NAG Library Routine Document
 F08RAF (DORCSD)

Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of bold italicised terms and other implementation-dependent details.

1 Purpose

F08RAF (DORCSD) computes the CS decomposition of a real m by m orthogonal matrix X, partitioned into a 2 by 2 array of submatrices.

2 Specification

```
SUBROUTINE FO8RAF (JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS, M, P, Q, &
    X11, LDX11, X12, LDX12, X21, LDX21, X22, LDX22, &
    THETA, U1, LDU1, U2, LDU2, V1T, LDV1T, V2T, LDV2T, &
    WORK, LWORK, IWORK, INFO)
INTEGER M, P, Q, LDX11, LDX12, LDX21, LDX22, LDU1, LDU2, &
    LDV1T, LDV2T, LWORK, IWORK(M-min(P,M-P,Q,M-Q)), &
    INFO
REAL (KIND=nag_wp) X11(LDX11,*), X12(LDX12,*), X21(LDX21,*),
&
    X22(LDX22,*), THETA(min(P,M-P,Q,M-Q)), U1(LDU1,*), &
    U2(LDU2,*), V1T(LDV1T,*), V2T(LDV2T,*), &
    WORK(max (1,LWORK))
CHARACTER(1) JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, SIGNS

The routine may be called by its LAPACK name dorcsd.

\section*{3 Description}

The \(m\) by \(m\) orthogonal matrix \(X\) is partitioned as
\[
X=\left(\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right)
\]
where \(X_{11}\) is a \(p\) by \(q\) submatrix and the dimensions of the other submatrices \(X_{12}, X_{21}\) and \(X_{22}\) are such that \(X\) remains \(m\) by \(m\).

The CS decomposition of \(X\) is \(X=U \Sigma_{p} V^{\mathrm{T}}\) where \(U, V\) and \(\Sigma_{p}\) are \(m\) by \(m\) matrices, such that
\[
U=\left(\begin{array}{cc}
U_{1} & \mathbf{0} \\
\mathbf{0} & U_{2}
\end{array}\right)
\]
is an orthogonal matrix containing the \(p\) by \(p\) orthogonal matrix \(U_{1}\) and the \((m-p)\) by \((m-p)\) orthogonal matrix \(U_{2}\);
\[
V=\left(\begin{array}{cc}
V_{1} & \mathbf{0} \\
\mathbf{0} & V_{2}
\end{array}\right)
\]
is an orthogonal matrix containing the \(q\) by \(q\) orthogonal matrix \(V_{1}\) and the \((m-q)\) by \((m-q)\) orthogonal matrix \(V_{2}\); and
\[
\Sigma_{p}=\left(\begin{array}{ccc|ccc}
I_{11} & & \mathbf{0} & & \mathbf{0} & \mathbf{0} \\
& C & \mathbf{0} & \mathbf{0} & -S & \\
\mathbf{0} & \mathbf{0} & & \mathbf{0} & & -I_{12} \\
\hline & \mathbf{0} & \mathbf{0} & I_{22} & & \mathbf{0} \\
\mathbf{0} & S & & & C & \mathbf{0} \\
\mathbf{0} & & I_{21} & \mathbf{0} & \mathbf{0} &
\end{array}\right)
\]
contains the \(r\) by \(r\) non-negative diagonal submatrices \(C\) and \(S\) satisfying \(C^{2}+S^{2}=I\), where \(r=\min (p, m-p, q, m-q)\) and the top left partition is \(p\) by \(q\).

The identity matrix \(I_{11}\) is of order \(\min (p, q)-r\) and vanishes if \(\min (p, q)=r\).
The identity matrix \(I_{12}\) is of order \(\min (p, m-q)-r\) and vanishes if \(\min (p, m-q)=r\).
The identity matrix \(I_{21}\) is of order \(\min (m-p, q)-r\) and vanishes if \(\min (m-p, q)=r\).
The identity matrix \(I_{22}\) is of order \(\min (m-p, m-q)-r\) and vanishes if \(\min (m-p, m-q)=r\).
In each of the four cases \(r=p, q, m-p, m-q\) at least two of the identity matrices vanish.
The indicated zeros represent augmentations by additional rows or columns (but not both) to the square diagonal matrices formed by \(I_{i j}\) and \(C\) or \(S\).
\(\Sigma_{p}\) does not need to be stored in full; it is sufficient to return only the values \(\theta_{i}\) for \(i=1,2, \ldots, r\) where \(C_{i i}=\cos \left(\theta_{i}\right)\) and \(S_{i i}=\sin \left(\theta_{i}\right)\).
The algorithm used to perform the complete CS decomposition is described fully in Sutton (2009) including discussions of the stability and accuracy of the algorithm.

\section*{4 References}

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J J, Greenbaum A, Hammarling S, McKenney A and Sorensen D (1999) LAPACK Users' Guide (3rd Edition) SIAM, Philadelphia http://www.netlib.org/lapack/lug
Golub G H and Van Loan C F (2012) Matrix Computations (4th Edition) Johns Hopkins University Press, Baltimore

Sutton B D (2009) Computing the complete CS decomposition Numerical Algorithms (Volume 50) 1017-1398 Springer US 33-65 http://dx.doi.org/10.1007/s11075-008-9215-6

\section*{5 Arguments}

1: JOBU1 - CHARACTER(1)
On entry:
if JOBU1 \(=\) ' \(\mathrm{Y}^{\prime}, U_{1}\) is computed;
otherwise, \(U_{1}\) is not computed.
2: JOBU2 - CHARACTER(1)
Input
On entry:
if JOBU2 \(=\) ' \(\mathrm{Y}^{\prime}, U_{2}\) is computed;
otherwise, \(U_{2}\) is not computed.
3: JOBV1T - CHARACTER(1)
Input
On entry:
if JOBV1T \(={ }^{\prime} \mathrm{Y}^{\prime}, V_{1}^{\mathrm{T}}\) is computed; otherwise, \(V_{1}^{\mathrm{T}}\) is not computed.

4: JOBV2T - CHARACTER(1) Input
On entry:
if JOBV2T \(=\) ' \(\mathrm{Y}^{\prime}, V_{2}^{\mathrm{T}}\) is computed;
otherwise, \(V_{2}^{\mathrm{T}}\) is not computed.

5: TRANS - CHARACTER(1)
Input
On entry:
if TRANS \(=\) ' T ', \(X, U_{1}, U_{2}, V_{1}^{\mathrm{T}}\) and \(V_{2}^{\mathrm{T}}\) are stored in row-major order; otherwise, \(X, U_{1}, U_{2}, V_{1}^{\mathrm{T}}\) and \(V_{2}^{\mathrm{T}}\) are stored in column-major order.

6: \(\quad\) SIGNS - CHARACTER(1)
Input
On entry:
if SIGNS \(=\) ' O ', the lower-left block is made nonpositive (the other convention);
otherwise, the upper-right block is made nonpositive (the default convention).
7: M - INTEGER
Input
On entry: \(m\), the number of rows and columns in the orthogonal matrix \(X\).
Constraint: \(\mathrm{M} \geq 0\).
8: \(\quad\) P - INTEGER
Input
On entry: \(p\), the number of rows in \(X_{11}\) and \(X_{12}\).
Constraint: \(0 \leq \mathrm{P} \leq \mathrm{M}\).
9: \(\quad\) Q - INTEGER
Input
On entry: \(q\), the number of columns in \(X_{11}\) and \(X_{21}\).
Constraint: \(0 \leq \mathrm{Q} \leq \mathrm{M}\).
10: \(\mathrm{X} 11(\mathrm{LDX} 11, *)-\mathrm{REAL}(\mathrm{KIND}=\) nag_wp \()\) array
Input/Output
Note: the second dimension of the array X 11 must be at least \(\max (1, \mathrm{P})\) if TRANS \(=\) ' T ', and at least Q otherwise.
On entry: the upper left partition of the orthogonal matrix \(X\) whose CSD is desired.
On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization process.

11: LDX11 - INTEGER
Input
On entry: the first dimension of the array X 11 as declared in the (sub)program from which F08RAF (DORCSD) is called.

Constraints:
```

 if TRANS = 'T', LDX11 \geq max(1,Q);
    ```
        otherwise \(\mathrm{LDX} 11 \geq \max (1, \mathrm{P})\).

12: \(\mathrm{X} 12(\mathrm{LDX} 12, *)-\mathrm{REAL}(\mathrm{KIND}=\) nag_wp) array

\section*{Input/Output}

Note: the second dimension of the array X12 must be at least \(\max (1, \mathrm{P})\) if TRANS \(=\) ' T ', and at least M-Q otherwise.

On entry: the upper right partition of the orthogonal matrix \(X\) whose CSD is desired.
On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization process.

13: LDX12 - INTEGER
Input
On entry: the first dimension of the array X 12 as declared in the (sub)program from which F08RAF (DORCSD) is called.

\section*{Constraints:}
if TRANS \(=\) ' T ', LDX12 \(\geq \max (1, \mathrm{M}-\mathrm{Q})\);
otherwise \(\mathrm{LDX} 12 \geq \max (1, \mathrm{P})\).
14: \(\mathrm{X} 21(\mathrm{LDX} 21, *)-\mathrm{REAL}(\mathrm{KIND}=\) nag_wp \()\) array
Input/Output
Note: the second dimension of the array X 21 must be at least \(\max (1, \mathrm{M}-\mathrm{P})\) if TRANS \(=\) ' \(\mathrm{T}^{\prime}\), and at least Q otherwise.

On entry: the lower left partition of the orthogonal matrix \(X\) whose CSD is desired.
On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization process.

15: LDX21 - INTEGER
Input
On entry: the first dimension of the array X 21 as declared in the (sub)program from which F08RAF (DORCSD) is called.
Constraints:
if TRANS \(=\) ' \(\mathrm{T}^{\prime}, \operatorname{LDX} 21 \geq \max (1, \mathrm{Q})\);
otherwise \(\operatorname{LDX} 21 \geq \max (1, \mathrm{M}-\mathrm{P})\).
16: \(\quad \mathrm{X} 22(\mathrm{LDX} 22, *)\) - REAL (KIND=nag_wp) array
Input/Output
Note: the second dimension of the array X22 must be at least \(\max (1, \mathrm{M}-\mathrm{P})\) if TRANS \(=\) ' T ', and at least \(\mathrm{M}-\mathrm{Q}\) otherwise.

On entry: the lower right partition of the orthogonal matrix \(X\) CSD is desired.
On exit: contains details of the orthogonal matrix used in a simultaneous bidiagonalization process.

17: LDX22 - INTEGER
Input
On entry: the first dimension of the array X 22 as declared in the (sub)program from which F08RAF (DORCSD) is called.
Constraints:
if TRANS \(=\) ' T ', LDX22 \(\geq \max (1, \mathrm{M}-\mathrm{Q})\);
otherwise \(\operatorname{LDX} 22 \geq \max (1, \mathrm{M}-\mathrm{P})\).
18: \(\quad \operatorname{THETA}(\min (\mathrm{P}, \mathrm{M}-\mathrm{P}, \mathrm{Q}, \mathrm{M}-\mathrm{Q}))-\operatorname{REAL}(\mathrm{KIND}=\) nag_wp \()\) array
Output
On exit: the values \(\theta_{i}\) for \(i=1,2, \ldots, r\) where \(r=\min (p, m-p, q, m-q)\). The diagonal submatrices \(C\) and \(S\) of \(\Sigma_{p}\) are constructed from these values as
\[
\begin{aligned}
& C=\operatorname{diag}(\cos (\operatorname{THETA}(1)), \ldots, \cos (\operatorname{THETA}(r))) \text { and } \\
& S=\operatorname{diag}(\sin (\operatorname{THETA}(1)), \ldots, \sin (\operatorname{THETA}(r)))
\end{aligned}
\]

19: \(\mathrm{U} 1(\mathrm{LDU} 1, *)-\mathrm{REAL}(\mathrm{KIND}=\) nag_wp) array
Output
Note: the second dimension of the array U1 must be at least \(\max (1, \mathrm{P})\) if JOBU1 \(=\) ' \(\mathrm{Y}^{\prime}\), and at least 1 otherwise.

On exit: if JOBU1 \(=\) ' \(\mathrm{Y}^{\prime}\), U1 contains the \(p\) by \(p\) orthogonal matrix \(U_{1}\).
LDU1 - INTEGER
Input
On entry: the first dimension of the array U1 as declared in the (sub)program from which F08RAF (DORCSD) is called.

Constraint: if JOBU1 \(=' \mathrm{Y}\) ', LDU1 \(\geq \max (1, \mathrm{P})\).

21: \(\mathrm{U} 2(\mathrm{LDU} 2, *)-\mathrm{REAL}(\mathrm{KIND}=\) nag_wp) array
Output
Note: the second dimension of the array U2 must be at least \(\max (1, \mathrm{M}-\mathrm{P})\) if \(\mathrm{JOBU} 2={ }^{\prime} \mathrm{Y}^{\prime}\), and at least 1 otherwise.
On exit: if JOBU2 \(=\) ' \(\mathrm{Y}^{\prime}\), U 2 contains the \(m-p\) by \(m-p\) orthogonal matrix \(U_{2}\).
22: LDU2 - INTEGER
Input
On entry: the first dimension of the array U2 as declared in the (sub)program from which F08RAF (DORCSD) is called.
Constraint: if JOBU2 \(=\) ' \(\mathrm{Y}^{\prime}, \mathrm{LDU} 2 \geq \max (1, \mathrm{M}-\mathrm{P})\).
23: V1T(LDV1T, *) - REAL (KIND=nag_wp) array
Output
Note: the second dimension of the array V1T must be at least \(\max (1, \mathrm{Q})\) if JOBV1T \(=\) ' \(\mathrm{Y}^{\prime}\), and at least 1 otherwise.

On exit: if JOBV1T \(=\) ' \(\mathrm{Y}^{\prime}\), V1T contains the \(q\) by \(q\) orthogonal matrix \(V_{1}{ }^{\mathrm{T}}\).
24: LDV1T - INTEGER
Input
On entry: the first dimension of the array V1T as declared in the (sub)program from which F08RAF (DORCSD) is called.
Constraint: if JOBV1T \(=\) ' Y ', LDV1T \(\geq \max (1, \mathrm{Q})\).
25: V2T(LDV2T, *) - REAL (KIND=nag_wp) array
Output
Note: the second dimension of the array V2T must be at least \(\max (1, \mathrm{M}-\mathrm{Q})\) if JOBV2T \(=\) ' Y ', and at least 1 otherwise.

On exit: if JOBV2T \(=\) ' \(\mathrm{Y}^{\prime}\), V2T contains the \(m-q\) by \(m-q\) orthogonal matrix \(V_{2}{ }^{\mathrm{T}}\).
26: LDV2T - INTEGER
Input
On entry: the first dimension of the array V2T as declared in the (sub)program from which F08RAF (DORCSD) is called.

Constraint: if JOBV2T \(=\) ' \(\mathrm{Y}^{\prime}, \operatorname{LDV} 2 \mathrm{~T} \geq \max (1, \mathrm{M}-\mathrm{Q})\).
27: \(\operatorname{WORK}(\max (1\), LWORK \())-\) REAL (KIND=nag_wp) array
Workspace
On exit: if \(\operatorname{INFO}=0, \operatorname{WORK}(1)\) returns the optimal LWORK.
If INFO \(>0\) on exit, \(\operatorname{WORK}(2: r)\) contains the values \(\operatorname{PHI}(1), \ldots \mathrm{PHI}(r-1)\) that, together with THETA \((1), \ldots \operatorname{THETA}(r)\), define the matrix in intermediate bidiagonal-block form remaining after nonconvergence. INFO specifies the number of nonzero PHI's.

28: LWORK - INTEGER
Input
On entry:
If LWORK \(=-1\), a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued.

The minimum workspace required is \(5 \times \max (1, r-1)+4 \times \max (1, r)+\max (1,8 r)+\)
\(\max (1, p)+\max (1, m-p)+\max (1, q)+\max (1, m-q)+1\) where \(r=\min (p, m-p, q, m-q)\). The optimal workspace depends on internal block sizes and the relative dimensions of the problem.

Constraint: LWORK \(=-1\) or
LWORK \(\geq 5 \times \max (1, r-1)+4 \times \max (1, r)+\max (1,8 r)+\max (1, \mathrm{P})+\max (1, \mathrm{M}-\mathrm{P})+\) \(\max (1, \mathrm{Q})+\max (1, \mathrm{M}-\mathrm{Q})+1\).

29: \(\quad \operatorname{IWORK}(\mathrm{M}-\min (\mathrm{P}, \mathrm{M}-\mathrm{P}, \mathrm{Q}, \mathrm{M}-\mathrm{Q}))\) - INTEGER array Workspace
30: INFO - INTEGER Output
On exit: INFO \(=0\) unless the routine detects an error (see Section 6).

\section*{6 Error Indicators and Warnings}
\(\mathrm{INFO}<0\)
If INFO \(=-i\), argument \(i\) had an illegal value. An explanatory message is output, and execution of the program is terminated.

INFO \(>0\)
The Jacobi-type procedure failed to converge during an internal reduction to bidiagonal-block form. The process requires convergence to \(\min (P, M-P, Q, M-Q)\) values, the value of INFO gives the number of converged values.

\section*{7 Accuracy}

The computed \(C S\) decomposition is nearly the exact \(C S\) decomposition for the nearby matrix \((X+E)\), where
\[
\|E\|_{2}=O(\epsilon)
\]
and \(\epsilon\) is the machine precision.

\section*{8 Parallelism and Performance}

F08RAF (DORCSD) is threaded by NAG for parallel execution in multithreaded implementations of the NAG Library.
F08RAF (DORCSD) makes calls to BLAS and/or LAPACK routines, which may be threaded within the vendor library used by this implementation. Consult the documentation for the vendor library for further information.

Please consult the X06 Chapter Introduction for information on how to control and interrogate the OpenMP environment used within this routine. Please also consult the Users' Note for your implementation for any additional implementation-specific information.

\section*{9 Further Comments}

The total number of floating-point operations required to perform the full \(C S\) decomposition is approximately \(2 m^{3}\).

The complex analogue of this routine is F08RNF (ZUNCSD).

\section*{10 Example}

This example finds the full CS decomposition of
\[
X=\left(\begin{array}{rrrrr}
-0.7576 & 0.3697 & 0.3838 & 0.2126 & -0.3112 \\
-0.4077 & -0.1552 & -0.1129 & 0.2676 & 0.8517 \\
-0.0488 & 0.7240 & -0.6730 & -0.1301 & 0.0602 \\
-0.2287 & 0.0088 & 0.2235 & -0.9235 & 0.2120 \\
0.4530 & 0.5612 & 0.5806 & 0.1162 & 0.3595
\end{array}\right)
\]
partitioned so that the top left block is 3 by 2 .
The decomposition is performed both on submatrices of the orthogonal matrix \(X\) and on separated partition matrices. Code is also provided to perform a recombining check if required.

\subsection*{10.1 Program Text}

Program f08rafe
```

FO8RAF Example Program Text
Mark 26 Release. NAG Copyright 2016.
.. Use Statements ..
Use nag_library, Only: dgemm, dorcsd, nag_wp, x04caf
.. Implicit None Statement ..
Implicit None
.. Parameters ..
Real (Kind=nag_wp), Parameter :: one = 1.0_nag_wp
Real (Kind=nag_wp), Parameter :: zero = 0.0._nag__wp
Integer, Parameter :: nin = 5, nout = 6, recombine = 1, \&
reprint = 0
.. Local Scalars ..
Integer :: i, ifail, info, info2, j, ldu, ldul, \&
ldu2, ldv, ldv1t, ldv2t, ldx, ldx11, \&
ldx12, ldx21, ldx22, lwork, m, n11, \&
n12, n21, n22, p, q, r
.. Local Arrays ..
Real (Kind=nag_wp), Allocatable :: theta(:), u(:,:), ul(:,:), u2(:,:), \&
v(:,:), v1t(:,:), v2t(:,:), w(:,:), \&
work(:), x(:,:), x11(:,:), x12(:,:), \&
x21(:,:), x22(:,:)
Real (Kind=nag_wp) :: wdum(1)
Integer, Allocatable :: iwork(:)
.. Intrinsic Procedures ..
Intrinsic :: cos, min, nint, sin
.. Executable Statements ..
Write (nout,*) 'FO8RAF Example Program Results'
Write (nout,*)
Flush (nout)
Skip heading in data file
Read (nin,*)
Read (nin,*) m, p, q
r = min(min(p,q),min(m-p,m-q))
ldx = m
ldx11 = p
ldx12 = p
ldx21 = m - p
ldx22 = m - p
ldu = m
ldu1 = p
ldu2 = m - p
ldv = m
ldv1t = q
ldv2t = m - q
Allocate (x(ldx,m),u(ldu,m),v(ldv,m),theta(r),iwork(m),w(ldx,m))
Allocate (x11(ldx11,q),x12(ldx12,m-q),x21(ldx21,q),x22(1dx22,m-q))
Allocate (u1(ldu1,p),u2(ldu2,m-p),v1t(ldv1t,q),v2t(ldv2t,m-q))
Read and print orthogonal X from data file
(as, say, generated by a generalized singular value decomposition).
Read (nin,*)(x(i,1:m),i=1,m)
Print general matrix using simple matrix printing routine x04caf.
ifail: behaviour on error exit
=0 for hard exit, =1 for quiet-soft, =-1 for noisy-soft
ifail = 0
Call x04caf('G','N',m,m,x,ldx,' Orthogonal matrix X',ifail)
Write (nout,*)
Compute the complete CS factorization of X:
X11 is stored in X(1:p, 1:q), X12 is stored in X(1:p, q+1:m)
X21 is stored in X(p+1:m, 1:q), X22 is stored in X(p+1:m, q+1:m)

```
```

 U1 is stored in U(1:p, 1:p), U2 is stored in U(p+1:m, p+1:m)
 V1 is stored in V(1:q, 1:q), V2 is stored in V(q+1:m, q+1:m)
 x11(1:p,1:q) = x(1:p,1:q)
x12(1:p,1:m-q) = x(1:p,q+1:m)
x21(1:m-p,1:q) = x(p+1:m,1:q)
x22(1:m-p,1:m-q) = x(p+1:m,q+1:m)
Workspace query first to get length of work array for complete CS
factorization routine dorcsd/f08raf.
lwork = -1
Call dorcsd('Yes U1','Yes U2','Yes V1T','Yes V2T','Column','Default',m, \&
p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, \&
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,wdum,lwork,iwork,info)
lwork = nint(wdum(1))
Allocate (work(lwork))
Initialize all of u, v to zero.
u(1:m,1:m) = zero
v(1:m,1:m) = zero
This is how you might pass partitions as sub-matrices
Call dorcsd('Yes U1','Yes U2','Yes V1T','Yes V2T','Column','Default',m,\&
p,q,x,ldx,x(1,q+1),ldx,x(p+1,1),ldx,x(p+1,q+1),ldx,theta,u,ldu, \&
u(p+1,p+1),ldu,v,ldv,v(q+1,q+1),ldv,work,lwork,iwork,info)
If (info/=0) Then
Write (nout,99999) 'Failure in DORCSD/F08RAF. info =', info
Go To 100
End If
Print Theta, U1, U2, V1T, V2T using matrix printing routine x04caf.
Write (nout,99998) 'Components of CS factorization of X:'
ifail = 0
Call x04caf('G','N',r,1,theta,r,' Theta',ifail)
Write (nout,*)
By changes of sign the first r elements of the first row of U1 can be
made positive.
Do i = 1, r
If (u(1,i)<0.0_nag_wp) Then
u(1:p,i) = -u(1:p,i)
u(p+1:m,p+i) = -u(p+1:m,p+i)
v(i,1:q) = -v(i,1:q)
v(q+i,q+1:m)= -v(q+i,q+1:m)
End If
End Do
ifail = 0
Call x04caf('G','N',p,p,u,ldu,' U1',ifail)
Write (nout,*)
ifail = 0
Call x04caf('G','N',m-p,m-p,u(p+1,p+1),ldu,' U2',ifail)
Write (nout,*)
ifail = 0
Call x04caf('G','N',q,q,v,ldv,' V1T',ifail)
Write (nout,*)
ifail = 0
Call x04caf('G','N',m-q,m-q,v(q+1,q+1),ldv,' V2T',ifail)
Write (nout,*)
! And this is how you might pass partitions as separate matrices.
Call dorcsd('Yes U1','Yes U2','Yes V1T','Yes V2T','Column','Default',m, \&
p,q,x11,ldx11,x12,ldx12,x21,ldx21,x22,ldx22,theta,u1,ldu1,u2,ldu2,v1t, \&
ldv1t,v2t,ldv2t,work,lwork,iwork,info2)
If (info2/=0) Then
Write (nout,99999) 'Failure in DORCSD/FO8RAF. info =', info
Go To }10
End If
Print Theta, U1, U2, V1T, V2T using matrix printing routine x04caf.
If (reprint/=0) Then
By changes of sign the first r elements of the first row of U1 can be
made positive.
Do i = 1, r
If (ul(1,i)<0.0_nag_wp) Then
u1(1:p,i) = -u1(1:p,i)

```
```

 u2(1:m-p,i) = -u2(1:m-p,i)
 v1t(i,1:q) = -v1t(i,1:q)
 v2t(i,1:m-q) = -v2t(i,1:m-q)
 End If
 End Do
 Write (nout,99998) 'Components of CS factorization of X:'
 ifail = O
 Call x04caf('G','N',r,1,theta,r,' Theta',ifail)
 Write (nout,*)
 ifail = O
 Call x04caf('G','N',p,p,u1,ldu1,' U1',ifail)
 Write (nout,*)
 ifail = 0
 Call x04caf('G','N',m-p,m-p,u2,ldu2,' U2',ifail)
 Write (nout,*)
 ifail = O
 Call x04caf('G','N',q,q,v1t,ldv1t,' V1T',ifail)
 Write (nout,*)
 ifail = 0
 Call x04caf('G','N',m-q,m-q,v2t,ldv2t,' V2T',ifail)
 Write (nout,*)
 End If
 If (recombine/=0) Then
 Recombining should return the original matrix
 Assemble Sigma_p into X
 x(1:m,1:m) = zero
 n11 = min(p,q) - r
 n12 = min(p,m-q) - r
 n21 = min(m-p,q) - r
 n22 = min(m-p,m-1) - r
 Top Half
 Do j = 1, n11
 x(j,j) = one
 End Do
 Do j = 1, r
 x(j+n11,j+n11) = cos(theta(j))
 x(j+n11,j+n11+r+n21+n22) = -sin(theta(j))
 End Do
 Do j = 1, n12
 x(j+n11+r,j+n11+r+n21+n22+r) = -one
 End Do
 Bottom half
 Do j = 1, n22
 x(p+j,q+j) = one
 End Do
 Do j = 1, r
 x(p+n22+j,j+n11) = sin(theta(j))
 x(p+n22+j,j+r+n21+n22) = cos(theta(j))
 End Do
 Do j = 1, n21
 x(p+n22+r+j,n11+r+j) = one
 End Do
 multiply U * Sigma_p into w
 Call dgemm('n','n',m,m,m,one,u,ldu,x,ldx,zero,w,ldx)
 form U * Sigma_p * V^T into u
 Call dgemm('n','n',m,m,m,one,w,ldx,v,ldv,zero,u,ldu)
 ifail = 0
 Call x04caf('G','N',m,m,u,ldu,
 End If
100 Continue
99999 Format (1X,A,I4)
99998 Format (1X,A,/)
End Program f08rafe

```

\subsection*{10.2 Program Data}

FO8RAF Example Program Data


\subsection*{10.3 Program Results}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{FO8RAF Example Program Results} \\
\hline \multicolumn{6}{|c|}{Orthogonal matrix X} \\
\hline & 1 & 2 & 3 & 4 & 5 \\
\hline 1 & -0.7576 & 0.3697 & 0.3838 & 0.2126 & -0.3112 \\
\hline 2 & -0.4077 & -0.1552 & -0.1129 & 0.2676 & 0.8517 \\
\hline 3 & -0.0488 & 0.7240 & -0.6730 & -0.1301 & 0.0602 \\
\hline 4 & -0.2287 & 0.0088 & 0.2235 & -0.9235 & 0.2120 \\
\hline 5 & 0.4530 & 0.5612 & 0.5806 & 0.1162 & 0.3595 \\
\hline
\end{tabular}

Components of \(C S\) factorization of \(X:\)
Theta
1
10.1811
20.8255

U1
\begin{tabular}{rrrr} 
& 1 & 2 & 3 \\
1 & 0.8249 & 0.3370 & -0.4538 \\
2 & 0.2042 & 0.5710 & 0.7952 \\
3 & 0.5271 & -0.7486 & 0.4022
\end{tabular}

U2
\begin{tabular}{rrr} 
& 1 & 2 \\
1 & 0.9802 & 0.1982 \\
2 & 0.1982 & -0.9802
\end{tabular}

V1T
\(1-0.7461 \quad 0.6658\)
\(2-0.6658-0.7461\)
V2T
\(1 \quad 0.3397-0.8967 \quad 0.2837\)
\(2-0.7738-0.4379-0.4576\)
\(30.5346-0.0640-0.8427\)

Recombined matrix \(X=U\) * Sigma_p * V^T
\begin{tabular}{rrrrr}
1 & 2 & 3 & 4 & 5 \\
-0.7576 & 0.3697 & 0.3838 & 0.2126 & -0.3112
\end{tabular}
\(-0.7576 \quad 0.3697 \quad 0.3838 \quad 0.2126-0.3112\)
\(\begin{array}{lllll}-0.4077 & -0.1551 & -0.1129 & 0.2677 & 0.8517\end{array}\)
\(-0.0488 \quad 0.7240-0.6730-0.1300 \quad 0.0602\)
\(\begin{array}{ccccc}-0.2287 & 0.0088 & 0.2235 & -0.9234 & 0.2120\end{array}\)
\(\begin{array}{lllll}0.4530 & 0.5612 & 0.5806 & 0.1162 & 0.3595\end{array}\)```

