifted Inverse Real

Smallest Imaginary

Smallest Magnitude

Smallest Real

Tolerance

11.1 Description of the Optional Parameters

For each option, we give a summary line, a description of the optional parameter and details of
constraints.

The summary line contains:

the keywords, where the minimum abbreviation of each keyword is underlined;

a parameter value, where the letters a, i and r denote options that take character, integer and real
values respectively;

the default value, where the symbol � is a generic notation for machine precision (see X02AJF).

Keywords and character values are case and white space insensitive.

Advisory i Default ¼ 0

If the optional parameter List is set then optional parameter specifications are listed in a List file by
setting the option to a file identification (unit) number associated with Advisory messages (see
X04ABF and X04ACF).

Defaults

This special keyword may be used to reset all optional parameters to their default values.

Iteration Limit i Default ¼ 300

The limit on the number of Arnoldi iterations that can be performed before F02EKF exits with
IFAIL 6¼ 0.

Largest Magnitude Default
Largest Imaginary
Largest Real
Smallest Imaginary
Smallest Magnitude
Smallest Real

The Arnoldi iterative method converges on a number of eigenvalues with given properties. The default
is to compute the eigenvalues of largest magnitude using Largest Magnitude. Alternatively,
eigenvalues may be chosen which have Largest Real part, Largest Imaginary part, Smallest
Magnitude, Smallest Real part or Smallest Imaginary part.

Note that these options select the eigenvalue properties for eigenvalues of OP the linear operator
determined by the computational mode and problem type.
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Nolist Default
List

Normally each optional parameter specification is not printed to the advisory channel as it is supplied.
Optional parameter List may be used to enable printing and optional parameter Nolist may be used to
suppress the printing.

Monitoring i Default ¼ �1

If i > 0, monitoring information is output to channel number i during the solution of each problem; this
may be the same as the Advisory channel number. The type of information produced is dependent on
the value of Print Level, see the description of the optional parameter Print Level for details of the
information produced. Please see X04ACF to associate a file with a given channel number.

Print Level i Default ¼ 0

This controls the amount of printing produced by F02EKF as follows.

¼ 0 No output except error messages.

> 0 The set of selected options.

¼ 2 Problem and timing statistics when all calls to F12ABF have been completed.

� 5 A single line of summary output at each Arnoldi iteration.

� 10 If Monitoring > 0, then at each iteration, the length and additional steps of the current
Arnoldi factorization and the number of converged Ritz values; during re-orthogonalization,
the norm of initial/restarted starting vector.

� 20 Problem and timing statistics on final exit from F12ABF. If Monitoring > 0, then at each
iteration, the number of shifts being applied, the eigenvalues and estimates of the Hessenberg
matrix H, the size of the Arnoldi basis, the wanted Ritz values and associated Ritz estimates
and the shifts applied; vector norms prior to and following re-orthogonalization.

� 30 If Monitoring > 0, then on final iteration, the norm of the residual; when computing the Schur
form, the eigenvalues and Ritz estimates both before and after sorting; for each iteration, the
norm of residual for compressed factorization and the compressed upper Hessenberg matrix
H; during re-orthogonalization, the initial/restarted starting vector; during the Arnoldi iteration
loop, a restart is flagged and the number of the residual requiring iterative refinement; while
applying shifts, the indices of the shifts being applied.

� 40 If Monitoring > 0, then during the Arnoldi iteration loop, the Arnoldi vector number and
norm of the current residual; while applying shifts, key measures of progress and the order of
H; while computing eigenvalues of H, the last rows of the Schur and eigenvector matrices;
when computing implicit shifts, the eigenvalues and Ritz estimates of H.

� 50 If Monitoring > 0, then during Arnoldi iteration loop: norms of key components and the
active column of H, norms of residuals during iterative refinement, the final upper Hessenberg
matrix H; while applying shifts: number of shifts, shift values, block indices, updated matrix
H; while computing eigenvalues of H: the matrix H, the computed eigenvalues and Ritz
estimates.

Regular Default
Shifted Inverse Real

These options define the computational mode which in turn defines the form of operation OP xð Þ to be
performed.

Given a standard eigenvalue problem in the form Ax ¼ �x then the following modes are available with
the appropriate operator OP xð Þ.

Regular OP ¼ A

Shifted Inverse Real OP ¼ A� �Ið Þ�1 where � is real
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Tolerance r Default ¼ �

An approximate eigenvalue has deemed to have converged when the corresponding Ritz estimate is
within Tolerance relative to the magnitude of the eigenvalue.
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