NAG Library Routine Document F07PHF (DSPRFS)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F07PHF (DSPRFS) returns error bounds for the solution of a real symmetric indefinite system of linear equations with multiple right-hand sides, $A X=B$, using packed storage. It improves the solution by iterative refinement, in order to reduce the backward error as much as possible.

2 Specification

```
SUBROUTINE FO7PHF (UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR,
    BERR, WORK, IWORK, INFO)
INTEGER N, NRHS, IPIV(*), LDB, LDX, IWORK(N), INFO
REAL (KIND=nag_wp) AP (*), AFP (*), B (LDB,*), X(LDX,*), FERR(NRHS),
CHARACTER(1) UPLO
```

The routine may be called by its LAPACK name dsprfs.

3 Description

F07PHF (DSPRFS) returns the backward errors and estimated bounds on the forward errors for the solution of a real symmetric indefinite system of linear equations with multiple right-hand sides $A X=B$, using packed storage. The routine handles each right-hand side vector (stored as a column of the matrix B) independently, so we describe the function of F07PHF (DSPRFS) in terms of a single right-hand side b and solution x.
Given a computed solution x, the routine computes the component-wise backward error β. This is the size of the smallest relative perturbation in each element of A and b such that x is the exact solution of a perturbed system

$$
\begin{aligned}
& (A+\delta A) x=b+\delta b \\
& \text { and } \quad\left|\delta b_{i}\right| \leq \beta\left|b_{i}\right| .
\end{aligned}
$$

Then the routine estimates a bound for the component-wise forward error in the computed solution, defined by:

$$
\max _{i}\left|x_{i}-\hat{x}_{i}\right| / \max _{i}\left|x_{i}\right|
$$

where \hat{x} is the true solution.
For details of the method, see the F07 Chapter Introduction.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press, Baltimore

5 Arguments

1: UPLO - CHARACTER(1)
Input
On entry: specifies whether the upper or lower triangular part of A is stored and how A is to be factorized.
UPLO = 'U'
The upper triangular part of A is stored and A is factorized as $P U D U^{\mathrm{T}} P^{\mathrm{T}}$, where U is upper triangular.
$\mathrm{UPLO}=$ 'L'
The lower triangular part of A is stored and A is factorized as $P L D L^{\mathrm{T}} P^{\mathrm{T}}$, where L is lower triangular.
Constraint: UPLO = 'U' or 'L'.
2: N - INTEGER
Input
On entry: n, the order of the matrix A.
Constraint: $\mathrm{N} \geq 0$.
3: NRHS - INTEGER
Input
On entry: r, the number of right-hand sides.
Constraint: NRHS ≥ 0.
4: $\quad \operatorname{AP}(*)-$ REAL (KIND=nag_wp) array
Input
Note: the dimension of the array AP must be at least $\max (1, \mathrm{~N} \times(\mathrm{N}+1) / 2)$.
On entry: the n by n original symmetric matrix A as supplied to F07PDF (DSPTRF).
5: $\quad \operatorname{AFP}(*)-$ REAL (KIND $=$ nag_wp) array
Input
Note: the dimension of the array AFP must be at least $\max (1, \mathrm{~N} \times(\mathrm{N}+1) / 2)$.
On entry: the factorization of A stored in packed form, as returned by F07PDF (DSPTRF).
6: $\quad \operatorname{IPIV}(*)$ - INTEGER array
Input
Note: the dimension of the array IPIV must be at least $\max (1, \mathrm{~N})$.
On entry: details of the interchanges and the block structure of D, as returned by F07PDF (DSPTRF).

7: $\quad \mathrm{B}(\mathrm{LDB}, *)-\mathrm{REAL}(\mathrm{KIND}=$ nag_wp) array
Input
Note: the second dimension of the array B must be at least max (1, NRHS).
On entry: the n by r right-hand side matrix B.
8: LDB - INTEGER
Input
On entry: the first dimension of the array B as declared in the (sub)program from which F07PHF (DSPRFS) is called.
Constraint: $\mathrm{LDB} \geq \max (1, \mathrm{~N})$.
X (LDX, *) - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array X must be at least $\max (1$, NRHS $)$.
On entry: the n by r solution matrix X, as returned by F07PEF (DSPTRS).
On exit: the improved solution matrix X.

10: LDX - INTEGER
Input
On entry: the first dimension of the array X as declared in the (sub)program from which F07PHF (DSPRFS) is called.
Constraint: $\operatorname{LDX} \geq \max (1, \mathrm{~N})$.
11: FERR(NRHS) - REAL (KIND=nag_wp) array
Output
On exit: $\operatorname{FERR}(j)$ contains an estimated error bound for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots, r$.

12: $\operatorname{BERR}($ NRHS $)-\operatorname{REAL}(\mathrm{KIND}=$ nag_wp) array
Output
On exit: $\operatorname{BERR}(j)$ contains the component-wise backward error bound β for the j th solution vector, that is, the j th column of X, for $j=1,2, \ldots, r$.

13: $\operatorname{WORK}(3 \times \mathrm{N})-$ REAL $(\mathrm{KIND}=$ nag_wp $)$ array Workspace
14: $\operatorname{IWORK}(\mathrm{N})$ - INTEGER array Workspace
15: INFO - INTEGER Output
On exit: INFO $=0$ unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

INFO <0
If INFO $=-i$, argument i had an illegal value. An explanatory message is output, and execution of the program is terminated.

7 Accuracy

The bounds returned in FERR are not rigorous, because they are estimated, not computed exactly; but in practice they almost always overestimate the actual error.

8 Parallelism and Performance

F07PHF (DSPRFS) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.

F07PHF (DSPRFS) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.
Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

9 Further Comments

For each right-hand side, computation of the backward error involves a minimum of $4 n^{2}$ floating-point operations. Each step of iterative refinement involves an additional $6 n^{2}$ operations. At most five steps of iterative refinement are performed, but usually only 1 or 2 steps are required.
Estimating the forward error involves solving a number of systems of linear equations of the form $A x=b$; the number is usually 4 or 5 and never more than 11 . Each solution involves approximately $2 n^{2}$ operations.

The complex analogues of this routine are F07PVF (ZHPRFS) for Hermitian matrices and F07QVF (ZSPRFS) for symmetric matrices.

10 Example

This example solves the system of equations $A X=B$ using iterative refinement and to compute the forward and backward error bounds, where

$$
A=\left(\begin{array}{rrrr}
2.07 & 3.87 & 4.20 & -1.15 \\
3.87 & -0.21 & 1.87 & 0.63 \\
4.20 & 1.87 & 1.15 & 2.06 \\
-1.15 & 0.63 & 2.06 & -1.81
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{rr}
-9.50 & 27.85 \\
-8.38 & 9.90 \\
-6.07 & 19.25 \\
-0.96 & 3.93
\end{array}\right)
$$

Here A is symmetric indefinite, stored in packed form, and must first be factorized by F07PDF (DSPTRF).

10.1 Program Text

Program f07phfe
! FO7PHF Example Program Text
! Mark 26 Release. NAG Copyright 2016.
! .. Use Statements ..
Use nag_library, Only: dsprfs, dsptrf, dsptrs, nag_wp, x04caf
! .. Implicit None Statement ..
Implicit None
! .. Parameters ..
Integer, Parameter $\quad:: \operatorname{nin}=5$, nout $=6$
! .. Local Scalars ..
Integer : : i, ifail, info, j, ldb, ldx, len, n, \&
Character (1)
nrhs
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable : : afp(:), ap(:), b(:,:), berr(:), \&

```
    Integer, Allocatable :: ipiv(:), iwork(:)
```

.. Executable Statements ..
Write (nout,*) 'FO7PHF Example Program Results'
Skip heading in data file
Read (nin,*)
Read (nin,*) n, nrhs
$l d b=n$
$l d x=n$
len $=n *(n+1) / 2$
Allocate (afp(len), ap(len), b(ldb, nrhs), berr(nrhs),ferr(nrhs), work(3*n), \& $x(l d x, n), i p i v(n), i w o r k(n))$
! Read A and B from data file, and copy A to $A F P$ and B to X

```
    Read (nin,*) uplo
```

 If (uplo=='U') Then
 Read (nin,*) ((ap \((i+j *(j-1) / 2), j=i, n), i=1, n)\)
 Else If (uplo=='L') Then
 Read (nin,*) ((ap \(\left.\left.\left(i+\left(2 *_{n}-j\right) *(j-1) / 2\right), j=1, i\right), i=1, n\right)\)
 End If
 Read (nin,*) (b(i, 1:nrhs), i=1,n)
 \(\operatorname{afp}(1: \operatorname{len})=\operatorname{ap}(1: l e n)\)
 \(x(1: n, 1: n r h s)=b(1: n, 1: n r h s)\)
 Factorize A in the array AFP
 The NAG name equivalent of dsptrf is f07pdf
 Call dsptrf(uplo,n,afp,ipiv,info)
 Write (nout,*)
 Flush (nout)
    ```
If (info==0) Then
    Compute solution in the array X
    The NAG name equivalent of dsptrs is f07pef
    Call dsptrs(uplo,n,nrhs,afp,ipiv,x,ldx,info)
    Improve solution, and compute backward errors and
    estimated bounds on the forward errors
    The NAG name equivalent of dsprfs is f07phf
    Call dsprfs(uplo,n,nrhs,ap,afp,ipiv,b,ldb,x,ldx,ferr,berr,work,iwork, &
        info)
    Print solution
    ifail: behaviour on error exit
            =0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
    ifail = 0
    Call x04caf('General',' ',n,nrhs,x,ldx,'Solution(s)',ifail)
    Write (nout,*)
    Write (nout,*) 'Backward errors (machine-dependent)'
    Write (nout,99999) berr(1:nrhs)
    Write (nout,*) 'Estimated forward error bounds (machine-dependent)'
    Write (nout,99999) ferr(1:nrhs)
Else
    Write (nout,*) 'The factor D is singular'
End If
99999 Format ((3X,1P,7E11.1))
    End Program f07phfe
```


10.2 Program Data

| $\begin{array}{r} \text { FO7PHF } \\ 4 \quad 2 \end{array}$ | Example | rogram Data | :Values of N and | NRHS |
| :---: | :---: | :---: | :---: | :---: |
| 'L' | | | :Value of UPLO | |
| 2.07 | | | | |
| 3.87 | -0.21 | | | |
| 4.20 | 1.87 | 1.15 | | |
| -1.15 | 0.63 | $2.06-1.81$ | : End of matrix A | |
| -9.50 | 27.85 | | | |
| -8.38 | 9.90 | | | |
| -6.07 | 19.25 | | | |
| -0.96 | 3.93 | | :End of matrix B | |

10.3 Program Results

```
FO7PHF Example Program Results
Solution(s)
\begin{tabular}{rrr} 
& 1 & 2 \\
1 & -4.0000 & 1.0000 \\
2 & -1.0000 & 4.0000 \\
3 & 2.0000 & 3.0000 \\
4 & 5.0000 & 2.0000
\end{tabular}
Backward errors (machine-dependent)
    9.9E-17 8.3E-17
Estimated forward error bounds (machine-dependent)
    2.4E-14 3.2E-14
```

